Chapter 2. Operating-System Structures

Operating System Services

User Operating System Interface
System Calls

Types of System Calls

System Programs

Operating System Design and Implementation
Operating System Structure
Virtual Machines

Operating System Debugging
Operating System Generation
System Boot

Objectives

To describe the services an operating system provides to users, processes,
and other systems

To discuss the various ways of structuring an operating system

To explain how operating systems are installed and customized and how
they boot

Operating System Services

B One set of operating-system services provides functions that are
helpful to the user:

e User interface - Almost all operating systems have a user interface (Ul)

» Varies between Command-Line (CLI), Graphics User Interface
(GUI), Batch

e Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

e |/O operations - A running program may require |I/O, which may involve
a file or an 1/0O device

e File-system manipulation - The file system is of particular interest.
Obviously, programs need to read and write files and directories, create
and delete them, search them, list file Information, permission
management.

A View of Operating System Services

user and other system programs

GUI batch command line

user interfaces

system calls
program 17O file I resource .
execution operations systems Egmmunicatien allocation deghunting
error pro;ic(:;uon
detection _ security
services

operating system

hardware

Operating System Services (Cont)

B One set of operating-system services provides functions that are
helpful to the user (Cont):

e Communications — Processes may exchange information, on the same
computer or between computers over a network

» Communications may be via shared memory or through message
passing (packets moved by the OS)

e Error detection — OS needs to be constantly aware of possible errors

» May occur in the CPU and memory hardware, in 1/O devices, in user
program

» For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

» Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

Operating System Services (Cont)

® Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

e Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

» Many types of resources - Some (such as CPU cycles, main memory,
and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code

e Accounting - To keep track of which users use how much and what kinds
of computer resources

e Protection and security - The owners of information stored in a multiuser
or networked computer system may want to control use of that information,
concurrent processes should not interfere with each other

» Protection involves ensuring that all access to system resources is
controlled

» Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access attempts

» If a system is to be protected and secure, precautions must be
instituted throughout it. A chain is only as strong as its weakest link.

User Operating System Interface - CLI

Command Line Interface (CLI) or command interpreter allows direct
command entry

» Sometimes implemented in kernel, sometimes by systems
program

» Sometimes multiple flavors implemented — shells
» Primarily fetches a command from user and executes it

Sometimes commands built-in, sometimes just names of
programs

» |f the latter, adding new features doesn’t require shell
modification

User Operating System Interface - GUI

B User-friendly deskiop metaphor interface
e Usually mouse, keyboard, and monitor
e |cons represent files, programs, actions, etc

e Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open directory
(known as a folder)

e |Invented at Xerox PARC
® Many systems now include both CLI and GUI interfaces
e Microsoft Windows is GUI with CLI “command” shell

e Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath
and shells available

e Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

Bourne Shell Command Interpreter

() & Terminal [B]X]
File Edit View Terminal Tabs Help
{fdo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O }
isd0 0.0 0.2 0.0 0.2 0.0 0.0 0.4 0 O
isdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O
extended device statistics
device r/s w/s kr/s kw/s wait actv svc_t %w %b
fdo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O
1sd0 0.6 0.0 38.4 0.0 0.0 0.0 82 & 0
sdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O

(root@pbg-nve4-vm) - (11/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systen-contents/scripts)# swap -sh

Itotal: 1.1G allocated + 190M reserved = 1.3G used, 1.6G available

| (root@pbg-nv64-vm)-(12/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systemn-contents/scripts)# uptime

12:53am up 9 min(s), 3 users, Toad average: 33.29, 67.68, 36.81
(root@pbg-nv64-vm)-(13/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systemn-contents/scripts)# w

(root@pbg-nv64-vm) - (14/pts)-(16:07 02-Jul-2007)-(global)
-(/var/tmp/systen-contents/scripts)#

4:07pm up 17 day(s), 15:24, 3 users, Tload average: 0.09, 0.11, 8.66
User tty login@ idle JCPU PCPU what
root console 15Jun0718days 1 fusr/bin/ssh-agent -- fusr/bi
in/d
Iroot pts/3 15Jun07 18 4 w
root pts/4 15Jun0718days W

< \U

The Mac OS X GUI

@ Grab File Edit JETEITH Window Help P | A) 15906EDTMon2Jul # 8 §) .
oOfno fig=di~ ap
= o g B (B @ Qselion n
Maviet= Piduress D Apolications = ZFEG» ZPAGE+ [Disks
© Cmpotr [© bo-dic |
+ Knd Drte Modified Size Aplicatian
B o for €124/07. 19500 16 LKE Skm
8 Netwark
3r :" " . o s 118707, 553\ TTRE hkscane
rardonmStipe ¥ h320pa O Formab e Netasik Crazhizs Inege Tedyy. 1:0650M J92KB Fredme
i Macintosh HD v h3-2050 O svo Teday. 1.06FM L4348 lkscape
21 Untitled W 83200 O i Todsy, Z290M ESLKR Fredsw
i Unctles 2
o 2086 s
) 2PRGE s
& ibisk s
* Peter Basr Galv's iPod B
(003
| Tior
T o=
b : 39-2.0
A estcson ik ol
 oon TIFF Cozu ment 14 LR e
I Domments Pt
| Games " CALVINTPBCOBLACS. K
| Uilities 12PEG,
3 Size: 38L.. KB 1921236 bytest
vt daca; 901,236 bytes
1 Deskiop Fsicai: £81 KE (902,14
w Favorites) ik
4 Music g SUS anributas:
i@ Voxies W Hitory - ciessor P~ fromene
Pibruras “ hg-20n ¥ hg-20a Croup:
: 5 fo-dir Permissior: - 0o
 Sites Fath: Vol mas [2P3C- L firp/
4 Public | assedir zozk/osk iy -d 1!
! peot | neok 3g-2.0a 1itt
|/ Preferences Application: ev e
¥ Lbrary 1 imp Valume: 2P3C
| e o 26 Capacity: 7354 CB
Frae: 7343 Ch
| projerts . Format: SME e
| consuit Mount Poirt: /\ali mzs /293G 1 :
(1| | € 5imms 10F < iters selected - 7343 G3 avetlazle 5.1 G3 uses

__ | Address Book

£) wary and Thesaurus
a > | A A Q, aperating system

Windows XF
Professional Mac

Nema
- Aaple Computer In
4 Aaple Computer In

Apple Computer Inc.

opeereatsing sysetem

faun

the wftware (L supports a computer s
such as sibeculin N

cantralling pers

- TiLast Import

Dec kex 0x B |[Deg Rad | (5 [[Ren irio Tape
= e :

i
i 1§ functions.

i 1-802-MY-APPLE

il B00-275-2273

home page hitpo/vamay. appe.co™

Wk Uinlisite _oop
C.pert no CA 85014
U-ited Siztes

System Calls

Programming interface to the services provided by the OS
Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level Application Program Interface
(API) rather than direct system call use

Three most common APls are Win32 API for Windows, POSIX API for
POSIX-based systems (including virtually all versions of UNIX, Linux, and
Mac OS X), and Java API for the Java virtual machine (JVM)

Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are generic)

Example of System Calls

B System call sequence to copy the contents of one file to another file

source file »| destination file

4 Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

A

Example of Standard API

m Consider the ReadFile() function in the
®m Win32 APl—a function for reading from a file

return value

'

BOOL ReadFile ¢ (HANDLE file,
LPVOID buffer,
T DWORD bytes To Read, | parameters
LPDWORD bytes Read,
LPOVERLAPPED ovl) ;

function name —

m A description of the parameters passed to ReadFile()

HANDLE file—the file to be read

LPVOID buffer—a buffer where the data will be read into and written from
DWORD bytesToRead—the number of bytes to be read into the buffer
LPDWORD bytesRead—the number of bytes read during the last read
LPOVERLAPPED ovl—indicates if overlapped I/O is being used

System Call Implementation

Typically, a number associated with each system call

e System-call interface maintains a table indexed according to these
numbers

The system call interface invokes intended system call in OS kernel and
returns status of the system call and any return values

The caller need know nothing about how the system call is implemented
e Just needs to obey API and understand what OS will do as a result call
e Most details of OS interface hidden from programmer by API

» Managed by run-time support library (set of functions built into
libraries included with compiler)

APl — System Call — OS Relationship

user application
open ()
user

mode
system call interface
kernel
mode A
> | open ()
Implementation
» Of open ()

system call

return

Standard C Library Example

m C program invoking printf() library call, which calls write() system call

#include <stdio.h>
int main ()

{

printf ("Greetings"); |«

return O;

}

user v
node
standard C library —_—
ernel
node
Q«irite () >

write ()
system call

System Call Parameter Passing

m Often, more information is required than simply identity of desired system
call

e Exact type and amount of information vary according to OS and call
m Three general methods used to pass parameters to the OS
e Simplest: pass the parameters in registers
» In some cases, may be more parameters than registers

e Parameters stored in a block, or table, in memory, and address of block
passed as a parameter in a register

» This approach taken by Linux and Solaris

e Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

e Block and stack methods do not limit the number or length of
parameters being passed

Parameter Passing via Table

— X

register

X: parameters
for call

—™| use parameters code for
load address X / from table X system
>

system call 13 call 13

user program

operating system

Types of System Calls

Process control

File management
Device management
Information maintenance
Communications
Protection

Examples of Windows and Unix System Calls

Windows Unix
Process CreateProcess () fork()
Control ExitProcess() exit()
WaitForSingleObject() wait ()
File CreateFile() open()
Manipulation ReadFile() read ()
WriteFile() write()
CloseHandle() close()
Device SetConsoleMode() ioctl()
Manipulation ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
Maintenance SetTimer () alarm()
Sleep() sleep()
Communication CreatePipe() pipe)
CreateFileMapping() shmget ()
MapViewOfFile() mmap ()
Protection SetFileSecurity() chmod ()

InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown()

MS-DOS execution

free memory

free memory

command
interpreter

process

kernel

command
interpreter

(@)

kernel

(b)

(a) At system startup (b) running a program

FreeBSD Running Multiple Programs

process D

free memory

process C

interpreter

process B

kernel

System Programs

m System programs provide a convenient environment for program
development and execution. The can be divided into:

e File manipulation

e Status information

e File modification

e Programming language support
e Program loading and execution
e Communications

e Application programs

m Most users’ view of the operation system is defined by system
programs, not the actual system calls

System Programs

Provide a convenient environment for program development and execution

e Some of them are simply user interfaces to system calls; others are considerably
more complex

File management - Create, delete, copy, rename, print, dump, list, and generally
manipulate files and directories

Status information

e Some ask the system for info - date, time, amount of available memory, disk
space, number of users

e Others provide detailed performance, logging, and debugging information

e Typically, these programs format and print the output to the terminal or other
output devices

e Some systems implement a registry - used to store and retrieve configuration
information

System Programs (cont’d)

File modification
e Text editors to create and modify files

e Special commands to search contents of files or perform
transformations of the text

Programming-language support - Compilers, assemblers, debuggers and
interpreters sometimes provided

Program loading and execution- Absolute loaders, relocatable loaders,
linkage editors, and overlay-loaders, debugging systems for higher-level
and machine language

Communications - Provide the mechanism for creating virtual connections
among processes, users, and computer systems

e Allow users to send messages to one another’s screens, browse web
pages, send electronic-mail messages, log in remotely, transfer files
from one machine to another

Operating System Design and Implementation

Design and Implementation of OS not “solvable”, but some approaches
have proven successful

Internal structure of different Operating Systems can vary widely
Start by defining goals and specifications

Affected by choice of hardware, type of system

User goals and System goals

e User goals — operating system should be convenient to use, easy to
learn, reliable, safe, and fast

e System goals — operating system should be easy to design, implement,
and maintain, as well as flexible, reliable, error-free, and efficient

Operating System Design and Implementation (Cont)

® |Important principle to separate

Policy: What will be done?
Mechanism: How to do it?

B Mechanisms determine how to do something, policies decide what will be
done

e The separation of policy from mechanism is a very important principle, it
allows maximum flexibility if policy decisions are to be changed later

Simple Structure

B MS-DOS - written to provide the most functionality in the least space
e Not divided into modules

e Although MS-DOS has some structure, its interfaces and levels of
functionality are not well separated

MS-DOS Layer Structure

application program

resident system program

MS-DOS device drivers

ROM BIOS device drivers

Layered Approach

B The operating system is divided into a number of layers (levels), each built
on top of lower layers. The bottom layer (layer 0), is the hardware; the
highest (layer N) is the user interface.

® With modularity, layers are selected such that each uses functions
(operations) and services of only lower-level layers

Traditional UNIX System Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

- signals terminal file system CPU scheduling
g . handling swapping block /O page replacement
& character /O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

UNIX

UNIX — limited by hardware functionality, the original UNIX operating
system had limited structuring. The UNIX OS consists of two
separable parts

e Systems programs
e The kernel

» Consists of everything below the system-call interface and
above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

Layered Operating System

layer N
user interface

layer O
hardware

Microkernel System Structure

Moves as much from the kernel into “user” space
Communication takes place between user modules using message passing
Benefits:
e Easier to extend a microkernel
e Easier to port the operating system to new architectures
e More reliable (less code is running in kernel mode)
e More secure
Detriments:
e Performance overhead of user space to kernel space communication

Mac OS X Structure

kernel
environment

application environments
and common services

!

BSD

Mach

Modules

® Most modern operating systems implement kernel modules
e Uses object-oriented approach
e Each core component is separate
e Each talks to the others over known interfaces
e Each is loadable as needed within the kernel
m OQverall, similar to layers but with more flexible

Solaris Modular Approach

device and
bus drivers

core Solaris
miscellaneous kernel
modules
STREAMS executable
modules formats

scheduling
classes

loadable
system calls

Virtual Machines

A virtual machine takes the layered approach to its logical
conclusion. It treats hardware and the operating system
kernel as though they were all hardware

A virtual machine provides an interface identical to the
underlying bare hardware

The operating system host creates the illusion that a process
has its own processor and (virtual memory)

Each guest provided with a (virtual) copy of underlying
computer

Virtual Machines History and Benefits

First appeared commercially in IBM mainframes in 1972

Fundamentally, multiple execution environments (different operating
systems) can share the same hardware

Protect from each other

Some sharing of file can be permitted, controlled

Commutate with each other, other physical systems via networking

Useful for development, testing

Consolidation of many low-resource use systems onto fewer busier systems

“Open Virtual Machine Format”, standard format of virtual machines, allows
a VM to run within many different virtual machine (host) platforms

Virtual Machines (Cont)

processes

\.

kernel

hardware

(a)

e

programming/
interface

processes
processes
processes
kernel kernel kernel
VM1 VM2 VM3

virtual-machine
implementation

hardware

(b)

(a) Nonvirtual machine (b) virtual machine

Para-virtualization

Presents guest with system similar but not identical to hardware
Guest must be modified to run on paravirtualized hardwareF

Guest can be an OS, or in the case of Solaris 10 applications running in
containers

Solaris 10 with Two Containers

user programs

system programs
CPU resources

mMemory resources

global zone

user programs
system programs
network addresses
device access
CPU resources
Memory resources

zZone 1

user programs
system programs
network addresses
device access
CPU resources
memory resources

zZone 2

virtual platform
device management

Zone management

Solaris kernel

network addresses

VMware Architecture

application application application application
guest operating guest operating guest operating
system system system
(free BSD) (Windows NT) (Windows XP)
virtual CPU virtual CPU virtual CPU
virtual memory virtual memory virtual memory
virtual devices virtual devices virtual devices
virtualization layer
' '
host operating system
(Linux)
hardware
CPU memory I/O devices

The Java Virtual Machine

Java programy_ _ _
.class files

1->

class loader

!

Java

interpreter

<4=-+=--

\ 4

host system

(Windows, Linux, etc.)

Java API
.class files

Operating-System Debugging

Debugging is finding and fixing errors, or bugs
OSes generate log files containing error information

Failure of an application can generate core dump file capturing memory of
the process

Operating system failure can generate crash dump file containing kernel
memory

Beyond crashes, performance tuning can optimize system performance

Kernighan’s Law: “Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.”

DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation on
production systems

e Probes fire when code is executed, capturing state data and sending it
to consumers of those probes

Solaris 10 dtrace Following System Call

./all.d ‘pgrep xclock' XEventsQueued
dtrace: script ’./all.d’ matched 52377 probes
CPU FUNCTION
—-» XEventsQueued
-> XEventsQueued
-> XllTransBytesReadable
<— XllTransBytesReadable
-> XllTransSocketBytesReadable
<—- XllTransSocketBytesreadable
-> loctl
-> loctl
-> getf
-> set active fd
<— set active fd
<— getf
-> get udatamodel
<- get udatamodel

o

OO0 00000000000
AARRAARARRGCOCCAOgag

-> releasef
-> clear active fd
<— clear active fd
-> cVv_broadcast
<— Ccv_broadcast
<— releasef
<— loctl
<— loctl
<- _XEventsQueued
<— XEventsQueued

DDDDDDDDDD:
cggR®®®RR R

Operating System Generation

Operating systems are designed to run on any of a class of machines; the
system must be configured for each specific computer site

SYSGEN program obtains information concerning the specific configuration
of the hardware system

Booting — starting a computer by loading the kernel

Bootstrap program — code stored in ROM that is able to locate the kernel,
load it into memory, and start its execution

System Boot

m Operating system must be made available to hardware so hardware can
start it

e Small piece of code — bootstrap loader, locates the kernel, loads it into
memory, and starts it

e Sometimes two-step process where boot block at fixed location loads
bootstrap loader

e When power initialized on system, execution starts at a fixed memory
location

» Firmware used to hold initial boot code

End of Chapter 2

