COP4020 Fall 2004 — Final Exam

Name: (Please print)
Put the answers on these sheets. You can collect 100 points in total for this exam.

1. Which C construct is classified as a selection statement? (mark one) (4 points)
(a
(b

(c
(d

return
switch
break
while

)
)
)
)

2. In which of the following situations can expression evaluation reordering by a compiler (using the asso-
ciative and commutative properties of arithmetic operators) change the value of an expression at run-
time or cause an exception that did not occur in the original expression? (mark one or more (4 points)

(a) The expression includes arithmetic with extremely large positive and negative values.
(b) The expression is referentially transparent.

)
)

(¢

(d) None of the above.

Side effects occur in at least one of the operands in the expression.

3. What is the single parameter passing mode that C supports (excluding macros)? (mark one) (4 points)
(a)
(b)
(c)
(d) By value

By name
By reference

By sharing

4. Tail recursion optimization replaces one or more recursive calls with a jump instruction (in combi-
nation with adjustments to parameters). At which points in the following program is tail recursion
optimization applicable? (mark one) (4 points)

int foo(int n)
{if (m == 0)
return 1; // <== [1]
if (n % 2 == 0)
return 2xfoo(n/2); // <== [2]
return foo(n-1); // <== [3]

1]
2]
3]
2] and [3]

a) At [
) At [
) At [
) At [

5. Which terms unify in Prolog? (mark one or more) (4 points)

(a) foo(X) = foo(1,2)
(b) a =14

(c) plus(Y,1) = X

(d) A =3

6. Consider the following Prolog facts and rules. Which query succeeds and returns YES? (mark one) (4 points)

ok(fsu,uf).

ok(fsu,miami) .

ok(miami,uf).

s(X1).

s([A,BIT] :- ok(A,B), s([BIT]).

s([miami,fsu,uf])
s([D

s([fsu,miami,uf])

(a
(b
(c
(d

—_ D

s([osu,fsul)

7. Which expression(s) are valid l-values in C/C++? (mark one or more) (4 points)

You may assume the variables are declared as:
int n, al2], *p;

(a) n+1
(b

(c
(d

*(p+1)
a[n]
3

)
)
)
)

8. What is the definition of a subroutine closure? (mark one) (4 points)

(a) A finally clause in an exception handler to close files and clean up other resources in a subroutine.

(b) A reference to a subroutine, together with its referencing environment passed as a parameter.

()

(d) A hidden subroutine that evaluates the actual parameter in the caller’s referencing environment
to support parameter passing by name.

A close-up code fragment of a subroutine.

9. Parameters are always passed by reference in Fortran 77. But you can also pass (the values of)
expressions. This is not a contradiction. Explain how this is done in Fortran. (7 points)

10.

11.

(7 points) Parameter passing in Fortran 77 can lead to several interesting issues. Consider for example
the subroutine:

SUBROUTINE SHIFT(A, B, C)
INTEGER A, B, C

A =B
B=C
END

Suppose we want to call SHIFT(X, Y, 0) but we don’t want to change the value of Y. We know that
expressions can be passed, so we immediately realize that we can use an expression for the second
parameter SHIFT(X, Y+0, 0). However, it appears that our trick doesn’t work with a particular
brand of optimizing Fortran compilers. Explain why this approach is fragile.

(7 points) Consider the following outline of a QuickSort procedure in Pascal:

procedure QuickSort(var A: Array)
procedure Partition(var A: Array; j,k: integer)
var pivot: integer;
procedure Swap(var A: Array; s,t: integer)
var temp: Type;
begin (* Swap *)
. <== [1]
end; (* Swap *)
begin (* Partition *)
. <== [2]
end; (* Partition *)
begin (* QuickSort *)
. <== [3]
end; (* QuickSort *)

Indicate which variables, arguments, and subroutines are in scope at the indicated points [1], [2], and [3]
in the program. Mark the variables and arguments with the procedure that defines it (for example, at
[1] A of Swap is in scope).

12. (6 points) Consider the following pseudo-code program
var x : integer; /* global variable */

procedure Update
X :=x + 1;

procedure DoCall(P: procedure)
var x : integer;
X :=1;
PO;

write_integer(x);

begin /* body of main program */
x := 0;
DoCall(Update) ;

end /* body of main program */

Assuming static scoping or dynamic scoping rules are used (with shallow or deep bindings). What
value does the program print?

Static Scoping Dynamic Scoping Dynamic Scoping
with Shallow Binding | with Deep Binding

Output:

13. (6 points) Consider the following program:

procedure do_the_math(x, y, z)
begin /* do_the_math */
X 1= X % y;
y = x + z;
end; /* do_the_math */

begin /* body of main program */
integer a := 2;
integer b := 3;
do_the_math(a, b, a);
write_integer(b)

end /* body of main program */

For each of the parameter passing modes shown in the table below show the value printed by the
program.

By value | By reference | By value/result

Output:

Note: for passing by value/result, you should assume that parameter z is passed as an in-mode pa-
rameter to prevent its value from being passed back out.

14. (6 points) Consider the following sequence of assignments

a=b+c
d=b+c+e
f=et+ta+g

Optimize the sequence of assignments by eliminating as many common subexpressions as you can.

15. (6 points) The following loop attempts to produce a sequence of dollar amounts 1.00, 1.01, 1.02, ...
10.00 to sum up totals.

for (float cost = 1.00; cost <= 10.00; cost += 0.01)
{ if (verify_cost(cost))
add_dollar_amount (cost) ;

}

We saw that this approach can lead to problems. Rewrite the loop to use an integer loop counter
cents. In the loop compute the value of cost as a function of cents.

16. Consider the following Prolog program

box(yellow, hotweels).

box(yellow, puzzle).

box(red, dress).

box(red, shoes).

box (blue, book).

addressed_to(yellow, alex).

addressed_to(blue, alex).

addressed_to(red, becky).

addressed_to(green, chris).

gift(Person, Gift) :- addressed_to(Color, Person), box(Color, Gift).
no_gift(Person) :- addressed_to(Color, Person), not box(Color, Gift).

(a) What is the first value of X returned by the query gift(alex, X)? (5 points)

(b) Which person does not receive a gift? That is, what is the value of X returned by the query
no_gift (X)? (5 points)

17. Consider the following C++ program with exceptions:

class GeneralException { };
class SpecificException : public GeneralException { };
class TerminateException : public SpecificException { };

void foo(int n)
{ try
{if (n==1)
throw GeneralException();
if (n == 2)
throw SpecificException();
}
catch (SpecificException)
{ cerr << "Specific exception in foo" << endl;
}
}

int main()
{ int k = ?77; // <= see questions
try
{ foo(k);
throw TerminateException();
X
catch (SpecificException)
{ cerr << "Specific exception in main" << endl;
}
catch (GeneralException)
{ cerr << "General exception in main" << endl;
b
}

(a) (5 points) Which exception(s) can foo raise that are propagated to the caller?

(b) (8 points) Suppose we assign 0, 1, or 2 to k at the point indicated in the program, then
for k=0, which messages are produced (mark zero, one, or more)?

Specific exception in foo
Specific exception in main
General exception in main
for k=1, which messages are produced (mark zero, one, or more)?

Specific exception in foo
Specific exception in main
General exception in main
for k=2, which messages are produced (mark zero, one, or more)?

Specific exception in foo
Specific exception in main
General exception in main

