
JANUARY/FEBRUARY 2000 29

T H E M E A R T I C L E

George Dantzig, in describing the
“Origins of the Simplex Method,”1

noted that it was the availability of
early digital computers that sup-

ported and invited the development of LP mod-
els to solve real-world problems. He agreed that
invention is sometimes the mother of necessity.
Moreover, he commented that he initially re-
jected the simplex method because it seemed in-
tuitively more attractive to pursue the objective
function downhill—as in the currently popular
interior-point methods—rather than search
along the constraint set’s edges. It is this latter
approach that the simplex method uses, which
should not be confused with the J.A. Nelder
and R. Mead’s function-minimization method,2

also associated with the word simplex.

When Dantzig introduced his method in 1947,
it was somewhat easier to sort out the details of
the simplex method than to deal with the “where
are we in the domain space” questions that are, in
my opinion, the core of interior-point ap-
proaches. Easier does not mean simpler, however.

Chapter and verse

The LP problem is, in one of the simplex
method’s many forms,

Minimize (with respect to x) c′ x (1a)
subject to A x = b (1b)

and x ≥ 0 (1c)
This is not always the problem we want to

solve, though—we might want to have the ma-
trix A and vector b partitioned row-wise so
that

(A1) (b1)
A = (A2) b = (b2)

(A3) (b3)
so that we can write an LP problem as

THE (DANTZIG) SIMPLEX METHOD
FOR LINEAR PROGRAMMING

George Dantzig created a simplex algorithm to solve linear programs for planning and
decision-making in large-scale enterprises. The algorithm’s success led to a vast array of
specializations and generalizations that have dominated practical operations research for
half a century.

JOHN C. NASH

University of Ottawa

1521-9615/00/$10.00 © 2000 IEEE

the Top

30 COMPUTING IN SCIENCE & ENGINEERING

Minimize (with respect to x) c′x (2a)

subject to A1 x ≤ b1 (2b)
A2 x = b2 (2c)
A3 x ≥ b3 (2d)

x ≥ 0 (2e)

However, the use of slack and surplus vari-
ables (the x variables we use to augment our
problem) can transform the problems from one
to the other. In fact, we must add slacks to the
left-hand side of Equation 2b and subtract them
from Equation 2d to arrive at equalities. More-
over, the special non-negativity conditions in
Equations 1c and 2e could be subsumed into
the matrix equation or inequation structure, but
the LP tradition calls for listing them sepa-
rately. The number of rows in A apart from the
non-negativity constraints we call m, and the
number of variables (including the slacks and
surpluses) we call n. Typically, m ≤ n.

The simplex method assumes we have an ini-
tial basic feasible solution xinit, that is, a solution
that is feasible and that has just m of the x’s non-
zero. The mx values multiply m columns of A,
which we call the basis. “Basic” definitely has a
technical rather than a general meaning here.
We assume this set of basis vectors (columns of
A) is linearly independent and that it has full
rank. Therefore, the core of the simplex method
is to exchange one of the columns of A that is in
the basis for one that is not. This corresponds
to increasing one of the nonbasic variables while
keeping the constraints satisfied, a process that
reduces some of the x’s. We choose to increase
the x that gives us the most decrease in the ob-
jective function, and we continue to increase it
until one of the current basic variables goes to
zero, which means we now have a new basis.
Moreover, the new solution turns out to be a
new vertex of the simplex that the constraints
define, and it is also a neighboring vertex to that
described by our starting basic feasible solution.
We have exchanged one vertex of the simplex
for one of its neighbors and done so in a way
that moves the objective function toward the
minimum.

This exchange, or pivoting, seems to be a topic
especially devised to torture business school un-
dergraduates. Nevertheless, it is theoretically
and practically a relatively simple process, un-
less, of course, you have a computer without
enough memory to hold everything all at once.
Additionally, there are some nasty details we
have to sort out:

• How do we get an initial feasible solution?
Or, more importantly, how do we tell if
there is no feasible solution?

• What happens if the constraints don’t stop
the objective from being reduced? That is,
what if the solution is unbounded?

• What happens if several vertices give equal
objective values?

These questions, and the memory-management
issues, occupied many researchers and generated
many journal and book pages over the years. For
example, more than half the pages in S. Gass’s
classic text are devoted to such details;3 the ap-
plications come so late in the book that students
of slow lecturers must have wondered what all
the fuss was about.

Researchers handled the questions mentioned
earlier in a variety of ways. Clever management
and programming tactics overcame the memory
issue. In early years, storage was so slow that pro-
grammers spent considerable effort to arrange
computations that would complete in time to
read and write data as disks and drums presented
the appropriate tracks and sectors. Such compli-
cations help to obscure the central ideas of the
algorithms in a muddle of detail, mostly irrele-
vant now.

The initial feasible solution issue was addressed,
perhaps surprisingly, by adding m more variables,
called artificial variables, which form the initial
basis, then minimizing an objective function that
drives them all out of the basis.4 If we cannot drive
them out, we have an infeasible problem.

Unbounded solutions turn out to be rather
simple to detect, but the “equal objective func-
tion” or degeneracy issue worried people a great
deal, because they implied the possibility that the
algorithm might not terminate. In practice, per-
turbation or rule-based methods can avoid the
cycling.

Nice extras

Modern textbooks spend much less ink on the
details.5 Similarly, recent discussions6 of the
computational techniques have abandoned the
tableaux and the jargon of earlier work3,4 re-
garding the matrix notations of numerical linear
algebra. What remains of great interest, both
mathematically and computationally, is the du-
ality feature of LP problems. That is, an LP
written as

(Primal) minimize c′ x such that A x ≥ b, x ≥ 0

JANUARY/FEBRUARY 2000 31

has a dual equivalent

(Dual) maximize b′y such that A′y ≤ c, y ≥ 0.

Moreover, the optima, if they exist, have the
same objective value. Duality also leads to use-
ful interpretations of solutions in terms of prices
or values when the LP problems under consid-
eration have economic or related contexts.

Practical importance

The simplex method’s importance really lies
in the value of the LP applications, even when
the LP model is only a crude approximation to
the real world. In the 1940s, many organizations
were very hungry for solutions to LP problems,
even if they did not realize what LP was. Oil and
chemical companies led the way, especially for
optimizing product mix from multiple sources
or multiple sites. Transportation companies and
the military recognized quite early that trans-
portation and logistics problems could be for-
mulated as LPs. Large-scale agricultural eco-
nomic problems were also early applications.
Examples also became realized in production
planning, staff and resource scheduling, and net-
work or traffic flows. LP can even be applied to
maintaining the confidentiality of government
statistics.7

For example, the Diet Problem has as objec-
tive function elements (c) the costs per unit of
food ingredients. The right-hand side values (b)
are the required minimum amounts of each of a
list of m nutrients, and the constraint coefficients
A give the amount of each nutrient in a unit of
each ingredient. Thus we want to have A x ≥ b to
satisfy the nutrient requirements (we could also
put in upper limits of nutrients like vitamin A
that can be toxic), but we also want the cheapest
blend. Of course, the resulting solution might
not be very tasty. It is simply nutritious, and by
construction will be the cheapest such recipe.
Perhaps this is the origin of institutional cafete-
ria food.

Although the mathematics and compu-
tational algorithms might be fascinat-
ing, my view is that the value of the
applications is the first reason for the

importance of the simplex method. Promotion
to the “top 10” category still needs something

else, and this is the particular efficiency of the
simplex method in finding the best vertex of the
simplex. Most constraint matrices in practical
LP problems are quite sparse, and the number
of iterations where we move from one vertex to
another is generally very small relative to the
number of variables x. Even better, we can ex-
plore the sensitivity of the optimal solution to
small changes in the constraint and objective
very easily. This is not always the case for some
other methods.

Did Dantzig realize this efficiency as he first
coded the simplex method? My guess is that he
did not, although it is clear from his reminis-
cences1 that such an understanding was not long
in coming. In looking back over half a century,
I find it remarkable that so many workers could
sort through the jungle of awkward, and to some
extent unnecessary, details to see the underlying
tool’s value.

References
1. S.G. Nash, A History of Scientific Computing, ACM Press, New

York, 1990, pp. 141−151.

2. J.A. Nelder and R. Mead, “A Simplex Method for Function Min-
imization,” Computer J., Vol. 7, 1965, pp. 308−313.

3. S. Gass, Linear Programming, 2nd ed., McGraw-Hill, New York,
1964.

4. G. Hadley, Linear Programming, Addison-Wesley, Reading, Mass.,
1962.

5. S.G. Nash and A. Sofer, Linear and Nonlinear Programming,
McGraw-Hill, New York, 1996.

6. J.L. Nazareth, Computer Solution of Linear Programs, Oxford Sci-
ence Publications, New York, 1987.

7. G. Sande, “Automated Cell Suppression to Preserve Confiden-
tiality of Business Statistics,” Statistical J. United Nations ECE, Vol.
2, 1984, pp. 33−41.

John C. Nash is a professor at the University of Ottawa.
He is the author or coauthor of three books on com-
putation, and his research and writings cover a wide
range of topics in computers, mathematics, forecast-
ing, risk management, and information science. He has
been a mathematics columnist for Interface Age and
the scientific computing editor for Byte magazine. He
obtained his BSc in chemistry at the University of Cal-
gary and his DPhil in mathematics from Oxford. Con-
tact him at the Faculty of Administration, Univ. of Ot-
tawa, 136 J-J Lussier Private, Ottawa, Ontario, K1N
6N5, Canada; jcnash@uottawa.ca; macnash.admin.
uottawa.ca.

