
March 13, 2019

Homework 4: Ranking Components By Size
50 Points

A component of a graph G = (V,E) is a maximal connected subgraph G1 = (V1, E1) of G.
Any two vertices in V1 are connected by a path and no edge has one vertex in V1 and the
other outside V1.

A component of a Partition p is one of the sets in p.

Part 1: Algorithms. Invent an algorithm named RankComponentsBySize that oper-
ates on a Partition object p (through its API) and produces a vector v of unsigned integers
such that v[i] is the size of the (1+ i)th largest component of p: p[0] is the size of the largest
component, p[1] is the size of the second-largest component, and so on.

Also invent an algorithm that creates a Partition object p that captures the precise com-
ponent structure of an undirected graph g. Combine the two algorithms to obtain an
application for a graph g: The Component Rank Sequence of g.

Part 2: Implementations. Code up the RankComponentsBySize algorithm in C++ con-
formant with the stub below (and also available in the file LIB/graph/partition util.h).

And also install your process for capturing the component structure of a graph in the second
stub below (and also available in the file LIB/graph/graph util.h).

Test your implementations by compiling a copy of LIB/graph/agraph.cpp and executing
agraph.x on various graphs: on small graphs that can be hand verified and on some large
graphs (such as the “Kevin Bacon” actor-movie abstract graph) and some very large graphs
generated at random. Compare your results with those using LIB/area51/agraph i.x.

The following libraries may not be used: <string>, <set>, <unordered set>, <map>,
<unordered map>, <algorithm> . Use components of cop4531p/LIB instead.

Part 3: Correctness. Provide an argument that your algorithm is correct.

Part 4: Run Costs. Provide an estimate of the runtime and runspace requirements of
your algorithm and your component modelling process.

Part 5: Experiments.
1: Try to provide experimental evidence of the Erdös-Reńyi “critical value” for the emer-
gence of a giant component.
2: Given your analysis of the Kevin Bacon graph, in the light of the Erdös-Reńyi result,
what can you see or say about these graphs?
3: Discuss large multi-component maze graphs in the light of the Erdös-Reńyi.

1

2

Here is C++ code stub in which to code your algorithm. Note that the partition p and
the vector v are passed by const reference and non-const reference, respectively.

template < class P >
void RankComponentsBySize (const P& p, fsu::Vector<size_t>& v) // p is a Partition object
{
// your code goes here

}

(See the appendix below and the file LIB/graph/partition util.h for complete context).

Here is C++ code stub in which to code your graph component model process. Note that the
graph g is passed by const reference and the other two arguments are passed through to the call to
RankComponentsBySize.

template < class G >
void ComponentRankSequence(const G& g , size_t maxToDisplay, std::ostream& os)
{
fsu::Partition p (g.VrtxSize());
// your process to model the components of g with p goes here
RankComponentsBySize(p,maxToDisplay,os); // <-- calls your algorithm here

}

(See the the file LIB/graph/graph util.h for complete context).

Include a test diary in your submission. And Cite your sources!

3

Appendix: Computational context for RankComponentsBySize

template < class P >
void RankComponentsBySize (const P& p, fsu::Vector<size_t>& v)
{
// your code goes here

}

// below is complete code used to display the results to a stream
template < class P >
void RankComponentsBySize (const P& p, size_t maxToDisplay, std::ostream& os = std::cout)
{
int cw = floor(log10(p.Size()));
if (cw < 4) cw = 4;
cw += 3;
size_t enough, components;
fsu::Vector<size_t> componentSize(0);
RankComponentsBySize(p,componentSize);
enough = components = componentSize.Size();
if (0 < maxToDisplay && maxToDisplay < enough) enough = maxToDisplay;
os << ‘‘ number of components: ‘‘ << components << ’\n’;
if (enough == components)
os << ‘‘ all components ranked by size:’’ << ’\n’;

else
os << ‘‘ top ‘‘ << enough << ‘‘ components ranked by size:’’ << ’\n’;

os << std::setw(cw) << ‘‘rank’’
<< std::setw(cw) << ‘‘size’’ << ’\n’
<< std::setw(cw) << ‘‘----’’
<< std::setw(cw) << ‘‘----’’ << ’\n’;

for (size_t i = 0; i < enough; ++i)
{
os << std::setw(cw) << 1 + i

<< std::setw(cw) << componentSize[i] << ’\n’;
if (componentSize[i] == 1 && 1 + i < componentSize.Size())
{
os << std::setw(cw) << ’*’

<< std::setw(cw) << 1 << ‘‘ (the remaining ‘‘ << (components - i - 1)
<< ‘‘ components have size 1)\n’’;

break;
}

}
}

4

// below is complete code used to write the results to a file
template < class P >
bool RankComponentsBySize (const P& p, size_t maxToDisplay, const char* filename)
{
std::ofstream os;
os.open(filename);
if (os.fail())
{
std::cerr << ‘‘ ** Error: unable to open file ‘‘ << filename << ’\n’;
return 0;

}
RankComponentsBySize (p, maxToDisplay, os);
os.close();
return 1;

}

