
Chapter 10: File-System Interface

 File Concept

 Access Methods

 Directory Structure

 File-System Mounting

 File Sharing

 Protection

Objectives

 To explain the function of file systems

 To describe the interfaces to file systems

 To discuss file-system design tradeoffs, including access methods, file

sharing, file locking, and directory structures

 To explore file-system protection

File Concept

 Contiguous logical address space

 Types:

 Data

 numeric

 character

 binary

 Program

File Structure

 None - sequence of words, bytes

 Simple record structure

 Lines

 Fixed length

 Variable length

 Complex Structures

 Formatted document

 Relocatable load file

 Can simulate last two with first method by inserting appropriate control
characters

 Who decides:

 Operating system

 Program

File Attributes

 Name – only information kept in human-readable form

 Identifier – unique tag (number) identifies file within file system

 Type – needed for systems that support different types

 Location – pointer to file location on device

 Size – current file size

 Protection – controls who can do reading, writing, executing

 Time, date, and user identification – data for protection, security, and

usage monitoring

 Information about files are kept in the directory structure, which is

maintained on the disk

File Operations

 File is an abstract data type

 Create

 Write

 Read

 Reposition within file

 Delete

 Truncate

 Open(Fi) – search the directory structure on disk for entry Fi, and move the

content of entry to memory

 Close (Fi) – move the content of entry Fi in memory to directory structure on

disk

Open Files

 Several pieces of data are needed to manage open files:

 File pointer: pointer to last read/write location, per process that has the

file open

 File-open count: counter of number of times a file is open – to allow

removal of data from open-file table when last processes closes it

 Disk location of the file: cache of data access information

 Access rights: per-process access mode information

Open File Locking

 Provided by some operating systems and file systems

 Mediates access to a file

 Mandatory or advisory:

 Mandatory – access is denied depending on locks held and requested

 Advisory – processes can find status of locks and decide what to do

File Locking Example – Java API

import java.io.*;

import java.nio.channels.*;

public class LockingExample {

public static final boolean EXCLUSIVE = false;

public static final boolean SHARED = true;

public static void main(String arsg[]) throws IOException {

FileLock sharedLock = null;

FileLock exclusiveLock = null;

try {

RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");

// get the channel for the file

FileChannel ch = raf.getChannel();

// this locks the first half of the file - exclusive

exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);

/** Now modify the data . . . */

// release the lock

exclusiveLock.release();

File Locking Example – Java API (cont)

// this locks the second half of the file - shared

sharedLock = ch.lock(raf.length()/2+1, raf.length(),
SHARED);

/** Now read the data . . . */

// release the lock

sharedLock.release();

} catch (java.io.IOException ioe) {

System.err.println(ioe);

}finally {

if (exclusiveLock != null)

exclusiveLock.release();

if (sharedLock != null)

sharedLock.release();

}

}

}

File Types – Name, Extension

Access Methods

 Sequential Access

read next

write next

reset

no read after last write

(rewrite)

 Direct Access

read n

write n

position to n

read next

write next

rewrite n

n = relative block number

Sequential-access File

Simulation of Sequential Access on Direct-access File

Example of Index and Relative Files

Directory Structure

 A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

Backups of these two structures are kept on tapes

Disk Structure

 Disk can be subdivided into partitions

 Disks or partitions can be RAID protected against failure

 Disk or partition can be used raw – without a file system, or formatted with a

file system

 Partitions also known as minidisks, slices

 Entity containing file system known as a volume

 Each volume containing file system also tracks that file system’s info in

device directory or volume table of contents

 As well as general-purpose file systems there are many special-purpose file

systems, frequently all within the same operating system or computer

A Typical File-system Organization

Operations Performed on Directory

 Search for a file

 Create a file

 Delete a file

 List a directory

 Rename a file

 Traverse the file system

Organize the Directory (Logically) to Obtain

 Efficiency – locating a file quickly

 Naming – convenient to users

 Two users can have same name for different files

 The same file can have several different names

 Grouping – logical grouping of files by properties, (e.g., all Java

programs, all games, …)

Single-Level Directory

 A single directory for all users

Naming problem

Grouping problem

Two-Level Directory

 Separate directory for each user

 Path name

 Can have the same file name for different user

 Efficient searching

 No grouping capability

Tree-Structured Directories

Tree-Structured Directories (Cont)

 Efficient searching

 Grouping Capability

 Current directory (working directory)

 cd /spell/mail/prog

 type list

Tree-Structured Directories (Cont)

 Absolute or relative path name

 Creating a new file is done in current directory

 Delete a file

rm <file-name>

 Creating a new subdirectory is done in current directory

mkdir <dir-name>

Example: if in current directory /mail

mkdir count

mail

prog copy prt exp count

Deleting “mail”  deleting the entire subtree rooted by “mail”

Acyclic-Graph Directories

 Have shared subdirectories and files

Acyclic-Graph Directories (Cont.)

 Two different names (aliasing)

 If dict deletes list  dangling pointer

Solutions:

 Backpointers, so we can delete all pointers

Variable size records a problem

 Backpointers using a daisy chain organization

 Entry-hold-count solution

 New directory entry type

 Link – another name (pointer) to an existing file

 Resolve the link – follow pointer to locate the file

General Graph Directory

General Graph Directory (Cont.)

 How do we guarantee no cycles?

 Allow only links to file not subdirectories

 Garbage collection

 Every time a new link is added use a cycle detection

algorithm to determine whether it is OK

File System Mounting

 A file system must be mounted before it can be accessed

 A unmounted file system (i.e. Fig. 11-11(b)) is mounted at a

mount point

(a) Existing. (b) Unmounted Partition

Mount Point

File Sharing

 Sharing of files on multi-user systems is desirable

 Sharing may be done through a protection scheme

 On distributed systems, files may be shared across a network

 Network File System (NFS) is a common distributed file-sharing method

File Sharing – Multiple Users

 User IDs identify users, allowing permissions and protections to be

per-user

 Group IDs allow users to be in groups, permitting group access

rights

File Sharing – Remote File Systems

 Uses networking to allow file system access between systems

 Manually via programs like FTP

 Automatically, seamlessly using distributed file systems

 Semi automatically via the world wide web

 Client-server model allows clients to mount remote file systems
from servers

 Server can serve multiple clients

 Client and user-on-client identification is insecure or
complicated

 NFS is standard UNIX client-server file sharing protocol

 CIFS is standard Windows protocol

 Standard operating system file calls are translated into remote
calls

 Distributed Information Systems (distributed naming services) such
as LDAP, DNS, NIS, Active Directory implement unified access to
information needed for remote computing

File Sharing – Failure Modes

 Remote file systems add new failure modes, due to network failure,

server failure

 Recovery from failure can involve state information about status of

each remote request

 Stateless protocols such as NFS include all information in each

request, allowing easy recovery but less security

File Sharing – Consistency Semantics

 Consistency semantics specify how multiple users are to access a shared
file simultaneously

 Similar to Ch 7 process synchronization algorithms

 Tend to be less complex due to disk I/O and network latency (for
remote file systems

 Andrew File System (AFS) implemented complex remote file sharing
semantics

 Unix file system (UFS) implements:

Writes to an open file visible immediately to other users of the same
open file

 Sharing file pointer to allow multiple users to read and write
concurrently

 AFS has session semantics

Writes only visible to sessions starting after the file is closed

Protection

 File owner/creator should be able to control:

 what can be done

 by whom

 Types of access

 Read

 Write

 Execute

 Append

 Delete

 List

Access Lists and Groups

 Mode of access: read, write, execute

 Three classes of users

RWX

a) owner access 7  1 1 1
RWX

b) group access 6  1 1 0

RWX

c) public access 1  0 0 1

 Ask manager to create a group (unique name), say G, and add some users
to the group.

 For a particular file (say game) or subdirectory, define an appropriate
access.

owner group public

chmod 761 game

Attach a group to a file

chgrp G game

Windows XP Access-control List Management

A Sample UNIX Directory Listing

End of Chapter 10

