Chapter 10:

File Concept

Access Methods
Directory Structure
File-System Mounting
File Sharing
Protection

File-System Interface

Objectives

To explain the function of file systems
To describe the interfaces to file systems

To discuss file-system design tradeoffs, including access methods, file
sharing, file locking, and directory structures

To explore file-system protection

File Concept

m Contiguous logical address space

m Types:
e Data
» numeric
» character
» binary
e Program

File Structure

None - sequence of words, bytes
Simple record structure

e Lines

e Fixed length

e Variable length
Complex Structures

e Formatted document

e Relocatable load file

Can simulate last two with first method by inserting appropriate control
characters

Who decides:
e Operating system
e Program

File Attributes

Name — only information kept in human-readable form
Identifier — unique tag (number) identifies file within file system
Type — needed for systems that support different types
Location — pointer to file location on device

Size — current file size

Protection — controls who can do reading, writing, executing

Time, date, and user identification — data for protection, security, and
usage monitoring

Information about files are kept in the directory structure, which is
maintained on the disk

File Operations

File is an abstract data type
Create

Write

Read

Reposition within file
Delete

Truncate

Open(F;) — search the directory structure on disk for entry F;, and move the
content of entry to memory

Close (F;,) — move the content of entry F, in memory to directory structure on
disk

Open Files

m Several pieces of data are needed to manage open files:

File pointer: pointer to last read/write location, per process that has the
file open

File-open count: counter of number of times a file is open — to allow
removal of data from open-file table when last processes closes it

Disk location of the file: cache of data access information
Access rights: per-process access mode information

Open File Locking

B Provided by some operating systems and file systems

® Mediates access to a file

B Mandatory or advisory:
e Mandatory — access is denied depending on locks held and requested
e Advisory — processes can find status of locks and decide what to do

File Locking Example — Java API

import java.io.*;
import java.nio.channels.*;
public class LockingExample {
public static final boolean EXCLUSIVE = false;
public static final boolean SHARED = true;
public static void main(String arsg[]) throws IOException {
FileLock sharedLock = null;
FileLock exclusiveLock = null;

try {
RandomAccesskFile raf = new RandomAccessFile("file.txt", "rw");

/I get the channel for the file

FileChannel ch = raf.getChannel();

/I this locks the first half of the file - exclusive
exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);
/** Now modify the data . . . */

Il release the lock

exclusiveLock.release();

File Locking Example — Java API (cont)

/I this locks the second half of the file - shared

sharedLock = ch.lock(raf.length()/2+1, raf.length(),
SHARED);

[** Now read the data . . . */
Il release the lock
sharedLock.release();

} catch (java.io.lOException ioe) {
System.err.printin(ioe);

Hinally {
if (exclusivelLock != null)
exclusivelLock.release();
if (sharedLock != null)
sharedLock.release();

}

File Types — Name, Extension

file type usual extension function
executable exe, com, bin ready-to-run machine-
or none language program
object Al compiled, machine

language, not linked

source code

C, CC, java, pas,
asm, a

source code in various
languages

batch bat, sh commands to the command
interpreter

text txt, doc textual data, documents

word processor| wp, tex, rif, various word-processor

doc formats

library lib, a, so, dll libraries of routines for
programmers

print or view ps, pdf, jpg ASCII or binary file in a
format for printing or
viewing

archive arc, zip, tar related files grouped into
one file, sometimes com-
pressed, for archiving
or storage

multimedia mpeg, mov, rm, | binary file containing

mp3, avi

audio or A/V information

Access Methods

m Sequential Access

®m Direct Access

n = relative block number

read next

write next

reset

no read after last write
(rewrite)

read n
write n
position to n
read next
write next
rewrite n

Seqguential-access File

current position

beginning end

== rewind

—read or write =)

Simulation of Sequential Access on Direct-access File

sequential access implementation for direct access
reset cp = 0;
read next read cp;
cp=cp+ 1;
write next write cp;
cp=cp+ 1;

Example of Index and Relative Files

logical record
last name number

Adams
Arthur
Asher

smith, john |social-security| age

Smith

index file relative file

Directory Structure

®m A collection of nodes containing information about all files

Directory O Q O O O

\

\

Files

F 2 F 4
F1 F3

Fn

Both the directory structure and the files reside on disk
Backups of these two structures are kept on tapes

Disk Structure

Disk can be subdivided into partitions
Disks or partitions can be RAID protected against failure

Disk or partition can be used raw — without a file system, or formatted with a
file system

Partitions also known as minidisks, slices
Entity containing file system known as a volume

Each volume containing file system also tracks that file system’s info in
device directory or volume table of contents

As well as general-purpose file systems there are many special-purpose file
systems, frequently all within the same operating system or computer

A Typical File-system Organization

i directory i il directory b
partition A < fila L disk 2
s > disk 1
directory partition C < . <
files
partition B < filog
> disk 3
. S
. o

Operations Performed on Directory

Search for a file

Create a file

Delete a file

List a directory

Rename a file

Traverse the file system

Organize the Directory (Logically) to Obtain

Efficiency — locating a file quickly

Naming — convenient to users
e Two users can have same name for different files
e The same file can have several different names

Grouping — logical grouping of files by properties, (e.g., all Java
programs, all games, ...)

Single-Level Directory

m A single directory for all users
directory caj] bi' ail teg daa mazl coé] he]recoa

files

Naming problem

Grouping problem

Two-Level Directory

B Separate directory for each user

master file

directory user 1| user2| user3| user4

I

dﬁlfee;t;lri&(g(gz éCI gz I
Path name

Can have the same file name for different user
Efficient searching

No grouping capability

Tree-Structured Directories

0

p

hex

reorder| list find

find munf‘ hex |fam'.far

root | spell bin |pmgrams|

° 66 ||

all last first

stat | mail | dist

o \béééé/

prog | copy | prt | exp

\

list | obj | spell

600 0 00

Tree-Structured Directories (Cont)

m Efficient searching
® Grouping Capability

m Current directory (working directory)
e cd /spell/mail/prog
e type list

Tree-Structured Directories (Cont)

m Absolute or relative path name
m Creating a new file is done in current directory
B Delete afile

rm <file-name>
m Creating a new subdirectory is done in current directory

mkdir <dir-name>
Example: if in current directory /mail
mkdir count

mail

prog | copy | prt |exp| count

Deleting “mail” = deleting the entire subtree rooted by “mail”

Acyclic-Graph Directories

B Have shared subdirectories and files

p—

root | dict | spell
list all w |count count|words| list

l

—> ISt

rade

Lol

Acyclic-Graph Directories (Cont.)

Two different names (aliasing)

If dict deletes list = dangling pointer
Solutions:

e Backpointers, so we can delete all pointers
Variable size records a problem

e Backpointers using a daisy chain organization
e Entry-hold-count solution
New directory entry type
e Link — another name (pointer) to an existing file
e Resolve the link — follow pointer to locate the file

General Graph Directory

root | avi fc Jim
text | mail | count| book book | mail \unhex| hyp

avi |count unhex| hex

6 d %

General Graph Directory (Cont.)

®m How do we guarantee no cycles?
e Allow only links to file not subdirectories
e Garbage collection

e Everytime a new link is added use a cycle detection
algorithm to determine whether it is OK

File System Mounting

m A file system must be mounted before it can be accessed

® A unmounted file system (i.e. Fig. 11-11(b)) is mounted at a
mount point

(a) Existing. (b) Unmounted Partition

sue jane

(a) (b)

Mount Point

users

sue

jane

File Sharing

Sharing of files on multi-user systems is desirable
Sharing may be done through a protection scheme
On distributed systems, files may be shared across a network

Network File System (NFS) is a common distributed file-sharing method

File Sharing — Multiple Users

User IDs identify users, allowing permissions and protections to be
per-user

Group IDs allow users to be in groups, permitting group access
rights

File Sharing — Remote File Systems

m Uses networking to allow file system access between systems
e Manually via programs like FTP
e Automatically, seamlessly using distributed file systems
e Semi automatically via the world wide web

m Client-server model allows clients to mount remote file systems
from servers

e Server can serve multiple clients

e Client and user-on-client identification is insecure or
complicated

e NFS is standard UNIX client-server file sharing protocol
e CIFS is standard Windows protocol

e Standard operating system file calls are translated into remote
calls

B Distributed Information Systems (distributed naming services) such
as LDAP, DNS, NIS, Active Directory implement unified access to
information needed for remote computing

File Sharing — Failure Modes

Remote file systems add new failure modes, due to network failure,
server failure

Recovery from failure can involve state information about status of
each remote request

Stateless protocols such as NFS include all information in each
request, allowing easy recovery but less security

File Sharing — Consistency Semantics

B Consistency semantics specify how multiple users are to access a shared
file simultaneously

e Similar to Ch 7 process synchronization algorithms

» Tend to be less complex due to disk I/O and network latency (for
remote file systems

e Andrew File System (AFS) implemented complex remote file sharing
semantics

e Unix file system (UFS) implements:

» Writes to an open file visible immediately to other users of the same
open file

» Sharing file pointer to allow multiple users to read and write
concurrently

e AFS has session semantics

» Writes only visible to sessions starting after the file is closed

Protection

m File owner/creator should be able to control:
e what can be done
e by whom

m Types of access
e Read
o Write
e EXxecute
e Append
e Delete
e List

Access Lists and Groups

B Mode of access: read, write, execute
B Three classes of users

RWX
a) owner access 7 = 111
RWX
b) group access 6 = 110
RWX
C) public access 1 = 001

® Ask manager to create a group (uniqgue name), say G, and add some users
to the group.

m For a particular file (say game) or subdirectory, define an appropriate
access.

owner\gr])uylic

chmod 761 game

Attach a group to a file
chgrp G game

Windows XP Access-control List Management

10.tex Froperties

I:EI"I:IL.IF:I o LsEr nameas:

€E Administrators (PEBG-LAPTOPY Administrators)
L5l Guest (FEG-LAPT O Guest)
phg (CThpbg)

S STER

€7 Users (PBG-LAFTOR U sers)

Ao] [Hemowe]

Fermissions for Gue st A llones Deny

Full Control F

kA coelify E

Fead & Execute |l

Fead E

“rite Il

Special Permissions
Faor special permissions or for adwanced settings. ’ S e ——
click Adwanced.

| oK M concet |

A Sample UNIX Directory Listing

W-TW-T | pbg statt 31200 Sep 3 08:30 1intro.ps
drwx------ Jpbg staft 12 Jul 809.33 private/
drwxrwxr-x 2 pbg staff 312 Jul 8 09:35 doc/
drwxrwx--- 2pbg student 512 Aug3 14:13 student-proy/

-IW-T--T-- nbg staft 9423 Feb 24 2003 program.c
-twxr-xr-x 1 pbg staff 20471 Feb 24 2003 program
drwx--x--x ~ 4pbg faculty 512 Jul 31 10:31 b/
drwx------ Jpbg staff 1024 Aug 29 06:52 maill/
rwXIwxrwx 3 pbg staff 12 Jul 809:35 test/

—

End of Chapter 10

