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4. Introduction to Trees

4.1. Definition of a Tree.

Definition 4.1.1. A tree is a connected, undirected graph with no simple circuits.

Discussion

For the rest of this chapter, unless specified, a graph will be understood to be
undirected and simple. Recall that a simple circuit is also called a cycle. A graph is
acyclic if it does not contain any cycles. A tree imposes two conditions on a (simple)
graph: that is be connected and acyclic.

4.2. Examples.

Example 4.2.1. The following are examples of trees

• Family tree
• File/directory tree
• Decision tree
• Organizational charts

Discussion

You have most likely encountered examples of trees: your family tree, the directory
or folder tree in your computer. You have likely encountered trees in other courses
as well. When you covered counting principals and probability in precalculus you
probably used trees to demonstrate the possible outcomes of some experiment such
as a coin toss.

Exercise 4.2.1. Which of the following graphs are trees?

G G

G G

1 2

3 4

Theorem 4.2.1. A graph is a tree iff there is a unique simple path between any
two of its vertices.
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Proof. Suppose T is a tree and suppose u and v are distinct vertices in T . T is
connected since it is a tree, and so there is a simple path between u and v. Suppose
there are two different simple paths between u and v, say

P1 : u = u0, u1, u2, . . . um = v

and

P2 : u = v0, v1, v2, . . . vn = v.

(Which type of proof do you think we are planning to use?)

Since the paths are different and since P2 is a simple path, P1 must contain an
edge that isn’t in P2. Let j ≥ 1 be the first index for which the edge {uj−1, uj} of
P1 is not an edge of P2. Then uj−1 = vj−1. Let uk be the first vertex in the path P1

after uj−1 (that is, k ≥ j) that is in the path P2. Then uk = v` for some ` ≥ j. We
now have two simple paths, Q1 : uj−1, ..., uk using edges from P1 and Q2 : vj−1, ..., v`

using edges from P2, between uj−1 = vj−1 and uk = v`. The paths Q1 and Q2 have
no vertices in common, other than the first and last, and no edges in common. Thus,
the path from uj−1 to uk along Q1 followed by the path from v` to vj−1 along the
reverse of Q2 is a simple circuit in T , which contradicts the assumption that T is a
tree. Thus, the path from u to v must be unique proving a tree has a unique path
between any pair of vertices.

Conversely, assume G is not a tree.

(What kind of proof are we setting up for the reverse direction?)

Then either (a) G is not connected, so there is no path between some pair of
vertices, or (b) G contains a simple circuit.

(a) Suppose G is not connected. Then there are two vertices u and v that can not be
joined by a path, hence, by a simple path.

(b) Suppose G contains a simple circuit C : v0, ..., vn, where v0 = vn. If n = 1, then
C would be a loop which is not possible since G is simple. Thus we have n ≥ 2.
But, since n ≥ 2, v1 6= v0, and so we have two different simple paths from v0 to
v1: one containing the single edge {v0, v1}, and the other the part of the reverse
of C from vn = v0 back to v1.

Thus we have proved the statement “If a graph G is not a tree, then either there is
no simple path between some pair of vertices of G or there is more than one simple
path between some pair of vertices of G.” This, is the contrapositive of the statement
“If there is a unique simple path between any two vertices of a graph G, then G is a
tree.”

�
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4.3. Roots.

Definition 4.3.1. A rooted tree is a tree T together with a particular vertex
designated as it root. Any vertex may a priori serve as the root. A rooted tree
provides each edge with a direction by traveling away from the root.

4.4. Example 4.4.1.

Example 4.4.1. Consider the tree below.

a b

c

d

e

f

g h

i

We choose c to be the root. Then we have the directed tree:

a b

c

d

e

f

g h

i

Discussion

A rooted tree has a natural direction on its edges: given the root, v, an edge
e = {x, y} lies in the unique simple path from either v to x or from v to y, but not
both. Say e is in the simple path from v to y. Then we can direct e from x to y.

4.5. Isomorphism of Directed Graphs.

Definition 4.5.1. Let G and H be a directed graphs. G and H are isomorphic
if there is a bijection f : V (G) → V (H) such that (u, v) is an edge in G if and only if
(f(u), f(v)) is an edge in H. We call the map f and isomorphism and write G ' H



4. INTRODUCTION TO TREES 91

Discussion

Notice the notation for ordered pairs is used for the edges in a directed graph and
that the isomorphism must preserve the direction of the edges.

Exercise 4.5.1. Let G be a set of directed graphs. Prove that isomorphism of
directed graphs defines an equivalence relation on G.

4.6. Isomorphism of Rooted Trees.

Definition 4.6.1. Rooted trees T1 and T2 are isomorphic if they are isomorphic
as directed graphs.

Discussion

Exercise 4.6.1. Give an example of rooted trees that are isomorphic as (undi-
rected) simple graphs, but not isomorphic as rooted trees.

Exercise 4.6.2. How many different isomorphism types are there of (a) trees with
four vertices? (b) rooted trees with four vertices?

4.7. Terminology for Rooted Trees.

Definition 4.7.1.
1. If e = (u, v) is a directed edge then u is the parent of v and v is the child of u.

The root has no parent and some of the vertices do not have a child.
2. The vertices with no children are called the leaves of the (rooted) tree.
3. If two vertices have the same parent, they are siblings.
4. If there is a directed, simple path from u to v then u is an ancestor of v and v is

a descendant of u.
5. Vertices that have children are internal vertices.

Discussion

Much of the terminology you see on this slide comes directly from a family tree.
There are a few exceptions. For example, on a family tree you probably would not
say cousin Freddy, who has never had kids, is a “leaf.”
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4.8. m-ary Tree.

Definition 4.8.1.
1. An m-ary tree is one in which every internal vertex has no more than m children.
2. A full m-ary tree is a tree in which every internal vertex has exactly m children.

Discussion

Notice the distinction between an m-ary tree and a full m-ary tree. The first may
have fewer than m children off of some internal vertex, but a latter must have exactly
m children off of each internal vertex. A full m-ary tree is always an m-ary tree. More
generally, if k ≤ m then every k-ary tree is also an m-ary tree. Caution: terminology
regarding m-ary trees differs among authors.

4.9. Counting the Elements in a Tree.

Theorem 4.9.1. A tree with n vertices has n− 1 edges.

Theorem 4.9.2.
1. A full m-ary tree with i internal vertices has n = mi + 1 vertices.
2. If a full m-ary tree has n vertices, i internal vertices, and L leaves then

(a) i = (n− 1)/m
(b) L = [n(m− 1) + 1]/m
(c) L = i(m− 1) + 1
(d) n = (mL− 1)/(m− 1)
(e) i = (L− 1)/(m− 1)

Discussion

Proof of Theorem 4.9.1. Select a root v and direct the edges away from v.
Then there are as many edges as there are terminal vertices of the edges and every
vertex except v is a terminal vertex of some edge. �

Proof of Theorem 4.9.2 Part 1. Every internal vertex has m children; hence,
there are mi children. Only the root is not counted, since it is the only vertex that is
not a child. �

Exercise 4.9.1. Prove Theorem 4.9.2 Part 2 [Hint: What is L + i?]
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4.10. Level.

Definition 4.10.1.
1. The level of a vertex in a rooted tree is the length of the shortest path to the root.

The root has level 0.
2. The height of a rooted tree is the maximal level of any vertex.
3. A rooted tree of height h is balanced if each leaf has level h or h− 1.

Discussion

Example 4.10.1. Consider the rooted tree below
a

b c

d e f

g h

If a is the root of the tree above, then

• the level of b and c is 1.
• The level of g and h is 3.
• The height of the tree is 3.
• This is also a balanced tree since the level of every leaf is either 2 or 3.

4.11. Number of Leaves.

Theorem 4.11.1. An m-ary tree of height h has at most mh leaves.

Corollary 4.11.1.1.
1. If T is an m-ary tree with L leaves and height h, then

h ≥ dlogm Le.
2. If T is full and balanced, then

h = dlogm Le.

Discussion

Notice the at most in Theorem 4.11.1.
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Proof of Theorem 4.11.1. We prove the theorem by induction on the height
h, h ≥ 0.

Basis: If the height of the tree is 0, then the tree consists of a single vertex,
which is also a leaf, and m0 = 1.

Induction hypothesis: Assume any m-ary tree of height h has at most mh leaves
for some positive integer m.

Induction step: Prove that an m-ary tree of height h + 1 has at most mh+1

leaves.
Let T be an m-ary tree of height h + 1, h ≥ 0. Remove all the leaves of

T to get a tree T ′. T ′ is an m-ary tree of height h, and so by the induction
hypothesis it has at most mh leaves. We recover T from T ′ by adding back
the deleted edges, and there are at most m edges added to each leaf of T ′.
Thus, T has at most m ·mh = mh+1 leaves, since no leaf of T ′ is a leaf of T .

By the principle of mathematical induction any m-ary tree with height h has at
most mh leaves for any positive integers m and h.

�

Exercise 4.11.1. Prove Corollary 4.11.1.1.

4.12. Characterizations of a Tree.

Theorem 4.12.1. Let G be a graph with at least two vertices. Then the following
statements are equivalent.

1. G is a tree
2. For each pair of distinct vertices in G, there is a unique simple path between the

vertices.
3. G is connected, but if one edge is removed the resulting graph is disconnected.
4. G is acyclic, but if an edge is added between two vertices in G the resulting graph

contains a cycle.
5. G is connected and the number of edges is one less than the number of vertices.
6. G is acyclic and the number of edges is one less than the number of vertices.

Discussion

Theorem 4.12.1 gives us many different tools for recognizing trees. Once we prove
this Theorem, it is enough to prove a graph satisfies any one of the statements to
show the graph is a tree. Equivalently we could show a graph fails to satisfy any of
the conditions to show it is not a tree.
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The equivalence 1⇔2 is actually Theorem 4.2.1 which we have already proven.
The equivalence 1⇔3 will be part of your graded assignment.

Proof 1⇔4. First we show 1⇒4.

Let G be a tree with at least two vertices. By the definition of a tree G is acyclic,
so what we must show is if an edge is added between two vertices of G then resulting
graph contains a cycle. Let u and v be two vertices in G and add an edge, e, between
these vertices. Let G′ be the resulting graph. Note that G′ is not necessarily simple.

By part 2 of this Theorem there must be a unique simple path between v and u in
G. Let e1, e2, e3, . . . , ek be the edge sequence defining this path. The edge sequence
e1, e2, e3, . . . , ek, e will define a path from v to itself in G′. Moreover, this is a simple
circuit since e1, e2, e3, . . . , ek defined a simple path in G and e is not an edge in G.
This shows G′ contains a cycle.

Now we show 4⇒1.

Let G be an acyclic simple graph that satisfies the property given in part 4 of
Theorem 4.12.1. Since we already know G is acyclic, what we need to show to
complete the proof that G is a tree is that it is connected. To show a graph is
connected we show two arbitrary vertices are connected by a path in G.

Let u and v be vertices in G. Add an edge, e = {u, v}, to G and call the resulting
graph G′. By our assumption, there must be a cycle in G′ now. In fact, the edge
e must be part of the cycle because without this edge we would not have a cycle.
Suppose e, e1, e2, . . . , ek is the cycle that begins and ends at u. Notice that k must
be at least 1 for this edges sequence to define a cycle. Moreover, the edge sequence
e1, e2, . . . , ek defines a path between v and u in G since all of these edges must be in
G. This shows G is connected and so is a tree. �

Exercise 4.12.1. Prove 1⇔5 in Theorem 4.12.1.

Exercise 4.12.2. Prove 1⇔6 in Theorem 4.12.1.


