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2. Connectivity

2.1. Connectivity.

Definition 2.1.1.
(1) A path in a graph G = (V, E) is a sequence of vertices v0, v1, v2, . . . , vn such

that {vi−1, vi} is an edge of G for i = 1, ..., n. The edge {vi−1, vi} is an edge
of the path.

(2) A path with n edges is said to have length n.
(3) A path beginning and ending with same vertex (that is, v0 = vn) is a circuit.
(4) A path is simple if no vertex or edge is repeated, with the possible exception

that the first vertex is the same as the last.
(5) A simple path that begins and ends with the same vertex is a simple circuit

or a cycle.

Discussion

This section is devoted to defining what it means for a graph to be connected and
the theorems about connectivity.

In the definition above we use a vertex sequence to define a path. We could also
use an edge sequence to define a path as well. In fact, in a multigraph a path may
not be well-defined by a vertex sequence. In this case an edge sequence must be used
to clearly define a path.

A circuit must begin and end at the same vertex, but this is the only requirement
for a circuit. A path that goes up one vertex and then right back is a circuit. Our
definition of a simple path may be different than that found in some texts: some
writers merely require that the same edge not be traversed more than once. In
addition, our definition of a simple circuit does not include the circuit that goes up
an edge and travels back by the same edge.

Some authors also allow the possibility of a path having length 0 (the path consists
of a single vertex and no edges). We will require that paths have length at least 1.
Notice that a path must also be finite. It is possible for a graph to have infinitely
many vertices and/or edges and one could also imagine a kind of path with infinitely
many edges but our definition of a path requires the path be finite.

2.2. Example 2.2.1.

Example 2.2.1. Let G1 be the graph below.
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v1 v2

v3

v4v5

(1) v1, v4, v2, v3 is a simple path of length 3 from v1 to v3.
(2) {v1, v4}, {v4, v2}, {v2, v3} is the edge sequence that describes the same path in

part 1
(3) v1, v5, v4, v1, v2, v3 is a path of length 5 from v1 to v3.
(4) v1, v5, v4, v1 is a simple circuit of length 3.
(5) v1, v2, v3, v4, v2, v5, v1 is a circuit of length 6, but it is not simple.

Discussion

This example gives a variety of paths and circuits. You can certainly come up
with many more.

Exercise 2.2.1. In this exercise consider two cycles different if they begin at a
different vertex and/or if they traverse vertices in a different direction. Explain your
answer:

(a) How many different cycles are there in the graph K4?
(b) How many different circuits are there in the graph K4?

Exercise 2.2.2. In this exercise consider two cycles different if they begin at a
different vertex and/or if they traverse vertices in a different direction. How many
different cycles are there in the graph Kn where n is some integer greater than 2.

Exercise 2.2.3. (Uses combinations from counting principles) In this exercise
consider two cycles are the same if they begin at a different vertex and/or if they
traverse vertices in a different direction, but they use the same vertices and edges.
Explain your answer:

(a) How many different cycles are there in the graph K4?
(b) How many different circuits are there in the graph K4?



2. CONNECTIVITY 72

Exercise 2.2.4. (Uses combinations from counting principles) In this exercise
consider two cycles are the same if they begin at a different vertex and/or if they
traverse vertices in a different direction, but they use the same vertices and edges.
How many different cycles are there in the graph Kn where n is some integer greater
than 2.

Exercise 2.2.5. Prove a finite graph with all vertices of degree at least 2 contains
a cycle.

Exercise 2.2.6. Prove a graph with n vertices and at least n edges contains a
cycle for all positive integers n. You may use Exercise 2.2.5.

2.3. Connectedness.

Definition 2.3.1. A simple graph is connected if there is a path between every
pair of distinct vertices.

Discussion

When looking at a sketch of a graph just look to see if each vertex is connected to
each of the other vertices by a path. If so, this graph would be connected. If it has
two or more distinct pieces with no edge connecting them then it is disconnected.

2.4. Examples.

Example 2.4.1.

This graph is connected

v1 v2

v3

v4v5

Example 2.4.2.
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This graph is not connected

v1 v2

v3

v4v5

v6

Example 2.4.3. The following graph is also not connected. There is no edge
between v3 and any of the other vertices.

v1 v2

v3

v4v5

2.5. Theorem 2.5.1.

Theorem 2.5.1. There is a simple path between every pair of distinct vertices in
a connected graph.

Proof. Suppose u and v are arbitrary, distinct vertices in a connected graph, G.
Because the graph is connected there is a path between u and v. Among all paths
between u and v, choose a path u = v0, v1, ..., vn = v of shortest length. That is, there
are no paths in G of length < n. Suppose this path contains a circuit starting and
ending with, say, vi. This circuit must use at least one edge of the path; hence, after
removing the circuit we will have a path from u to v of length < n, contradicting the
minimality of our initial path.

�
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Discussion

Theorem 2.5.1 implies that if we need a path between two vertices in a connected
graph we may use a simple path. This really simplifies (no pun intended) the types of
paths we need to consider when examining properties of connected graphs. Certainly
there are many paths that are not simple between any two vertices in a connected
graph, but this theorem guarantees there are nicer paths to work with.

2.6. Example 2.6.1.

v1 v2

v3

v4v5

Example 2.6.1. The path v1, v5, v4, v1, v2, v3 is a path between v1 and v3. However,
v1, v5, v4, v1 is a circuit. Remove the circuit (except the endpoint) to get from the
original path v1, v2, v3. This is still a path between v1 and v3, but this one is simple.
There are no edges in this last path that are used more than one time.

Discussion

In many examples it is possible to find more than one circuit that could be removed
to create a simple path. Depending on which circuit is chosen there may be more than
one simple path between two given vertices. Let us use the same graph in Example
2.6.1, but consider the path v1, v2, v5, v1, v4, v2. We could either remove the circuit
v1, v2, v5, v1 or the circuit v2, v5, v1, v4, v2. If we removed the first we would be left
with v1, v4, v2, while if we removed the latter we would get v1, v2. Both of these are
parts of the original path between v1 and v2 that are simple.

2.7. Connected Component.

Definition 2.7.1. The maximally connected subgraphs of G are called the con-
nected components or just the components.
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Discussion

Another way we could express the definition of a component of G is: A is a
component of G if

(1) A is a connected subgraph of G and
(2) if B is another subgraph of G containing A then either B = A or B is

disconnected.

2.8. Example 2.8.1.

Example 2.8.1. In the graph below the vertices v6 and v3 are in one component
while the vertices v1, v2, v4, and v5 are in the other component.

v1 v2

v3

v4v5

v6

If we looked at just one of the components and consider it as a graph by itself,
it would be a connected graph. If we try to add any more from the original graph,
however, we no longer have a connected graph. This is what we mean by “largest”.
Here are pictures that may help in understanding the components of the graph in
Example 2.8.1
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v1 v2

v4v5

Above is a connected component of the original graph.

v1 v2

v4v5

Above is not a connected component of the original. We are missing an edge that
should have been in the component.

2.9. Cut Vertex and Edge.

Definition 2.9.1.
(1) If one can remove a vertex and all incident edges from a graph and produce

a graph with more components than the original graph, then the vertex that
was removed is called a cut vertex or an articulation point.

(2) If one can remove an edge from a graph and create more components than
the original graph, then the edge that was removed is called a cut edge or
bridge.
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Note: When removing a vertex, you must remove all the edges with that vertex
as an endpoint. When removing an edge we do not remove any of the vertices.
Remember, edges depend on vertices, but vertices may stand alone.

Exercise 2.9.1. Prove that every connected graph has at least two non-cut ver-
tices. [Hint: Use the second principle of mathematical induction on the number of
vertices.]

Exercise 2.9.2. Prove that if a simple connected graph has exactly two non-cut
vertices, then the graph is a simple path between these two non-cut vertices. [Hint:
Use induction on the number of vertices and Exercise 2.9.1.]

2.10. Examples.

Example 2.10.1. There are no cut vertices nor cut edges in the following graph.

v1 v2

v3

v4v5

Example 2.10.2. v2 and v4 are cut vertices. e1, e2, and e5 are cut edges in the
following graph.

v1

v2 v3

v4

v5

v6

e1

e2

e3

e4

e6e5
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Discussion

Exercise 2.10.1. In each case, find how many cut edges and how many cut ver-
tices there are for each integer n for which the graph is defined.

(1) Star Network
(2) Cycle
(3) Complete Graphs.

2.11. Counting Edges.

Theorem 2.11.1. A connected graph with n vertices has at least n− 1 edges.

Discussion

Notice the Theorem states there are at least n− 1 edges, not exactly n− 1 edges.
In a proof of this theorem we should be careful not to assume equality. Induction is
the natural choice for a proof of this statement, but we need to be cautious of how
we form the induction step.

Recall in the induction step we must show that a connected graph with n + 1
vertices has at least n edges if we know every connected graph with n vertices has
at least n − 1 edges. It may seem like a good idea to begin with an arbitrary graph
with n vertices and add a vertex and edge(s) to get one with n+1 vertices. However,
the graph with n + 1 vertices would depend on the one we started with. We want
to make sure we have covered every possible connected graph with n + 1 vertices, so
we would have to prove every connected graph with n + 1 vertices may be obtained
this way to approach the proof this way. On the other hand, if we begin with an
arbitrary graph with n + 1 vertices and remove some vertex and adjacent edges to
create a graph with n vertices the result may no longer be connected and we have to
consider this possibility.

The proof of this theorem is a graded exercise.

2.12. Connectedness in Directed Graphs.

Definition 2.12.1.
(1) A directed graph is strongly connected if there is a directed path between

every pair of vertices.
(2) A directed graph is weakly connected if the underlying undirected graph is

connected.
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Discussion

Recall that the underlying graph of a directed graph is the graph obtained by
eliminating all the arrows. So the weakly connected means you can ignore the direc-
tion of the edges when looking for a path. Strongly directed means you must respect
the direction when looking for a path between vertices. To relate this to something
more familiar, if you are a pedestrian you do not have to worry about the direction
of one way streets. This is not the case, however, if you are driving a car.

Exercise 2.12.1. Are the following graphs strongly connected, weakly connected,
both or neither?

(a) v1 v2

v3v4

e4

e5

e3
e2

e1

(b) v1 v2

v3v4
e5

e3
e2

e1

2.13. Paths and Isomorphism.

Theorem 2.13.1. Let M be the adjacency matrix for the graph G. Then the
(i, j)th entry of M r is the number of paths of length r from vertex i to vertex j, where
M r is the standard matrix product of M by itself r times (not the Boolean product).

Proof. The proof is by induction on the length of the path, r. Let p be the
number of vertices in the graph (so the adjacency matrix is p× p).

Basis: The adjacency matrix represents paths of length one by definition, so
the basis step is true.

Induction Hypothesis: Assume each entry, say m
[n]
ij , in Mn = [m

[n]
ij ] equals the

number of paths of length n from the i-th vertex to the j-th vertex.

Inductive Step: Prove each entry, say m
[n+1]
ij , in Mn+1 = [m

[n+1]
ij ] equals the

number of paths of length n + 1 from the i-th vertex to the j-th vertex.
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We begin by recalling Mn+1 = Mn · M and by the definition of matrix

multiplication the entry m
[n+1]
ij in Mn+1 is

m
[n+1]
ij =

p∑
k=1

m
[n]
ik ·mkj

where Mn = [m
[n]
ij ] and M = [mij].

By the induction hypothesis, m
[n]
ik is the number of paths of length n

between the i-th vertex and the k-th vertex, while mkj is the number of
paths of length 1 from the k-th vertex to the j-th vertex. Each of these
paths may be combined to create paths of length n + 1 from the i-th vertex
to the j-th vertex. Using counting principles we see that the number of paths
of length n + 1 that go through the k-th vertex just before reaching the j-th

vertex is m
[n]
ik ·mkj .(1)

The above sum runs from k = 1 to k = p which covers all the possible
vertices in the graph. Therefore the sum counts all the paths of length n + 1
from the i-th vertex to the j-the vertex.

�

2.14. Example 2.14.1.

v1 v2

v3

v4v5

Example 2.14.1. The adjacency matrix for the graph above is
0 1 0 1 1
1 0 1 1 1
0 1 0 1 0
1 1 1 0 1
1 1 0 1 0





2. CONNECTIVITY 81

We get the following powers of M :

M2 =


3 2 2 2 2
2 4 1 3 2
2 1 2 1 2
2 3 1 4 2
2 2 2 2 3



M3 =


6 9 4 9 7
9 8 7 9 9
4 7 2 7 4
9 9 7 8 9
7 9 4 9 6


The last matrix tells us there are 4 paths of length 3 between vertices v3 and v1.

Find them and convince yourself there are no more.

Discussion

If you recall that the adjacency matrix and all its powers are symmetric, you will
cut your work in half when computing powers of the matrix.

Exercise 2.14.1. Find the page(s) in the text that covers the counting principal(s)
used in the sentence referenced as (1) in the proof of Theorem 2.13.1. Explain how
the conclusion of this gives us the result of the sentence.

2.15. Theorem 2.15.1.

Theorem 2.15.1. If G is a disconnected graph, then the compliment of G, G, is
connected.

Discussion

The usual approach prove a graph is connected is to choose two arbitrary vertices
and show there is a path between them. For the Theorem 2.15.1 we need to consider
the two cases where the vertices are in different components of G and where the
vertices are in the same component of G.

Exercise 2.15.1. Prove Theorem 2.15.1.

Exercise 2.15.2. The compliment of a connected graph may or may not be con-
nected. Find two graphs such that the compliment is (a) connected and (b) discon-
nected.


