
Draft of 10/01/2007 Confidential

Processes for Automated and Machine Assisted Knowledge Discovery 1 c©

Chris Lacher

1 Introduction

In previous disclosures [Lacher et al, 1992; Lacher, 1993; and US Patent 5,649,066]
the author introduced a process called Expert Network Backpropagation (which we
will refer to as ENBP1) that enables a form of machine learning. The context in
which ENBP1 operates is an expert system whose knowledge base consists of rules of
the form

if

{

H1 and H2 and ...

}

then

{

C1 and C2 and ...

}

{

cf = x

}

where H1, H2, ... are hypotheses, C1, C2, ... are conclusions, and cf is a certainty
factor associated with the rule; and whose inference engine reasons using forward
chaining, the Stanford/EMYCIN certainty factor algebra, and fuzzy logic definitions
of logical operations.

The ENBP1 process is used to adjust the certainty factors of rules in the expert system
so that system reasoning is in agreement with a set of known correct input/output
assertions in the knowledge domain, or optimally close to agreement if complete

1All rights reserved. This is not a public disclosure and not available for public use or

distribution.

1

2

agreement is not possible. ENBP1 may be used to correctly set the certainty factors
of rules using I/O data without envolving a human domain expert in the otherwise
tedious and time-consuming task of finding appropriate certainty factor values for
all rules. Thus ENBP1 can reduce the cost of building expert systems significantly,
especially in knowledge domains where reasoning chains involve several intermediate
concepts, while at the same time increase the accuracy of such systems.

In the current private white paper, we discuss more machine learning processes that
lead to knowledge discovery, with or without a human expert in the discovery loop.
Knowledge may be discovered in two forms: new rules and new concepts.

Two public domain concepts that are used extensively in this paper are computational

network and supervised learning. In order to establish common terminology and
notation, we present a brief introduction and review of these here (Sections 2 and 3).
Next we review the original patented ENBP1 process (Section 4).

The remainder of the paper consists of descriptions of new discoveries and processes
that enable an entire family of ENBP-like processes, applicable to a commicant family
of expert systems, as well as new processes for knowledge discovery in the form of
rule discovery and concept discovery, the latter depending on various instances of the
ENBP family.

2 Computational Networks

2.1 Terminology and Notation

Discrete time computational networks were introduced in [Lacher, 1992] based on
ideas that evolved over several years of investigation. The concepts were developed
further in [Lacher and Nguyen, 1994]. For our purposes here, computational networks
can be thought of as providing a convenient notational framework for discussing
network activation and learning that specializes both to artificial neural networks
and expert networks.

A computational network (CN) consists of nodes and connections that are organized
by an underlying directed graph model whose vertices correspond to nodes and di-
rected edges correspond to connections. In addition, the components in a CN have
functionality, as detailed in the next two paragraphs.

Each node j has a combining or gathering function (denoted here by Γj) and an
output or firing function (denoted by ϕj). The combining function receives post-
synaptic input from the nodes that are connected into node j and produces a value yj

representing the internal state of node j. The firing function takes the internal node
state and produces an external firing value zj for the node. (See Figure ??.)

Further, each connection, say from node i to node j, has a synaptic function σj|i that
processes the output value of node i into an input value xj|i for node j. For this
paper we will consider only computational networks with linear synapses, meaning

3

Figure 1. Node j in a computational network.

that σj|i(z) = wj|i × z, that is, the synaptic functions consist of multiplication by a
numerical weight wj|i associated with the connection. (See Figure ??.)

2.2 Activation

Nodes in a computational network may be designated as input in order to supply
external values to begin an activation and as output in order to observe the result of
activation. (The sets of input and output nodes may overlap, indeed in some cases
each may consist of all nodes in the network.) Any nodes that are not designated as
input or output are called internal.

Activation of a computational network consists of supplying values for input nodes,
applying the component update functions repeatedly, and observing the output values
of the output nodes.

Activation dynamics in general may be quite complex and are beyond the scope of
our discussion here. However, in the case where the network is a directed acyclic
graph (DAG) and time is discrete, the activation dynamics are straightforward: a
steady state is reached after a finite number of activation steps. We will consider
only discrete computational networks with the DAG property. Activation may be
event driven or syncronized, the results are identical.

4

Figure 2. The connection from node i to node j in a computational network.

In the following discussion, we will assume a discrete time acyclic computational
network with linear synapses. We will also assume that the input nodes are those
without incoming connections in the network and that output nodes are those without
outgoing connections in the network: in graph terminology, the input nodes are those
with in-degree zero and the output nodes are those with out-degree zero. Given these
assumptions (which hold for feed-forward neural networks as well as expert networks)
it is possible to order the N nodes in such a way that the input nodes are subscripted
1, . . . , K, the internal nodes are subscripted K + 1, . . . , K + L, and the output nodes
are subscripted K +L+1, . . . , K +L+M . Thus there are K input nodes, L internal
nodes, and M output nodes, and the total number of nodes is N = K + L + M . We
also assume that all predecessors of node j have subscripts less than j.

Note that such an ordering, called a topological sort, is always attainable when the
network over which activation is needed is a DAG. The assumption that the nodes
are enumerated by a topological sort is not necessary, but the notation is simplified
and hence the exposition is more readable.

Suppose, then, that I1, . . . , IK are values for the input nodes of the network. Activa-
tion is initiated by setting

(1) zj := ϕj(Ij)

5

for j = 1, . . . , K and then applying the following update rules

xj|i := wj|izi , i = 1, . . . , j − 1

yj := Γj(xj|1, . . . , xj|j−1)(2)

zj := ϕj(yj)

for all remaining nodes j = K + 1, . . . , N . When this finite set of local activations
has been completed, the entire network has been activated to a stable state. At
that point the network output consists of the activation values of the output nodes:
Oj = zK+L+j, j = 1 . . .M .

Thus activation of the computational network defines an input/output mapping

I = (I1, . . . , IK) 7→ O = (O1, . . . , OM)

that is defined for any viable inputs I to the network.

3 Supervised Learning

Learning algorithms may be classified as one of three types: supervised, reinforce-
ment, and unsupervised, depending on what and how data is used in the learning
process. Unsupervised learning describes learning in which no correct result is known
in advance, and the learner is simply presented with a collection of data and asked to
learn whatever it might from the data. Pattern classifiers typically are unsupervised
learners. In reinforcement learning, the learner is given feedback as to the correctness
of results but knowledge of what the correct result may be is not given. Classicial
conditioning is architypically a reinforcement learning process. Supervised learning

requires that knowledge of correct results is known in advance, as in a student/teacher
classroom setting.

Suppose we have a learner L that should be taught to reproduce a given set of known
correct I/O data. The data is described in terms of numerical input patterns of
the form I = (I1, . . . , IK) and output patterns of the form O = (O1, . . . , OM). The
learner has the capability of computing an output pattern L(I) = O, and we also
have knowledge of what the correct output should be for that pattern. Let’s use
the notation Ô = (Ô1, . . . , ÔM) to denote the correct output pattern that should be
associated with P. Supervised learning gives the learner access to a set of correct
pattern associations

Ip 7→ Ôp, p = 1 . . . , P

and asks the learner to reproduce the pattern association, within a specified margin
of error. In other words, the learner is asked to compute the correct output values:

L(Ip) = Ôp

to within specified error margin. To put it yet another way, we require that Op = Ôp

for p = 1, . . . , P , to within specified error margin. Known correct pattern associations
are called exemplars, and a collection of exemplars to be used for learning is called a
training set. The following meta-algorithm describes the general supervised learning
process in the context established above. The meta-algorithm requires definitions of
how learner modifications are implemented to obtain a specific concrete algorithm.

6

algorithm: supervised learning meta-algorithm

import: exemplars (I[p],O[p]), p = 1 .. P // training set

stop conditions

modify: learner L

export: stop_state: success/unsuccess

repeat

{

for (p = 1 ... P) // one epoch

{

calculate L(I[p])

calculate modifications for L

if (online mode)

modify L

else // batch mode

accumulate modifications separately

}

if (batch mode) modify L using accumulated modifications

}

until stop condition is met

return success/unsuccess

Note that there are two commonly used versions of supervised learning that differ
based on when modifications to the learner are made. In on line mode, modifications
are made immediately as soon as one exemplar is processed. In batch mode, proposed
modifications are accumulated off line and made after each exemplar is processed
one time. Batch mode is sometimes called off line mode. The stop conditions are
typically an error threshold and a maximum on the number of epochs (the number
of iterations of the outer repeat loop). The process terminates successfully if the
error margin is attained and unsuccessfully if the maximum number of iterations is
reached.

In this meta-algorithm, processing each exemplar in the training set one time (i.e.,
one trip through the for loop) is called a learning epoch. Thus batch mode makes
corrective modifications at the end of each epoch, while on line makes modifications
after each exemplar is processed.

Supervised learning has been studied in many contexts, including artificial neural
networks (ANNs). There is a lot of published (public domain) wisdom accumulated
about how to test for correctness and for the ability to generalize to exemplars that
are not in a training set, including cross validation. Some of this applies to CNBP
and ENBP learning, discussed below.

4 Computational Network Backpropagation

One of the processes patented in [USP 5649066] is the Expert Network Backpropaga-
tion learning algorithm, abbreviated ENBP1. Much if the theory behind ENBP1 can

7

be elevated to the context of computational networks. Our exposition continues in this
section with the Computational Network Backpropagation learning meta-algorithm
(called CNBP) that is made concrete to ENBP1 with certain definitions and calcula-
tions. The essence of this process is covered in [USP 5649066]. Again, the equations
are derived under the assumption that the network has been topologically sorted, so
that the network predecessors of node j all have index less than j. This assumption
is not essential, because the network may be activated as event-driven, but it does
make the notation simpler and hence the equations are easier to understand.

4.1 Influence Factors

Whenever a computational network is activated with a set of input values, assuming
that the combining and firing functions for the nodes are differentiable almost every-
where, an influence factor may be calculated for each connection in the network using
the following formula (which assumes that the connection runs from node j to node
k):

(3) Ek|j = wk|j ×
∂Γk

∂xk|j
(xk|1, . . . , xk|N) × ϕ′

k(yk)

where wk|j, ϕk, and Γk are as in section 2 above, yk = Γk(xk|1, . . . , xk|N) is the internal
activation value of node k, and the partial derivative is evaluated at the vector of input
values (xk|1, . . . , xk|N) (which are the post-synaptic activation values xk|j = wk|j×zj of
nodes connected into node k – see Figure ??). This influence factor is a measure of the
influence, or responsibility, that node j has on the error associated with a successor
node k. Note that Ek|j is a number that depends on both the computational network
structure and the activation values of the network using a particular input.

It is important to understand the notation used above. In the partial derivative
∂Γk/∂xk|j, xk|j represents the variable with respect to which the derivative is taken,
whereas in the evaluation (xk|1, . . . , xk|N) the various components represents a specific

set of postsynaptic values for node k.

4.2 Calculating Influence Factors

In order to apply this characterization of influence factor it is necessary to have a
way of calculating the functions and their derivatives as used in equation (??) above.
The functions are always given by formula, and the derivatives can be calculated
numerically. However, it is much better and more practical to have formulas for the
derivatives as well. Closed forms for the various functional components in an expert
network have been derived [USP 5649066], [Lacher et al, 1992], [Lacher and Nguyen,
1994] and are given in Section 5.3 below.

Influence factor values are calculated during a forward activation of the network.
Assuming the network (or the portion of the network being activated) is acyclic, as
above, the influence factors of all connections can be calculated during activation,
either as an event-driven process or taking advantage of the topological sort ordering

8

Figure 3. Nodes i, j, and k in a computational network. Node i
connects to nodes j and k, and node j also connects to node k.

assumed in Section 4.2 above. All that is required is that equation (??) be applied
for node k after the activation values z1, . . . , zk have been calculated.

4.3 Error Assignment

Having defined and calculated the relative influence each in-connecting node has on
the error associated with a node, error can be assigned to each node in the network in
two steps: First calculate the actual error at each output node, and second propagate
these error values backward using relative influence (or responsibility) to all non-
output nodes in the network.

The setting for this error assignment process is that of supervised learning, wherein
we are given an exemplar consisting of input values I1, . . . , IK and associated correct

9

output values Ô1, . . . , ÔM obtained from some external source. Then error at the
output nodes is the difference between correct value and computed value: eK+L+j =

Ôj − Oj for j = 1 . . .M . And error may be back-assigned for all non-output nodes
by apportioning according to responsibility for downstream error:

ej := Ôj−K−L − zj , j = N . . .N − M + 1(4)

ej :=
∑

k>j

Ek|jek , j = K + M . . . 1(5)

(Recall that Oj = zK+L+j in our notation.)

Error assignment is analogous to activation of a dual, or adjoint, network, whose
nodes are the same as the original but whose connections have reversed direction with
weights equal to the influence factors. Equation (??) is an initialization, analogous
to equation (??), and equation (??) is an activation, analogous to equation (??).

4.4 CNBP Learning

Equations (??) and (??) provide an assignment of error to each node in the network.
Note that it is necessary to assign error to all nodes, even those for which learning
may not be desireable, because an upstream node can be assigned error only after
the nodes it connects into have been assigned error.

Once having assigned error to node j, a learning rule for connections into that node
may be derived using local steepest descent of the square error surface at that node.
Note that local steepest descent amounts to applying the classic Widrow-Hoff learning
rule at j. By calculating the gradient of square error at node j with respect to the
weights on incoming connections to node j, we obtain the formula:

(6) ∆wj|i = ηejϕ
′
j(yj)

∂Γj

∂xj|i

(xj|1, . . . , xj|j−1)zi + µ∆wprev

j|i

Equation (??) defines one learning step with learning rate η and momentum µ in the
direction of steepest descent of square error at node j.

Using equation (??) as the modification step in supervised learning yields the following
framework learning algorithm, known as Computational Network Backpropagation,
or CNBP:

algorithm: CNBP meta-algorithm

import: exemplars (I[p],O[p]), p = 1 .. P // training set

max_epochs

max_error

modify: weights in computational network

export: stop_state success/unsuccess

repeat

{

for (p = 1 ... P) // one epoch

10

{

present I[p] to network inputs // (1)

activate network // (2)

and calculate influence factors // (3)

calculate error at output nodes and accumulate // (4)

assign error to all other nodes // (5)

calculate weight changes // (6)

if (online mode)

make weight changes

else // batch mode

accumulate weight changes separately

}

if (batch mode) make accumulated weight changes

}

until error <= max_error or epochs >= max_epochs

if (error <= max_error) return success

else return unsuccess

All that remains to have a concrete learning algorithm is concrete definitions of the
computational network node funtions Γj and ϕj and a closed form calculation of
their derivatives. These formulas are plugged in to the various named functional
components in equations (??) . . . (??).

This process, along with the formulae for influence factors and calculation of various
partial derivatives, forms the fundamental core of the ENBP learning algorithm,
patented in [US Patent 5,649,066]. In this exposition we have merely elevated the
process up to the level of computational network.

5 ENBP1 Learning as Instance of CNBP

There are three broad areas discussed and claimed in [US Patent 5649066]: Trans-
lation of an expert system into a special kind of computational network called an
expert network; a supervised learning algorithm for expert networks called expert net-

work backpropagation, abbreviated ENBP1; and a reinforcement learning algorithm
for expert networks called goal directed Monte Carlo learning, abbreviated GDMC.
GDMC is used as an initializer for ENBP. In this section, we present a newly de-
veloped exposition of expert networks and the ENBP algorithms. The new way of
understanding ENBP reveals insights into the various sub-processes of ENBP, mak-
ing them applicable to new algorithms for knowledge discovery. The new knowledge
discovery algorithms are discussed in Section 5.

5.1 Translation

The first step in applying Expert Network Backpropagation (ENBP) learning to an
expert system is to translate the expert system into a certain type of computational
network called an expert network.

11

The nodes in an expert network are classified as either regular nodes or logic nodes.
Regular nodes are direct translates of hypothesis and/or conclusion components of
rules. Thus regular nodes represent concepts from the knowledge domain that is
modelled by the originating expert system. Logic nodes represent logical processing
and are obtained from logical operators embedded in rule hypotheses and/or conclu-
sions. The logical processing nodes under consideration in the present context are
fuzzy NOT, AND, and NOR (also called UNK). Other logical operators can be added,
requiring only that the fuzzy logical function and its partial derivatives be used to
define the node type. We will assume also that rule conclusions are not compounded.

Translation of the original expert system into its expert network model proceeds in
two steps [USP 5649066], [Kuncicky et al, 1992]: first create a network whose nodes
represent the rule hypotheses and conclusions as they exist in the expert system, and
second expand rule hypotheses into a subnetwork consisting of non-compound (aka
atomic) regular, or concept, nodes feeding into a logic node, which in turn feeds into
the conclusion concept node of the rule.

Weights on connections into logic nodes are set to the value 1.0 and are not permitted
to change during learning, while weights of connections into concept nodes have the
value of the certainty factor associated with the originating rule.

Nodes in the expert network are categorized as input if they are concept nodes that
have no predecessor in the network and as output if they have no successor in the
network. More concept nodes may be designated as input or output by the user of
the system, where convenient. In essence, input nodes are the translates of concepts
where reasoning begins and output nodes are translates of concepts that are final
conclusions in the expert system reasoning process. All nodes not designated as
input or output are called internal.

5.2 Activation

Activation of the expert network is defined by virtue of its being a discrete time acyclic
computational network, so that the discussion of Section 2 applies. In particular, we
assume that a topological sort order has been assigned to the nodes. Such an ordering
is always attainable when the expert network over which activation is needed is a
directed acyclic graph (DAG). This assumption simplifies the exposition, but is not
essential to the actual working of expert networks, where the activation is event-
driven.

Note that input queries to the expert system correspond directly to input values for
the expert network. Therefore we have an input/output mapping

I = (I1, . . . , IK) 7→ O = (O1, . . . , OM)

that is defined by the expert network, as in Section 2 above. Because the input
values I = (I1, . . . , IK) also represent an input query for the originating expert system,
which produces a set of final conclusions using forward chaining, another input/output
mapping is defined using the expert system. It is shown in the references that these

12

two mappings, one defined by the expert system and forward chaining, the other by
the expert network and activation, are identical. Thus the expert network and the
original expert system are isomorphic, that is, they reason identically.

5.3 Expert Network Functions and Derivatives

We collect here closed forms for the combining and firing functions for the Stan-
ford/EMYCIN evidence accumulator and various fuzzy logic operators used by ex-
pert networks, along with their derivatives. These provide the plug-ins that create
the ENBP1 algorithm from the CNBP meta-algorithm.

In a typical expert network, there will be many instances of all node types but only
a few node types. Domain concept nodes (denoted by REG) will use the Stanford
evidence accumulator, and logic nodes will use one of the fuzzy logic operators AND,
OR, NAND, NOR, or NOT. We use the following notation for a node type: x1, . . . , xn

are the post-synaptic inputs, y = Γ(x1, . . . , xn) is the internal state, and z = ϕ(y) is
the activation value. Note that a specific node subscript is omitted.

5.3.1 Regular Nodes

Positive and negative evidence values for regular node are given by

y+ = +1 −
∏

xi>0

(1 − xi) and

y− = −1 +
∏

xi<0

(1 + xi),

respectively. Positive and negative evidence are then reconciled, yielding the internal
state of the node as the value of the REG combining function:

(7) y := ΓREG(x1, . . . , xn) ≡
y+ + y−

1 − min{y+,−y−}
.

Note that ΓREG is a symmetric function of the variables x1 . . . xn. The only input
variables which affect the values of ΓREG are those from predecessors in the network.

The partial derivatives of the evidence combining function, evaluated at a specific
input vector x, are given by

(8)
∂ΓREG

∂xj

(x) =

1
1−xj

1−y+

1+y−
, if y+ ≥ |y−| and xj > 0;

1
1−xj

1+y−

1−y+ , if y+ < |y−| and xj > 0;
1

1+xj

1−y+

1+y−
, if y+ ≥ |y−| and xj < 0;

1
1+xj

1+y−

1−y+ , if y+ < |y−| and xj < 0

provided xj 6= ±1. Again it should be emphasized that on the left-hand side of
equation (??) xj represents the variable with respect to which we are differentiating,
whereas on the right side all of the symbols represent specific values calculated by
activating the network at the specific input x = (x1, . . . , xj, . . .).

13

The firing function ϕREG for a regular node is defined by equation

(9) z := ϕREG(y) ≡

{

y , if y ≥ 0.2;

0 , otherwise.

so that its derivative is

(10) ϕ
′

REG(y) ≡

{

1 , if y ≥ 0.2;

0 , otherwise.

5.3.2 Logic Nodes

There are three logic node types used in the original expert network technology of
[USP 5649066]: AND, UNK, and NOT. The combining and firing functions for these
node types, along with their derivatives, are given in this section.

AND

The combining function for AND is given by

(11) y = ΓAND(x1, . . . , xk) ≡ min
i
{xi}

where xi is post-synaptic input. The partial derivatives are given by

(12)
∂ΓAND

∂xj

(x) =

{

1, if xj = mini{xi}

0, otherwise

The firing function for AND nodes is the same threshold function used for REG nodes
(equations ?? and ??).

NOT

The NOT node is restricted to one input value, say x. Its combining function is given
by

(13) y = ΓNOT(x) ≡ 1 − x

and its derivative is given by

(14)
∂ΓNOT

∂x
(x) = −1

The firing function for NOT is

(15) z := ϕNOT(y) ≡

{

1, if y ≥ 0.8;

0, otherwise.

Note that the derivative of this function is zero.

UNK

14

The combining function for UNK is given by

(16) y := ΓUNK(x1, . . . , xk) ≡ 1 − max
i

{xi}

where xi is post-synaptic input. The partial derivatives are given by

(17)
∂ΓUNK

∂xj

(x) =

{

−1, if xj = maxi{xi}

0, otherwise

The firing function for UNK is the same as for NOT (equation ??). A defect in this
system, which we will correct in the new discoveries, is that the zero derivatives for
NOT and UNK firing functions effectively prevent error assignment back through
nodes of these types.

5.4 ENBP1 Learning

Now ENBP1 learning can be re-described as the concrete CNBP algorithm obtained
using the specific formulas from section 5.3.

algorithm: ENBP1

import: exemplars (I[p],O[p]), p = 1 .. P // training set

max_epochs

max_error

modify: weights in expert network

export: stop_state success/unsuccess

epochs = 0

repeat

{

for (p = 1 ... P) // one epoch

{

present I[p] to network inputs // (1) + (9)...(17)

activate network // (2) + (9)...(17)

and calculate influence factors // (3) + (9)...(17)

calculate error at output nodes // (4) + (9)...(17)

and accumulate into total_error

assign error to all other nodes // (5) + (9)...(17)

calculate weight changes // (6) + (9)...(17)

if (online mode)

make weight changes

else // batch mode

accumulate weight changes separately

}

epochs = epochs + 1

if (batch mode) make accumulated weight changes

}

until total_error <= max_error or epochs >= max_epochs

15

if (total_error <= max_error) return success

return unsuccess

This process, along with the formulae for influence factors and calculation of various
partial derivatives, forms the fundamental core of the ENBP1 learning algorithm,
patented in [US Patent 5,649,066].

This concludes the review of public domain background and processes patented in
[US Patent 5,649,066]. The material in all remaining sections is new.

6 New Facts Revealed

Several facts are discovered by our innovative exposition of CNBP technology. The fol-
lowing are important for the new processes discussed in following Sections 8 (ENBP2)
and 9 (Knowledge Discovery).

The first fact follows from inspection of equations (??) and (??), the places where
derivatives are used in CNBP:

6.1 CNBP can be instantiated with any set of node functionalities whose deriva-
tives exist almost everywhere.

Thus given any set of node functionalities whose functionalities are differential almost
everywhere determines a concrete instantiation of the CNBP meta-algorithm.

The second fact follows from the local nature of weight changes given by equation (??)
together with the separation of learning from error assignment, given by equations
(??) and (??):

6.2 CNBP learning may be turned off for any set of connections.

Another consequence of separation of error assignment (??,??) and learning (??)
is that reverse error assignment is independent of the learning step in the CNBP
meta-algorithm, which then implies:

6.3 Error assignment can be made through all connections, even those for which
learning has been turned off.

Similarly, there is no reason why learning must be invoked at any connection at all:

6.4 Error assignment can be made stand-alone, without a subsequent learning
step.

We have stated these observations in terms of the CNBP meta-algorithm to empha-
size that they apply to any of its concrete instantiations, such as the ENBP family
discussed in Section 8.

16

7 New Components for Expert Networks

We introduce here a more numerous and upgraded collection of node types, defined
in terms of their combining functions, firing functions, and their derivatives. For
simplicity of reference, we will create a catalog that includes the functionalities covered
in Section 5.3.

Notation is consistently as follows: yb denotes the internal state node b, and zb denotes
the firing value of node b, and xb|a denotes post-synaptic input to node b from node a.
Thus xb|a represents either external input or xb|a = wb|aza, where za is the firing value
for node a. The weight wb|a is the certainty factor associated with the connection
from a to b. Sometimes subscripts for these entities may be omitted where context is
clear.

We will also use Γ and ϕ to denote the closed form combining and firing functions,
respectively. Thus

xb|a = wb|aza

yb = Γ(xb|1, . . . , xb|n)

zb = ϕ(yb)

The type of a node is generally determined by the combining functionality of the
node, and it has become clear that varying the firing function of a node has only a
minor efefct on reasoning but a highly significant effect on learning. Therefore we
catalog ours nodes according to combining function and reserve separate names for
firing functions.

7.1 Combining Functions

One property that any combining function must have is symmetry with respect to
its independent variables. We say that a function y = Γ(x1, . . . , xn) is symmet-

ric if for any permutation i1, . . . , in of its independent variables, Γ(x1, . . . , xn) =
Γ(xi1 , . . . , xin). Symmetry is essential for combining functions to ensure that the in-
ternal states of nodes are not dependent on the order assigned to the nodes. For
example, it may be convenient to use a topological sort order for the nodes, and this
order may be different from the order chosen by the expert system developer, so this
new order must not affect the internal state values of nodes. All of the combining
functions in this white paper are symmetric.

7.1.1 Stanford Evidence Accumulator

The Stanford Evidence Accumulator is the same evidence accumulator used in the
original patent, under a new name. In accumulator mode, which is used during

17

reasoning in an expert system, it is defined by these update equations:

y :=

y + x(1 − y), if both y and x are positive

y + x(1 + y), if both y and x are negative
x+y

1−min(|y|,|x|)
, otherwise

Here, y is the accumulating internal state of the node, z is the firing value for an
upstream node, and x = cf × z is the input value from the upstream node.

We will call nodes defined with this functionality stanford nodes. The closed form
combining function for stanford nodes is given by:

y+ = +1 −
∏

xi>0

(1 − xi),

y− = −1 +
∏

xi<0

(1 + xi),

Γ(x) =
y+ + y−

1 − min(y+,−y−)

where x = (x1, . . . , xn) is the vector of postsynaptic inputs to the node. The partial
derivatives for the stanford combining function are given by:

∂Γ

∂xj

(x) =

1
1−xj

1−y+

1+y−
, if y+ ≥ |y−| and xj > 0;

1
1−xj

1+y−

1−y+ , if y+ < |y−| and xj > 0;
1

1+xj

1−y+

1+y−
, if y+ ≥ |y−| and xj < 0;

1
1+xj

1+y−

1−y+ , if y+ < |y−| and xj < 0

Commentary. The stanford evidence accumulator was introduced in the MYCIN
expert system and formed the basis for reasoning under uncertainty for the EMYCIN
expert systems shell (first commercialized in M1). This system has been in continuous
use in textbooks and public domain software ever since. Stanford nodes with the linear
threshold firing function (see 7.2.2) were called regular nodes in the original patent
of ENBP1.

In the new algorithms introduced below, the firing function used for stanford nodes
varies as required, depending on context and on the intended use of the algorithm.
The partial derivative calculation, and its use in learning, were part of the original
patent [USP 5649066].

7.1.2 Fuzzy AND

The combining function for fuzzy AND is given by

Γ(x) = min
i
{xi}

where x = (x1, . . . , xn) is post-synaptic input. The partial derivatives are given by

∂Γ

∂xj

(x) =

{

1, if xj = mini{xi}

0, otherwise

18

The firing function for AND nodes is again a variable, depending on the targeted
purpose of a particular algorithm.

Commentary. The effect of this derivative is apparent in error assignment. Consider
equation (??), repeated here, which controls how error is backpropagated in the
CNBP meta-algorithm:

Ej|i = wj|i ×
∂Γ

∂xj|i

(xj|1, . . . , xj|n) × ϕ′(yj)

The partial derivative factor acts as a multiplexer, sending error back through the
connection associated with the smallest (minimum) post-synaptic input. This is intu-
itively appropriate, since the smallest input determines the internal state (and firing
value) of the node, and hence is completely responsible for any error at the node.

7.1.3 Fuzzy OR

The combining function for fuzzy OR is given by

Γ(x) = max
i

{xi}

where x = (x1, . . . , xn) is post-synaptic input. The partial derivatives are given by

∂Γ

∂xj

(x) =

{

1, if xj = maxi{xi}

0, otherwise

The firing function for OR nodes is again a variable, depending on the targeted
purpose of a particular algorithm.

Commentary. Just as with AND, this derivative acts as a multiplexer, sending error
back through the connection associated with the largest (maximum) post-synaptic
input. OR nodes are rarely needed in expert systems, however.

7.1.4 Fuzzy NOR

Γ(x) = 1 − max
i

{xi}

∂Γ

∂xj

(x) =

{

−1, if xj = maxi{xi}

0, otherwise

Commentary. Fuzzy NOR is another node type introduced in EMYCIN. When used
with the bivalent threshold firing function it has been called the unknown node type.
This choice for firing function was unfortunate, as it effectively prevents reverse error
assignment through the node. In the new ENBP2 below, we rectify this defect by
changing firing functions to the anchored logistic. (See 7.2.1 and 7.2.3 below.)

Note that NOR is equivalent to chaining NOT (with linear threshold firing function,
τ = 0) and OR.

19

7.1.5 Fuzzy NAND

Γ(x) = 1 − min
i
{xi}

∂Γ

∂xj

(x) =

{

−1, if xj = mini{xi}

0, otherwise

Commentary. The NAND node type is equivalent to chaining NOT (with linear
threshold firing function, τ = 0) and AND.

7.1.6 Fuzzy NOT

The fuzzy NOT node is restricted to one input value, say x. Its combining function
is given by

Γ(x) = 1 − x

and its derivative is given by

∂Γ

∂x
(x) = −1

Commentary. Along with REG, AND, and UNK, NOT is the fourth (and last) node
type introduced in EMYCIN. As with UNK type, NOT was paired with the bivalent
threshold firing function, with the same problems for learning as those discussed for
UNK. We rectify the situation in ENBP2 by disengaging the firing function from the
node type, using the anchored logistic to fire UNK and NOT.

7.2 Firing Functions

We catalog previously used and one new firing function in this section. To keep the
notation consistent with the use of firing functions in a computational network, we
use y to denote the independent variable and z = ϕ(y) the dependent variable for a
firing function ϕ.

7.2.1 Bivalent Threshold

The bivalent threshold firing function (with τ = 0.2) was originally associated with
UNK and NOT nodes by EMYCIN:

ϕ(y) =

{

1, if y ≥ τ ;

0, otherwise.

The parameter: τ is called the threshold. The derivative is constant zero:

ϕ
′

(y) = 0

20

Commentary. Clearly, when inserted into the definition of influence factor given by
equation (??), the result is zero, which prevents reverse error propagation through
these nodes.

7.2.2 Linear Threshold

The linear threshold firing function was originally associated with REG and AND
nodes by EMYCIN:

ϕ(y) =

{

y, if y ≥ τ ;

0, otherwise.

Again the parameter τ is called the threshold. The derivative is given by

ϕ
′

(y) =

{

1, if y > τ ;

0, if y < τ.

Commentary. This firing function indeed makes reverse error assignment, and hence
learning, operate appropriately. Because most nodes in typical EMYCIN-based expert
network are of either REG or AND type, learning with ENBP1 has been adequate.
The problem of blocking error assignment through UNK and NOT nodes remains,
and is solved below using the anchored logistic.

7.2.3 Anchored Logistic

The logistic function L(y) has been used for many years as a firing function in artificial
neural networks. It is also called the sigmoid function in that context. The definition
of L(y), along with the well known formula giving its derivative in terms of itself, are
as follows:

L(y) =
1

1 + exp(−λ(y − τ))

L
′

(y) = λL(y)(1 − L(y))

Note that there are two parameters in the logistic function: τ plays the role of thresh-

old, and λ determines the maximum slope. The logistic function is strictly increasing
with one inflection point at y = τ . The maximum slope occurs at y = τ and has
value λ/4.

We introduce the anchored logistic as a linear change of dependent variable of the
logistic, arranged so that the curve z = ϕ(y) passes through the points (0, 0) and
(1, 1), that is, ϕ(0) = 0 and ϕ(1) = 1, which makes the anchored logistic appropriate
as a firing function for nodes in an expert network. Here are equations defining the

21

anchored logistic and its derivative:

ϕ(y) =
L(y) − L(0)

L(1) − L(0)

ϕ
′

(y) =
1

L(1) − L(0)
L

′

(y)

=
λ

L(1) − L(0)
L(y)(1 − L(y))

The two parameters are inherited from the logistic function: τ plays the role of
threshold, and λ determines the maximum slope. The anchored logistic function is
strictly increasing with one inflection point at y = τ . The maximum slope occurs at
y = τ and has value λ/4(L(1) − L(0)).

Commentary. The anchored logistic firing function replaces the bivalent firing func-
tion in the new ENBP2 algorithm. The tunable slope parameter λ is used explicitly
in other knowledge discovery algorithms.

8 ENBP2

As predicted in the discussions of Section 7, we can now state a new version of
ENBP. Due to the wide variety of node types available, we will adopt the convention
of establishing a context by citing specific node types and firing functions for an
instantiation of CNBP meta-algorithm.

algorithm: ENBP2

meta-algorithm: CNBP

context: expert network with the following node types:

stanford nodes (7.1.1)

with linear threshold firing functions (7.2.2)

AND nodes (7.1.2)

with linear threshold firing functions (7.2.2)

NOR nodes (7.1.4)

with anchored logistic firing functions (7.2.3)

NOT nodes (7.1.6)

with anchored logistic firing functions (7.2.3)

import: exemplars (I[p],O[p]), p = 1 .. P // training set

max_epochs

max_error

modify: weights in expert network

export: stop_state success/unsuccess

epochs = 0

repeat

{

for (p = 1 ... P) // one epoch

{

22

present I[p] to network inputs

activate network

and calculate influence factors

calculate error at output nodes

and accumulate into total_error

assign error to all other nodes

calculate weight changes

if (online mode)

make weight changes

else // batch mode

accumulate weight changes separately

}

epochs = epochs + 1

if (batch mode) make accumulated weight changes

}

until total_error <= max_error or epochs >= max_epochs

if (total_error <= max_error) return success

return unsuccess

Note that there are many choices (contexts) one can make in defining an expert
system with certainty factors and its associated expert network. Each set of choices
defines an explicit expert network backpropagation learning process, as in ENBP2.

Henceforth we will refer to the original expert network backpropogation, as patented
in [USP 5649066] and also discussed in Section 5.4 above, as ENBP1. In the following
sections, ENBP is used to mean any of the entire family of ENBP algorithms defined
by a consistent set of choices of logic nodes and their explicit functionality. Thus
ENBP is taken to mean ENBP1, ENBP2, or any other consistent set of choices from
the possibilities discussed in Section 7.

9 Knowledge Discovery

The ENBP processes, outlined in previous sections, are designed to adjust certainty
factors on rules in a forward chaining expert system of the type described in the
introduction. The process works, as has been demonstrated by careful mathematical
derivation as well as emperical trials. By replacing the human expert with a process
that learns from data, ENBP can result in both large savings in development time
and greater accuracy in these systems.

Convergence of the ENBP algorithm is not ensured, however, and there are certainly
cases where incomplete rule systems will make convergence impossible. This section
of the paper addresses the question of what to do when ENBP is unable to converge.

The ENBP algorithms terminates with either success or unsuccess. Due to the
possibility of sub-optimal local minima in the manifold representing square error, it
is not unlikely that random restarts of ENBP may attain convergence. In fact, a
monte carlo learning process called Goal Directed Monte Carlo (GDMC) learning is

23

designed to provide better than random restarts for ENBP. GDMC is also part of
the original patent [US Patent 5,649,066]. However, again, it may be that even with
random restarts assisted by GDMC, ENBP never converges satisfactorily, leaving the
result: unsuccess.

Such a lack of successful convergence may in fact be due to failure to capture sufficient
complexity in the rule base itself, so that it is a mathematical impossibility to set the
certainty factors in such a way that the system reasons correctly on all exemplars in
the training set.

In this section we introduce algorithms for discovering new knowledge in the form of
new rules and new concepts for an expert network. We start with a discussion of the
differences between expert networks and neural networks and measures of complexity
for such systems. Then we address the problem of knowledge discovery in three
stages: diagnosing problems with the completeness of existing knowledge captured in
an expert network, discovering new rules for an expert network, and finally discovering
new concepts for an expert network.

9.1 Expert Networks vs. Neural Networks

Expert networks (ENs) differ from artificial neural networks (ANNs) in two important
ways:

1. ENs represent knowledge symbolically, while ANNs represent knowledge sub-
symbolically.

The nodes in an EN represent concepts (logic or domain), whereas a node in an ANN
has no external meaning: knowledge in the EN is local, whereas knowledge in an
ANN is represented globally by patterns of activation. A single activation value in an
EN has external meaning, whereas in an ANN a single activation value is analogous
to a pixel in an image: totally without meaning by itself, but part of a bigger picture
that represents knowledge.

2. EN’s tend to be sparsely connected, whereas ANNs are inherently densely
connected.

An ANN requires many nodes in order to represent complex patterns, just as a digital
image requires many pixels to represent a scene. Moreover, experience has shown that
successful training of ANNs requires very high connectivity, often “full” connectivity,
wherein each node on one layer is connected to every node in the next layer.

These distinctions are of course related, and it is a mistake to try move either tech-
nology to a state that is more like the other: ANNs need large numbers of nodes to
represent complex patterns and high connectivity for successul learning, whereas ENs
need to keep the number of nodes relatively small (because each represents a concept

24

in either logic or the knowledge domain) and the connectivity sparse (because connec-
tions represent rules, and the fewer rules that are needed to characterize a knowledge
domain, the better, all things considered).

Therefore the obvious way to make ENBP converge, by adding lots of new nodes and
connections, would work, but would lead to an expert network that is trending to an
ANN system, which in turn would defeat the purpose of having an expert network
in the first place: we want systems whose concepts and rules are accepted by human
domain experts and for which logical traces are comprehensible explanations of how
given conclusions are reached. Adding many nodes and connections would allow
ENBP to begin to represent knowledge sub-symbolically, at which point we would
have a “black box” solution.

9.2 Measures of Complexity: Rule and Connection Density

One can define the connection density of a network as the total number of connections
divided by the total number of nodes. The connection density can be calculated and
maintained in a computer display at all times during knowledge discovery.

A similar ratio is the rule density, consisting of the number of rules divided by the
number of domain concepts in the expert system. While these two ratios each quantify
a measure of the expert system complexity, the connection density is preferred due to
its somewhat higher sensitivity. For example, suppose we have a rule base consisting
of two rules:

if A and B and C then D (cf = x)

if C then E (cf = y)

The rule density of this simple system is two rules divided by five concepts (A, B, C, D,
E), or 0.40, while the connection density is five connections divided by six nodes (A,
B, C, D, E, AND), or 0.83. (See Figure ??.) Removing C as a conjunct in the first rule
changes the connection density to 4/6 = 0.67 but does not change the rule density.

Another advantage of using connection density is that it applies to both expert net-
works and ANNs. A typical ANN with n nodes has connection density Θ(n), whereas
a good rule of thumb for expert networks is to keep the connection density bounded
by a constant value (2.0 being a good target).

9.3 Diagnostics

In Section 9.1 above, we make the point that rules and concepts must be added to en
expert network with great judiciousness in order to preserve the very benefits expert
systems have over black box solutions. A first and most judicious step in solving an
ENBP non-convergence problem is to provide diagnostic data that can be examined
by a human expert using standard spreadsheet technology.

25

Figure 4. Expert network associated with simple two-rule expert system.

Suppose that we have an expert network and that we have a failure to converge by
ENBP. The first question that a human domain expert might ask is: where are the
problems?

Here is an algorithm that answers this question:

algorithm: diagnose_1

context: expert network

import: exemplars I[p],O[p], p = 1..P

export: error at each node for each exemplar

for (p = 1 .. P)

{

activate the network with I[p] // (1),(2)

and calculate influence factors // (3)

e[p,j] = error assigned to node j by exemplar p // (4),(5)

}

return: error matrix e

26

This algorithm returns a matrix, which can be output in comma-delimited form and
read by a spreadsheet with rows corresponding to exemplars and columns correspond-
ing to nodes. Sorts and other analysis techniques can help in diagnosing where error
is high which may be helpful in discovering where knowledge is “missing” from the
system.

A more focused diagnostic is the following:

algorithm: diagnose_2

context: expert network

import: exemplars I[p],O[p], p = 1..P

export: worst performing exemplar

associated activation values

associated error values

for (p = 1 .. P)

{

activate the network with I[p] // (1), (2)

rms[p] = RMS output error for I[p] // (4)

}

m = subscript of first largest value of rms[]

// I[m],O[m] is exemplar with worst performance

a[j] = activation value of node j with input I[m] // (1),(2)

e[j] = error assigned to node j by exemplar I[m],O[m] // (3),(4),(5)

return: m,a,e

The Diagnose2 process first finds the (first) worst performing exemplar and then
calculates and returns (a) the exemplar identifier, (b) the activation values for the
exemplar, and (c) the error values associated with the exemplar.

It is worth emphasizing here that the error assigned to nodes is a signed number:
positive error values indicate that the activation value is too low and negative error
values indicate that the activation value is too high. To correct for a positive error,
the activation value should increase, and to correct for a negative error the activation
value should be decreased.

In a visual mode, the software would show the activation values as intensities in
one color and the error values as intensities in a spectrum of two orthogonal colors.
For example, activation value may be indicated in green, positive error in red, and
negative error in blue, or alternatively some other graphical representation may be
used. (See Figure ??.) In text mode, a similar result is produced. In any case, the
software shows the user where activation is stifled and where error is accumulated.
The latter shows the most likely place for a new rule to terminate, while the former
are prime candidates for rule hypothesis clauses.

27

Figure 5. Portion of an expert network display, showing concept node
with maximal error (black) and concept nodes with maximal activation
(white).

9.4 Rule Discovery

The techniques of Section 9.3 can be automated to an algorithm that assembles a
new rule from the places in the expert network where activation is maximally stifled
and error is maximally assigned.

9.4.1 Algorithm CreateRule

. . .

9.4.2 Algorithm: BuildRuleBase

. . .

There are two modes for this rule building process. The first is automated, as decribed
above. The second we refer to as the human-in-the-loop (HIL) mode. In HIL mode,
the human domain expert is presented with the proposed new rules for evaluation
and acceptance, possibly after some modification. Modifications could be asked for
that would reduce complexity by eliminating any rules that are false or redundant
and also eliminating hypothesis conjuncts where possible, resulting in simplified new

28

rules. Whenever feasible, it is recommended that a human expert review new rules
created by CreateRule. The place where the processes pause to involve the human
expert is marked in CreateRule.

9.4.3 Algorithm: Thinning

The rule discovery process can continue until ENBP converges successfully. At that
point, especially when in automatic mode, it may be appropriate to start improving
the structural characteristics of the system by decreasing the rule density (defined
above in the introduction to this section). Reducing the connection density may be
called “thinning”. Note that thinning can be done over an extended time while the
now correctly working expert system is being used. Thinning is not essential, but may
be useful in cases where the rule structure built by CreateRule is complex. Thinning
will not change the way the system reasons on the training set, but it may improve
the clarity of explanations derived from the system.

. . .

9.5 Concept Discovery

Either because the connection density has grown too large or because the BuildRule-
Base algorithm has been unsuccessful, there are circumstances where a given expert
network needs to have its base of domain concepts increased.

The discovery of new concepts in a knowledge domain is an activity that is closely
associated with human intelligence. Moreover, the naming of newly discovered con-
cepts is closely associated with human language, communication, scholarship, and
judgement. We present here an algorithm that can discover concepts that are new to
a given expert network. However, there may be several equally usable choices for this
new concept, distinguished by how it is connected into the network, and there will
be no name for the new concept that has meaning outside the context of the original
expert system. It is therefore highly recommended that the human-in-the-loop, or
HIL, mode of the algorithm be applied. This will create a pause during which equally
usable concepts can be vetted by a human expert, and a name may be supplied for
the chosen concept.

. . .

9.5.1 Algorithm: CreateConcept

. . .

9.5.2 Algorithm: BuildKnowledgeBase

. . .

We conclude by re-emphasizing that unbridled growth in either concepts or connec-
tions, beyond the minimalist needs to adequately describe a knowledge domain, runs

29

counter to the usual goals of creating an expert system in the first place. Judiciousness
in accepting new rules and concepts is called for under all circumstances.

Finally, note that the Thinning algorithm may be applied after successssfully building
a knowledge base using any algorithm.

10 Application to Backward Chaining Systems

. . .

11 Application to Classical Logic Systems

. . .

30

References

US Patent 5,649,066, Method and Apparatus for Refinement of Learning in Expert

Networks, Issued July 15, 1997, by US Patent Office (R.C. Lacher, David C. Kuncicky,
and Susan I. Hruska, inventors).

D.C. Kuncicky, S.I. Hruska, and R.C. Lacher, The equivalence of expert system and
neural network inference, International Journal of Expert Systems 4 (3) (1992) 281-
297.

R.C. Lacher, S.I. Hruska, and D.C. Kuncicky, Backpropagation learning in expert
networks, IEEE Transactions on Neural Networks 3 (1) (1992) 62-71.

R.C. Lacher, Expert networks: Paradigmatic conflict, technological rapprochement,
Minds and Machines 3 (1993) 53-71.

R.C. Lacher and K.D. Nguyen, Hierarchical architectures for reasoning, Chapter 4 of
Computational Architectures for Integrating Neural and Symbolic Processes (R. Sun
and L. Bookman, eds.), Kluwer Academic Publishers, Boston, 1994, pp 117-150

