
6. SEARCH AND DECISION TREES 101

6. Search and Decision Trees

6.1. Binary Tree.

Definition 6.1.1. A binary tree is a rooted 2-ary tree. In a binary tree a child
of a parent may be designated as a left child or a right child, but each parent has
at most one of each.

The rooted subtree consisting of the right (left) child of a vertex and all of its
descendants is the right (left) subtree at that vertex.

A binary tree is often called a binary search tree.

Discussion

A binary tree is a rooted tree in which we may impose additional structure; namely,
the designation of each child of a vertex as either a left or right child. This designation
may be fairly arbitrary in general, although it may be natural in a particular appli-
cation. A tree could be drawn with the left and right subtrees of a vertex reversed,
so it may be unclear which is the left and right without a sketch of the tree or a clear
designation from the beginning. If a tree has been sketched in the plane with the
root at the top and the children of a vertex below the vertex, then the designation of
left or right child should be inferred naturally from the sketch.

Exercise 6.1.1. For the binary tree below, identify left and right children and
sketch the left and right subtrees of each vertex other than the leaves.

a

b c

d e f g

h i j

The tree shown above could have been drawn with the vertices b and c (and their
subtrees) reversed. The resulting tree would be isomorphic to the original as rooted
trees, but the isomorphism would not preserve the additional structure. The point is
that the left and right descendents are not preserved under an isomorphism of rooted
trees.



6. SEARCH AND DECISION TREES 102

Searching items in a list can often be accomplished with the aid of a binary
search tree. For example, suppose we are given a list of elements, X1, X2, ..., Xn, from
an ordered set (S, <), but the elements are not necessarily listed according to their
preferred ordering. We can establish a recursive procedure for constructing a binary
search tree with vertices labeled or keyed by the elements of the list as demonstrated
by Example 6.2.1. This tree will allow us to search efficiently for any particular item
in the list.

6.2. Example 6.2.1.

Example 6.2.1. Suppose X1, X2, ..., Xn are elements from an ordered set (S, <).
Form a binary search tree recursively as follows.

(1) Basis: Let X1 be the label or key for the root.
(2) Recursion: Assume we have constructed a binary search tree with vertices

keyed by X1, ..., Xi, 1 ≤ i < n. Starting with the root, keyed X1, compare
Xi+1 with the keys of the vertices already in the tree, moving to the left if
the vertex key is greater than Xi+1 and to the right otherwise. We eventually
reach a leaf with key Xj for some j between 1 and i. We add a vertex with
key Xi+1 and edge (Xj, Xi+1) and designate Xi+1 to be either a left child of
Xj if Xi+1 < Xj or a right child of Xj if Xj < Xi+1.

Discussion

The main characteristic of the binary search tree constructed is that the key of
any vertex is greater than the key of any vertex in its left subtree and is less than the
key of any vertex in its right subtree.

Example 6.2.2. Construct a binary search tree with vertices keyed by the names
in the list {Jones, Paceco, Hebert, Howard, Russo, Coke, Brown, Smithe, Randall}
using alphabetical order.

Solution:
Jones

Herbert Paceco

Coke
Howard

Brown Randall Smithe

Russo



6. SEARCH AND DECISION TREES 103

Discussion

Example 6.2.2 is one in which we have assigned the vertices keys from a list of
names, ordered alphabetically. Notice that if we rearrange the list of names, say
{Howard, Paceco, Jones, Hebert, Russo, Coke, Brown, Randall, Smithe}, we might
get a different tree:

Jones

Herbert Paceco

Coke

Howard

Brown
Randall

Smithe

Russo

6.3. Decision Tree.

Definition 6.3.1. A decision tree is a rooted tree in which each internal vertex
corresponds to a decision and the leaves correspond to the possible outcomes deter-
mined by a sequence of decisions (a path).

Discussion

Decision trees may be used to determine the complexity of a problem or an algo-
rithm. Notice that a decision tree need not be a binary tree.

6.4. Example 6.4.1.

Example 6.4.1 (Has been featured as a puzzler on Car Talk). Suppose you are
given a collection of identical looking coins and told one of them is counterfeit. The
counterfeit coin does not weigh the same as the real coins. You may or may not be told
the counterfeit coin is heavier or lighter. The only tool you have to determine which
is counterfeit is a balance scale. What is the fewest number of weighings required to
find the counterfeit coin? Your answer does depend on the number of coins you are
given and whether or not you are told the counterfeit is heavier or lighter than the
rest.

Solution

The solution will be obtained by a sequence of weighings as follows:



6. SEARCH AND DECISION TREES 104

• Choose two subsets of the coins of equal number and compare them on the
balance.

• There are three possibilities: one of the two sets of coins weighs more than,
less than, or is the same as the other set of coins.

• Depending on the outcome of the first weighing, choose another two subsets
of the coins and compare them.

• This problem can be modeled with a ternary (3-ary) tree where an internal
vertex corresponds to a weighing, and edge corresponds to an outcome of
that weighing, and a leaf corresponds to a coin found to be counterfeit.

In order to determine the minimal number of weighings for a given problem, you
must be clever in choosing the sets of coins to weigh in order not to require any
redundant comparisons.

Discussion

Just think, you could have won a t-shirt from Car Talk if you had known about
this!

Example 6.4.2. Suppose there are 8 coins, {1, 2, 3, 4, 5, 6, 7, 8}, and you know the
counterfeit coin is lighter than the rest.

Solution: Use a ternary tree to indicate the possible weighings and their outcomes.
A vertex labeled with the notation {a, ..., b}−{x, ..., y} stands for the act of comparing
the set of coins {a, ..., b} to {x, ..., y}. An edge from that vertex will have one of the
labels L, =, or H, depending on whether the first of the two sets is lighter than, equal
in weight to, or heavier than the second set.

{1,2,3}-{4,5,6}

L H
=

{1}-{2} {7}-{3} {4}-{5}

L
= H L H L

=
H

{1} {3} {2} {7} {8} {4} {6} {5}

With careful choices of the sets we see that only two weighings are necessary.

Notice there is a leaf for every possible outcome, that is, one for each coin. It is
not difficult, but perhaps tedious, to see that we cannot get by with only one weighing.
You would have to argue cases. This problem was made a bit easier since we knew
the counterfeit coin is lighter.



6. SEARCH AND DECISION TREES 105

Exercise 6.4.1. In the example above, how many weighings are necessary if you
don’t know whether the counterfeit is lighter or heaver? [Notice that in this case there
would be 16 leaves.]


