
Chapter 4: Threads

 Overview

 Multithreading Models

 Thread Libraries

 Threading Issues

 Operating System Examples

 Windows XP Threads

 Linux Threads

Objectives

 To introduce the notion of a thread — a fundamental unit of CPU utilization

that forms the basis of multithreaded computer systems

 To discuss the APIs for the Pthreads, Win32, and Java thread libraries

 To examine issues related to multithreaded programming

Single and Multithreaded Processes

Benefits

 Responsiveness

 Resource Sharing

 Economy

 Scalability

Multicore Programming

 Multicore systems putting pressure on programmers, challenges include

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

Multithreaded Server Architecture

Concurrent Execution on a Single-core System

Parallel Execution on a Multicore System

User Threads

 Thread management done by user-level threads library

 Three primary thread libraries:

 POSIX Pthreads

 Win32 threads

 Java threads

Kernel Threads

 Supported by the Kernel

 Examples

 Windows XP/2000

 Solaris

 Linux

 Tru64 UNIX

 Mac OS X

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

Many-to-One

 Many user-level threads mapped to single kernel thread

 Examples:

 Solaris Green Threads

 GNU Portable Threads

Many-to-One Model

One-to-One

 Each user-level thread maps to kernel thread

 Examples

 Windows NT/XP/2000

 Linux

 Solaris 9 and later

One-to-one Model

Many-to-Many Model

 Allows many user level threads to be mapped to many kernel

threads

 Allows the operating system to create a sufficient number of

kernel threads

 Solaris prior to version 9

 Windows NT/2000 with the ThreadFiber package

Many-to-Many Model

Two-level Model

 Similar to M:M, except that it allows a user thread to be

bound to kernel thread

 Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

Two-level Model

Thread Libraries

 Thread library provides programmer with API for creating and managing

threads

 Two primary ways of implementing

 Library entirely in user space

 Kernel-level library supported by the OS

Pthreads

 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation

and synchronization

 API specifies behavior of the thread library, implementation

is up to development of the library

 Common in UNIX operating systems (Solaris, Linux, Mac

OS X)

Java Threads

 Java threads are managed by the JVM

 Typically implemented using the threads model provided by

underlying OS

 Java threads may be created by:

 Extending Thread class

 Implementing the Runnable interface

Threading Issues

 Semantics of fork() and exec() system calls

 Thread cancellation of target thread

 Asynchronous or deferred

 Signal handling

 Thread pools

 Thread-specific data

 Scheduler activations

Semantics of fork() and exec()

 Does fork() duplicate only the calling thread or all threads?

Thread Cancellation

 Terminating a thread before it has finished

 Two general approaches:

 Asynchronous cancellation terminates the target

thread immediately

 Deferred cancellation allows the target thread to

periodically check if it should be cancelled

Signal Handling

 Signals are used in UNIX systems to notify a process that a

particular event has occurred

 A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled

 Options:

 Deliver the signal to the thread to which the signal applies

 Deliver the signal to every thread in the process

 Deliver the signal to certain threads in the process

 Assign a specific threa to receive all signals for the process

Thread Pools

 Create a number of threads in a pool where they await work

 Advantages:

 Usually slightly faster to service a request with an existing thread

than create a new thread

 Allows the number of threads in the application(s) to be bound to

the size of the pool

Thread Specific Data

 Allows each thread to have its own copy of data

 Useful when you do not have control over the thread creation

process (i.e., when using a thread pool)

Scheduler Activations

 Both M:M and Two-level models require communication to maintain

the appropriate number of kernel threads allocated to the application

 Scheduler activations provide upcalls - a communication mechanism

from the kernel to the thread library

 This communication allows an application to maintain the correct

number kernel threads

Operating System Examples

 Windows XP Threads

 Linux Thread

Windows XP Threads

Linux Threads

Windows XP Threads

 Implements the one-to-one mapping, kernel-level

 Each thread contains

 A thread id

 Register set

 Separate user and kernel stacks

 Private data storage area

 The register set, stacks, and private storage area are known

as the context of the threads

 The primary data structures of a thread include:

 ETHREAD (executive thread block)

 KTHREAD (kernel thread block)

 TEB (thread environment block)

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space

of the parent task (process)

End of Chapter 4

