
COP4020

Programming

Languages

Control Flow

Robert van Engelen & Chris Lacher

COP4020 Spring 2013

Overview

 Structured and unstructured flow

 Goto's

 Sequencing

 Selection

 Iteration and iterators

 Recursion

 Nondeterminacy

 Expressions evaluation

 Evaluation order

 Assignments

COP4020 Spring 2013

Control Flow: Ordering the

Execution of a Program

 Constructs for specifying the execution order:

1. Sequencing: the execution of statements and evaluation of expressions
is usually in the order in which they appear in a program text

2. Selection (or alternation): a run-time condition determines the choice
among two or more statements or expressions

3. Iteration: a statement is repeated a number of times or until a run-time
condition is met

4. Procedural abstraction: subroutines encapsulate collections of
statements and subroutine calls can be treated as single statements

5. Recursion: subroutines which call themselves directly or indirectly to
solve a problem, where the problem is typically defined in terms of
simpler versions of itself

6. Concurrency: two or more program fragments executed in parallel,
either on separate processors or interleaved on a single processor

7. Nondeterminacy: the execution order among alternative constructs is
deliberately left unspecified, indicating that any alternative will lead to a
correct result

COP4020 Spring 2013

Structured and Unstructuted

Flow

 Unstructured flow: the use of goto statements and
statement labels to implement control flow
 Merit or evil?

 Generally considered bad, but sometimes useful for jumping out
of nested loops and for coding the flow of exceptions (when a
language does not support exception handling)

 Java has no goto statement (supports labeled loops and breaks)

 Structured flow:
 Statement sequencing

 Selection with “if-then-else” statements and “switch” statements

 Iteration with “for” and “while” loop statements

 Subroutine calls (including recursion)

 All of which promotes “structured programming”

COP4020 Spring 2013

Sequencing

 A list of statements in a program text is executed in top-

down order

 A compound statement is a delimited list of statements

 A compund statement is called a block when it includes variable

declarations

 C, C++, and Java use { and } to delimit a block

 Pascal and Modula use begin ... end

 Ada uses declare ... begin ... end

 Special cases: in C, C++, and Java expressions can be

inserted as statements

 In pure functional languages sequencing is impossible

(and not desired!)

COP4020 Spring 2013

Selection

 If-then-else selection statements in C and C++:

 if (<expr>) <stmt> [else <stmt>]

 Condition is a bool, integer, or pointer

 Grouping with { and } is required for statement sequences in the then
clause and else clause

 Syntax ambiguity is resolved with “an else matches the closest if” rule

 Conditional expressions, e.g. if and cond in Lisp and a?b:c in C

 Java syntax is like C/C++, but condition must be Boolean

 Ada syntax supports multiple elsif's to define nested conditions:

 if <cond> then
 <statements>
elsif <cond> then
 ...
else
 <statements>
end if

COP4020 Spring 2013

Selection (cont’d)

 Case/switch statements are different from if-then-else statements in
that an expression can be tested against multiple constants to select
statement(s) in one of the arms of the case statement:

 C, C++, and Java:
switch (<expr>)
{ case <const>: <statements> break;
 case <const>: <statements> break;
 ...
 default: <statements>
}

 A break is necessary to transfer control at the end of an arm to the end
of the switch statement

 Most programming languages support a switch-like statement, but do
not require the use of a break in each arm

 A switch statement is much more efficient compared to nested if-
then-else statements

COP4020 Spring 2013

Iteration

 Enumeration-controlled loops repeat a collection of

statements a number of times, where in each iteration a

loop index variable takes the next value of a set of

values specified at the beginning of the loop

 Logically-controlled loops repeat a collection of

statements until some Boolean condition changes value

in the loop

 Pretest loops test condition at the begin of each iteration

 Posttest loops test condition at the end of each iteration

 Midtest loops allow structured exits from within loop with exit

conditions

COP4020 Spring 2013

Enumeration-Controlled Loops

 History of failures on design of enumeration-controlled loops

 Fortran-IV:
 DO 20 i = 1, 10, 2

 ...

 20 CONTINUE
which is defined to be equivalent to
 i = 1

 20 ...

 i = i + 2

 IF i.LE.10 GOTO 20
Problems:

 Requires positive constant loop bounds (1 and 10) and step size (2)

 If loop index variable i is modified in the loop body, the number of
iterations is changed compared to the iterations set by the loop bounds

 GOTOs can jump out of the loop and also from outside into the loop

 The value of counter i after the loop is implementation dependent

 The body of the loop will be executed at least once (no empty bounds)

COP4020 Spring 2013

Enumeration-Controlled Loops

(cont’d)

 Fortran-77:

 Same syntax as in Fortran-IV, but many dialects support ENDDO instead
of CONTINUE statements

 Can jump out of the loop, but cannot jump from outside into the loop

 Assignments to counter i in loop body are not allowed

 Number of iterations is determined by
 max((H-L+S)/S, 0)
for lower bound L, upper bound H, step size S

 Body is not executed when (H-L+S)/S < 0

 Either integer-valued or real-valued expressions for loop bounds and
step sizes

 Changes to the variables used in the bounds do not affect the number
of iterations executed

 Terminal value of loop index variable is the most recent value assigned,
which is
 L + S*max((H-L+S)/S, 0)

COP4020 Spring 2013

Enumeration-Controlled Loops

(cont’d)

 Algol-60 combines logical conditions in combination

loops:
 for <id> := <forlist> do <stmt>

where the syntax of <forlist> is

 <forlist> ::= <enumerator> [, enumerator]*

 <enumerator> ::= <expr>
 | <expr> step <expr> until <expr>

 | <expr> while <cond>

 Not orthogonal: many forms that behave the same:
 for i := 1, 3, 5, 7, 9 do ...

 for i := 1 step 2 until 10 do ...

 for i := 1, i+2 while i < 10 do ...

COP4020 Spring 2013

Enumeration-Controlled Loops

(cont’d)

 Pascal’s enumeration-controlled loops have simple and

elegant design with two forms for up and down:
 for <id> := <expr> to <expr> do <stmt>

and
 for <id> := <expr> downto <expr> do <stmt>

 Can iterate over any discrete type, e.g. integers, chars,

elements of a set

 Lower and upper bound expressions are evaluated once

to determine the iteration range

 Counter variable cannot be assigned in the loop body

 Final value of loop counter after the loop is undefined

COP4020 Spring 2013

Enumeration-Controlled Loops

(cont’d)

 Ada’s for loop is much like Pascal's:
 for <id> in <expr> .. <expr> loop
 <statements>
 end loop
and
 for <id> in reverse <expr> .. <expr> loop
 <statements>
 end loop

 Lower and upper bound expressions are evaluated once
to determine the iteration range

 Counter variable has a local scope in the loop body
 Not accessible outside of the loop

 Counter variable cannot be assigned in the loop body

COP4020 Spring 2013

Enumeration-Controlled Loops

(cont’d)

 C, C++, and Java do not have true enumeration-controlled loops

 A “for” loop is essentially a logically-controlled loop
 for (i = 1; i <= n; i++) ...

which iterates i from 1 to n by testing i <= n before the start of

each iteration and updating i by 1 in each iteration

 Why is this not enumeration controlled?

 Assignments to counter i and variables in the bounds are allowed, thus

it is the programmer's responsibility to structure the loop to mimic

enumeration loops

 Use continue to jump to next iteration

 Use break to exit loop

 C++ and Java also support local scoping for counter variable
 for (int i = 1; i <= n; i++) ...

COP4020 Spring 2013

Enumeration-Controlled Loops

(cont’d)

 Other problems with C/C++ for loops to emulate enumeration-

controlled loops are related to the mishandling of bounds and limits

of value representations

 This C program never terminates (do you see why?)
 #include <limits.h> // INT_MAX is max int value

 main()

 { int i;

 for (i = 0; i <= INT_MAX; i++)

 printf(“Iteration %d\n”, i);

 }

 This C program does not count from 0.0 to 10.0, why?
 main()
 { float n;

 for (n = 0.0; n <= 10; n += 0.01)

 printf(“Iteration %g\n”, n);

 }

COP4020 Spring 2013

Enumeration-Controlled Loops

(cont’d)

 How is loop iteration counter overflow handled?

 C, C++, and Java: nope

 Fortran-77

 Calculate the number of iterations in advance

 For REAL typed index variables an exception is raised when

overflow occurs

 Pascal and Ada

 Only specify step size 1 and -1 and detection of the end of the

iterations is safe

 Pascal’s final counter value is undefined (may have wrapped)

COP4020 Spring 2013

Iterators

 Iterators are used to iterate over elements of containers such as

sets and data structures such as lists and trees

 Iterator objects are also called enumerators or generators

 C++ iterators are associated with a container object and used in

loops similar to pointers and pointer arithmetic:

vector<int> V;

…

for (vector<int>::iterator it = V.begin(); it != V.end(); ++it)

 cout << *n << endl;

An in-order tree traversal:

tree_node<int> T;

…

for (tree_node<int>::iterator it = T.begin(); it != T.end(); ++it)

 cout << *n << endl;

COP4020 Spring 2013

Iterators (cont’d)

 Java supports generics similar to C++ templates

 Iterators are similar to C++, but do not have the usual C++

overloaded iterator operators:

TreeNode<Integer> T;

…

for (Integer i : T)

 System.out.println(i);

Note that Java has the above special for-loop for iterators that is

essentially syntactic sugar for:

for (Iterator<Integer> it = T.iterator(); it.hasNext();)

{ Integer i = it.next();

 System.out.println(i);

}

COP4020 Spring 2013

Iterators (cont’d)

 Iterators typically need special loops to produce
elements one by one, e.g. in Clu:

for i in int$from_to_by(first, last, step) do

 …

end

 While Java and C++ use iterator objects that hold the
state of the iterator, Clu, Python, Ruby, and C# use
generators (=“true iterators”) which are functions that run
in “parallel” to the loop code to produce elements
 The yield operation in Clu returns control to the loop body

 The loop returns control to the generator’s last yield operation to
allow it to compute the value for the next iteration

 The loop terminates when the generator function returns

COP4020 Spring 2013

Logically-Controlled Pretest

loops

 Logically-controlled pretest loops check the exit condition before the

next loop iteration

 Not available Fortran-77

 Ada has only one kind of logically-controlled loops: midtest loops

 Pascal:
 while <cond> do <stmt>

where the condition is a Boolean-typed expression

 C, C++:
 while (<expr>) <stmt>

where the loop terminates when the condition evaluates to 0, NULL,

or false

 Use continue and break to jump to next iteration or exit the loop

 Java is similar C++, but condition is restricted to Boolean

COP4020 Spring 2013

Logically-Controlled Posttest

Loops

 Logically-controlled posttest loops check the exit condition after

each loop iteration

 Not available in Fortran-77

 Ada has only one kind of logically-controlled loops: midtest loops

 Pascal:
 repeat <stmt> [; <stmt>]* until <cond>

where the condition is a Boolean-typed expression and the loop

terminates when the condition is true

 C, C++:
 do <stmt> while (<expr>)

where the loop terminates when the expression evaluates to 0,

NULL, or false

 Java is similar to C++, but condition is restricted to Boolean

COP4020 Spring 2013

Logically-Controlled Midtest

Loops

 Ada supports logically-controlled midtest loops check exit conditions
anywhere within the loop:
loop

 <statements>
exit when <cond>;
 <statements>
exit when <cond>;
 ...
end loop

 Ada also supports labels, allowing exit of outer loops without gotos:
outer: loop

 ...

 for i in 1..n loop

 ...

 exit outer when a[i]>0;

 ...

 end loop;

end outer loop;

COP4020 Spring 2013

Recursion

 Recursion: subroutines that call themselves directly or indirectly

(mutual recursion)

 Typically used to solve a problem that is defined in terms of simpler

versions, for example:

 To compute the length of a list, remove the first element, calculate the

length of the remaining list in n, and return n+1

 Termination condition: if the list is empty, return 0

 Iteration and recursion are equally powerful in theoretical sense

 Iteration can be expressed by recursion and vice versa

 Recursion is more elegant to use to solve a problem that is naturally

recursively defined, such as a tree traversal algorithm

 Recursion can be less efficient, but most compilers for functional

languages are often able to replace it with iterations

COP4020 Spring 2013

Tail-Recursive Functions

 Tail-recursive functions are functions in which no operations follow

the recursive call(s) in the function, thus the function returns

immediately after the recursive call:

 tail-recursive not tail-recursive
 int trfun() int rfun()

 { … { …

 return trfun(); return rfun()+1;

 } }

 A tail-recursive call could reuse the subroutine's frame on the run-

time stack, since the current subroutine state is no longer needed

 Simply eliminating the push (and pop) of the next frame will do

 In addition, we can do more for tail-recursion optimization: the

compiler replaces tail-recursive calls by jumps to the beginning of

the function

COP4020 Spring 2013

Tail-Recursion Optimization

 Consider the GCD function:
 int gcd(int a, int b)

 { if (a==b) return a;

 else if (a>b) return gcd(a-b, b);

 else return gcd(a, b-a);

 }

a good compiler will optimize the function into:
 int gcd(int a, int b)

 { start:

 if (a==b) return a;

 else if (a>b) { a = a-b; goto start; }

 else { b = b-a; goto start; }

 }
which is just as efficient as the iterative version:
 int gcd(int a, int b)

 { while (a!=b)

 if (a>b) a = a-b;

 else b = b-a;

 return a;

 }

COP4020 Spring 2013

Converting Recursive Functions

to Tail-Recursive Functions

 Remove the work after the recursive call and include it in some other
form as a computation that is passed to the recursive call

 For example, the non-tail-recursive function

(define summation (lambda (f low high)
 (if (= low high)
 (f low)
 (+ (f low) (summation f (+ low 1) high)))))

can be rewritten into a tail-recursive function:

(define summation (lambda (f low high subtotal)
 (if (=low high)
 (+ subtotal (f low))
 (summation f (+ low 1) high (+ subtotal (f low))))))

COP4020 Spring 2013

Example

 Here is the same example in C:

typedef int (*int_func)(int);

int summation(int_func f, int low, int high)

{ if (low == high)

 return f(low)

 else

 return f(low) + summation(f, low+1, high);

}

rewritten into the tail-recursive form:

int summation(int_func f, int low, int high, int subtotal)

{ if (low == high)

 return subtotal+f(low)

 else

 return summation(f, low+1, high, subtotal+f(low));

}

COP4020 Spring 2013

When Recursion is Bad

 The Fibonacci function implemented as a recursive function is very
inefficient as it takes exponential time to compute:

(define fib (lambda (n)
 (cond ((= n 0) 1)
 ((= n 1) 1)
 (else (+ (fib (- n 1)) (fib (- n 2)))))))

with a tail-recursive helper function, we can run it in O(n) time:

(define fib (lambda (n)
 (letrec ((fib-helper (lambda (f1 f2 i)
 (if (= i n)
 f2
 (fib-helper f2 (+ f1 f2) (+ i 1))))))
 (fib-helper 0 1 0))))

COP4020 Spring 2013

Expression Syntax and Effect

on Evaluation Order

 An expression consists of
 An atomic object, e.g. number or variable

 An operator applied to a collection of operands (or arguments)
that are expressions

 Common syntactic forms for operators:
 Function call notation, e.g. somefunc(A, B, C)

 Infix notation for binary operators, e.g. A + B

 Prefix notation for unary operators, e.g. -A

 Postfix notation for unary operators, e.g. i++

 Cambridge Polish notation, e.g. (* (+ 1 3) 2) in Lisp

 "Multi-word" infix, e.g. a>b?a:b in C and
 myBox displayOn: myScreen at: 100@50
in Smalltalk, where displayOn: and at: are written infix with
arguments mybox, myScreen, and 100@50

COP4020 Spring 2013

Operator Precedence and

Associativity

 The use of infix, prefix, and postfix notation sometimes lead to

ambiguity as to what is an operand of what

 Fortran example: a+b*c**d**e/f

 Operator precedence: higher operator precedence means that a

(collection of) operator(s) group more tightly in an expression than

operators of lower precedence

 Operator associativity: determines evaluation order of operators of

the same precedence

 Left associative: operators are evaluated left-to-right (most common)

 Right associative: operators are evaluated right-to-left (Fortran power

operator **, C assignment operator = and unary minus)

 Non-associative: requires parenthesis when composed (Ada power

operator **)

COP4020 Spring 2013

Operator Precedence and

Associativity

 Pascal's flat precedence levels is a design mistake

 if A<B and C<D then

is the same as

 if A<(B and C)<D then

 Note: levels of operator precedence and associativity are
easily captured in a grammar as we saw earlier

COP4020 Spring 2013

Evaluation Order of Expressions

 Precedence and associativity state the rules for structuring
expressions, but do not determine the operand evaluation order!

 Expression
 a-f(b)-b*c
is structured as
 (a-f(b))-(b*c)
but either (a-f(b)) or (b*c) can be evaluated first

 The evaluation order of arguments in function and subroutine calls
may differ, e.g. arguments evaluated from left to right or right to left

 Knowing the operand evaluation order is important

 Side effects: suppose f(b) above modifies the value of b (f(b) has a
“side effect”) then the value will depend on the operand evaluation order

 Code improvement: compilers rearrange expressions to maximize
efficiency, e.g. a compiler can improve memory load efficiency by
moving loads up in the instruction stream

COP4020 Spring 2013

Expression Operand Reordering

Issues

 Rearranging expressions may lead to arithmetic overflow or different
floating point results
 Assume b, d, and c are very large positive integers, then if b-c+d is

rearranged into (b+d)-c arithmetic overflow occurs

 Floating point value of b-c+d may differ from b+d-c

 Most programming languages will not rearrange expressions when
parenthesis are used, e.g. write (b-c)+d to avoid problems

 Design choices:

 Java: expressions evaluation is always left to right in the order operands
are provided in the source text and overflow is always detected

 Pascal: expression evaluation is unspecified and overflows are always
detected

 C anc C++: expression evaluation is unspecified and overflow detection
is implementation dependent

 Lisp: no limit on number representation

COP4020 Spring 2013

Short-Circuit Evaluation

 Short-circuit evaluation of Boolean expressions: the result of an
operator can be determined from the evaluation of just one operand

 Pascal does not use short-circuit evaluation

 The program fragment below has the problem that element a[11] is
read resulting in a dynamic semantic error:
 var a:array [1..10] of integer;
 ...

 i := 1;

 while i<=10 and a[i]<>0 do

 i := i+1

 C, C++, and Java use short-circuit conditional and/or operators

 If a in a&&b evaluates to false, b is not evaluated

 If a in a||b evaluates to true, b is not evaluated

 Avoids the Pascal problem, e.g.
 while (i <= 10 && a[i] != 0) ...

 Ada uses and then and or else, e.g. cond1 and then cond2

 Ada, C, and C++ also have regular bit-wise Boolean operators

COP4020 Spring 2013

Assignments and Expressions

 Fundamental difference between imperative and
functional languages

 Imperative: "computing by means of side effects”
 Computation is an ordered series of changes to values of

variables in memory (state) and statement ordering is influenced
by run-time testing values of variables

 Expressions in functional language are referentially
transparent:
 All values used and produced depend on the local referencing

environment of the expression

 A function is idempotent in a functional language: it always
returns the same value given the same arguments because of
the absence of side-effects

COP4020 Spring 2013

L-Values vs. R-Values and Value

Model vs. Reference Model

 Consider the assignment of the form: a := b

 The left-hand side a of the assignment is an l-value which is an
expression that should denote a location, e.g. array element a[2] or a
variable foo or a dereferenced pointer *p

 The right-hand side b of the assignment is an r-value which can be any
syntactically valid expression with a type that is compatible to the left-
hand side

 Languages that adopt the value model of variables copy the value of
b into the location of a (e.g. Ada, Pascal, C)

 Languages that adopt the reference model of variables copy
references, resulting in shared data values via multiple references

 Clu copies the reference of b into a so that a and b refer to the same
object

 Java is a mix: it uses the value model for built-in types and the
reference model for class instances

COP4020 Spring 2013

Special Cases of Assignments

 Assignment by variable initialization

 Use of uninitialized variable is source of many problems, sometimes
compilers are able to detect this but with programmer involvement e.g.
definite assignment requirement in Java

 Implicit initialization, e.g. 0 or NaN (not a number) is assigned by default
when variable is declared

 Combinations of assignment operators

 In C/C++ a+=b is equivalent to a=a+b (but a[i++]+=b is different from
a[i++]=a[i++]+b, ouch!)

 Compiler produces better code, because the address of a variable is
only calculated once

 Multiway assignments in Clu, ML, and Perl

 a,b := c,d assigns c to a and d to b simultaneously, e.g. a,b :=
b,a swaps a with b

 a,b := 1 assigns 1 to both a and b

