
COP4020 

Programming 

Languages 

Control Flow 

Robert van Engelen & Chris Lacher 



COP4020 Spring 2013 

Overview 

 Structured and unstructured flow 

 Goto's 

 Sequencing 

 Selection 

 Iteration and iterators 

 Recursion 

 Nondeterminacy 

 Expressions evaluation 

 Evaluation order 

 Assignments 



COP4020 Spring 2013 

Control Flow: Ordering the 

Execution of a Program 

 Constructs for specifying the execution order:  

1. Sequencing: the execution of statements and evaluation of expressions 
is usually in the order in which they appear in a program text 

2. Selection (or alternation): a run-time condition determines the choice 
among two or more statements or expressions 

3. Iteration: a statement is repeated a number of times or until a run-time 
condition is met 

4. Procedural abstraction: subroutines encapsulate collections of 
statements and subroutine calls can be treated as single statements 

5. Recursion: subroutines which call themselves directly or indirectly to 
solve a problem, where the problem is typically defined in terms of 
simpler versions of itself 

6. Concurrency: two or more program fragments executed in parallel, 
either on separate processors or interleaved on a single processor 

7. Nondeterminacy: the execution order among alternative constructs is 
deliberately left unspecified, indicating that any alternative will lead to a 
correct result 
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Structured and Unstructuted 

Flow 

 Unstructured flow: the use of goto statements and 
statement labels to implement control flow 
 Merit or evil? 

 Generally considered bad, but sometimes useful for jumping out 
of nested loops and for coding the flow of exceptions (when a 
language does not support exception handling) 

 Java has no goto statement (supports labeled loops and breaks) 

 Structured flow: 
 Statement sequencing 

 Selection with “if-then-else” statements and “switch” statements 

 Iteration with “for” and “while” loop statements 

 Subroutine calls (including recursion) 

 All of which promotes “structured programming” 
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Sequencing 

 A list of statements in a program text is executed in top-

down order 

 A compound statement is a delimited list of statements 

 A compund statement is called a block when it includes variable 

declarations 

 C, C++, and Java use { and } to delimit a block 

 Pascal and Modula use begin ... end 

 Ada uses declare ... begin ... end 

 Special cases: in C, C++, and Java expressions can be 

inserted as statements 

 In pure functional languages sequencing is impossible 

(and not desired!) 
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Selection 

 If-then-else selection statements in C and C++: 

 if (<expr>) <stmt> [else <stmt>]  

 Condition is a bool, integer, or pointer 

 Grouping with { and } is required for statement sequences in the then 
clause and else clause 

 Syntax ambiguity is resolved with “an else matches the closest if” rule 

 Conditional expressions, e.g. if and cond in Lisp and a?b:c in C 

 Java syntax is like C/C++, but condition must be Boolean 

 Ada syntax supports multiple elsif's to define nested conditions: 

 if <cond> then 
  <statements>  
elsif <cond> then  
  ...  
else  
  <statements>  
end if 
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Selection (cont’d) 

 Case/switch statements are different from if-then-else statements in 
that an expression can be tested against multiple constants to select 
statement(s) in one of the arms of the case statement: 

 C, C++, and Java: 
switch (<expr>)  
{ case <const>: <statements> break;  
  case <const>: <statements> break;  
  ...  
  default: <statements>  
}  

 A break is necessary to transfer control at the end of an arm to the end 
of the switch statement 

 Most programming languages support a switch-like statement, but do 
not require the use of a break in each arm 

 A switch statement is much more efficient compared to nested if-
then-else statements 
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Iteration 

 Enumeration-controlled loops repeat a collection of 

statements a number of times, where in each iteration a 

loop index variable takes the next value of a set of 

values specified at the beginning of the loop 

 Logically-controlled loops repeat a collection of 

statements until some Boolean condition changes value 

in the loop 

 Pretest loops test condition at the begin of each iteration 

 Posttest loops test condition at the end of each iteration 

 Midtest loops allow structured exits from within loop with exit 

conditions 
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Enumeration-Controlled Loops 

 History of failures on design of enumeration-controlled loops 

 Fortran-IV: 
     DO 20 i = 1, 10, 2  

     ...  

 20  CONTINUE  
which is defined to be equivalent to  
     i = 1  

 20  ...  

     i = i + 2  

     IF i.LE.10 GOTO 20  
Problems:  

 Requires positive constant loop bounds (1 and 10) and step size (2) 

 If loop index variable i is modified in the loop body, the number of 
iterations is changed compared to the iterations set by the loop bounds 

 GOTOs can jump out of the loop and also from outside into the loop 

 The value of counter i after the loop is implementation dependent 

 The body of the loop will be executed at least once (no empty bounds) 
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Enumeration-Controlled Loops 

(cont’d) 

 Fortran-77: 

 Same syntax as in Fortran-IV, but many dialects support ENDDO instead 
of CONTINUE statements 

 Can jump out of the loop, but cannot jump from outside into the loop 

 Assignments to counter i in loop body are not allowed 

 Number of iterations is determined by  
  max((H-L+S)/S, 0) 
for lower bound L, upper bound H, step size S 

 Body is not executed when (H-L+S)/S < 0 

 Either integer-valued or real-valued expressions for loop bounds and 
step sizes 

 Changes to the variables used in the bounds do not affect the number 
of iterations executed  

 Terminal value of loop index variable is the most recent value assigned, 
which is 
  L + S*max((H-L+S)/S, 0) 
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Enumeration-Controlled Loops 

(cont’d) 

 Algol-60 combines logical conditions in combination 

loops: 
 for <id> := <forlist> do <stmt> 

where the syntax of <forlist> is 

 <forlist>   ::= <enumerator> [, enumerator]*  

 <enumerator> ::= <expr>  
       | <expr> step <expr> until <expr> 

     | <expr> while <cond>  

 Not orthogonal: many forms that behave the same: 
 for i := 1, 3, 5, 7, 9 do ...  

 for i := 1 step 2 until 10 do ...  

 for i := 1, i+2 while i < 10 do ... 
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Enumeration-Controlled Loops 

(cont’d) 

 Pascal’s enumeration-controlled loops have simple and 

elegant design with two forms for up and down: 
 for <id> := <expr> to <expr> do <stmt> 

and 
 for <id> := <expr> downto <expr> do <stmt>  

 Can iterate over any discrete type, e.g. integers, chars, 

elements of a set 

 Lower and upper bound expressions are evaluated once 

to determine the iteration range 

 Counter variable cannot be assigned in the loop body 

 Final value of loop counter after the loop is undefined 
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Enumeration-Controlled Loops 

(cont’d) 

 Ada’s for loop is much like Pascal's: 
 for <id> in <expr> .. <expr> loop 
   <statements> 
 end loop  
and 
 for <id> in reverse <expr> .. <expr> loop 
   <statements>  
 end loop  

 Lower and upper bound expressions are evaluated once 
to determine the iteration range 

 Counter variable has a local scope in the loop body 
 Not accessible outside of the loop 

 Counter variable cannot be assigned in the loop body 
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Enumeration-Controlled Loops 

(cont’d) 

 C, C++, and Java do not have true enumeration-controlled loops 

 A “for” loop is essentially a logically-controlled loop 
 for (i = 1; i <= n; i++) ... 

which iterates i from 1 to n by testing i <= n before the start of 

each iteration and updating i by 1 in each iteration 

 Why is this not enumeration controlled? 

 Assignments to counter i and variables in the bounds are allowed, thus 

it is the programmer's responsibility to structure the loop to mimic 

enumeration loops 

 Use continue to jump to next iteration 

 Use break to exit loop 

 C++ and Java also support local scoping for counter variable 
 for (int i = 1; i <= n; i++) ... 
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Enumeration-Controlled Loops 

(cont’d) 

 Other problems with C/C++ for loops to emulate enumeration-

controlled loops are related to the mishandling of bounds and limits 

of value representations 

 This C program never terminates (do you see why?) 
 #include <limits.h> // INT_MAX is max int value 

 main()  

 { int i;  

   for (i = 0; i <= INT_MAX; i++)  

     printf(“Iteration %d\n”, i);  

 }  

 This C program does not count from 0.0 to 10.0, why? 
  main()  
 { float n;  

   for (n = 0.0; n <= 10; n += 0.01)  

     printf(“Iteration %g\n”, n);  

 }  
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Enumeration-Controlled Loops 

(cont’d) 

 How is loop iteration counter overflow handled? 

 C, C++, and Java: nope 

 Fortran-77 

 Calculate the number of iterations in advance 

 For REAL typed index variables an exception is raised when 

overflow occurs 

 Pascal and Ada 

 Only specify step size 1 and -1 and detection of the end of the 

iterations is safe 

 Pascal’s final counter value is undefined (may have wrapped) 
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Iterators 

 Iterators are used to iterate over elements of containers such as 

sets and data structures such as lists and trees 

 Iterator objects are also called enumerators or generators 

 C++ iterators are associated with a container object and used in 

loops similar to pointers and pointer arithmetic: 

 
vector<int> V; 

… 

for (vector<int>::iterator it = V.begin(); it != V.end(); ++it) 

 cout << *n << endl; 

 

An in-order tree traversal: 

 
tree_node<int> T; 

… 

for (tree_node<int>::iterator it = T.begin(); it != T.end(); ++it) 

 cout << *n << endl; 
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Iterators (cont’d) 

 Java supports generics similar to C++ templates 

 Iterators are similar to C++, but do not have the usual C++ 

overloaded iterator operators: 

 
TreeNode<Integer> T; 

… 

for (Integer i : T) 

 System.out.println(i); 

 

Note that Java has the above special for-loop for iterators that is 

essentially syntactic sugar for: 

 
for (Iterator<Integer> it = T.iterator(); it.hasNext(); ) 

{ Integer i = it.next(); 

 System.out.println(i); 

} 
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Iterators (cont’d) 

 Iterators typically need special loops to produce 
elements one by one, e.g. in Clu: 
 

for i in int$from_to_by(first, last, step) do 

 … 

end 

 While Java and C++ use iterator objects that hold the 
state of the iterator, Clu, Python, Ruby, and C# use 
generators (=“true iterators”) which are functions that run 
in “parallel” to the loop code to produce elements 
 The yield operation in Clu returns control to the loop body 

 The loop returns control to the generator’s last yield operation to 
allow it to compute the value for the next iteration 

 The loop terminates when the generator function returns 
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Logically-Controlled Pretest 

loops 

 Logically-controlled pretest loops check the exit condition before the 

next loop iteration 

 Not available Fortran-77 

 Ada has only one kind of logically-controlled loops: midtest loops 

 Pascal: 
 while <cond> do <stmt> 

where the condition is a Boolean-typed expression 

 C, C++: 
 while (<expr>) <stmt> 

where the loop terminates when the condition evaluates to 0, NULL, 

or false 

 Use continue and break to jump to next iteration or exit the loop 

 Java is similar C++, but condition is restricted to Boolean 
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Logically-Controlled Posttest 

Loops 

 Logically-controlled posttest loops check the exit condition after 

each loop iteration 

 Not available in Fortran-77 

 Ada has only one kind of logically-controlled loops: midtest loops 

 Pascal: 
 repeat <stmt> [; <stmt>]* until <cond> 

where the condition is a Boolean-typed expression and the loop 

terminates when the condition is true 

 C, C++: 
 do <stmt> while (<expr>) 

where the loop terminates when the expression evaluates to 0, 

NULL, or false 

 Java is similar to C++, but condition is restricted to Boolean 
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Logically-Controlled Midtest 

Loops 

 Ada supports logically-controlled midtest loops check exit conditions 
anywhere within the loop: 
loop 

  <statements>  
exit when <cond>;  
  <statements>  
exit when <cond>;  
  ...  
end loop  

 Ada also supports labels, allowing exit of outer loops without gotos: 
outer: loop  

  ...  

  for i in 1..n loop  

    ...  

    exit outer when a[i]>0;  

    ...  

  end loop;  

end outer loop; 
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Recursion 

 Recursion: subroutines that call themselves directly or indirectly 

(mutual recursion) 

 Typically used to solve a problem that is defined in terms of simpler 

versions, for example: 

 To compute the length of a list, remove the first element, calculate the 

length of the remaining list in n, and return n+1 

 Termination condition: if the list is empty, return 0 

 Iteration and recursion are equally powerful in theoretical sense 

 Iteration can be expressed by recursion and vice versa 

 Recursion is more elegant to use to solve a problem that is naturally 

recursively defined, such as a tree traversal algorithm 

 Recursion can be less efficient, but most compilers for functional 

languages are often able to replace it with iterations 
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Tail-Recursive Functions 

 Tail-recursive functions are functions in which no operations follow 

the recursive call(s) in the function, thus the function returns 

immediately after the recursive call: 

 tail-recursive   not tail-recursive 
 int trfun()   int rfun() 

 { …    { … 

   return trfun();    return rfun()+1; 

 }    } 

 A tail-recursive call could reuse the subroutine's frame on the run-

time stack, since the current subroutine state is no longer needed 

 Simply eliminating the push (and pop) of the next frame will do 

 In addition, we can do more for tail-recursion optimization: the 

compiler replaces tail-recursive calls by jumps to the beginning of 

the function 
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Tail-Recursion Optimization 

 Consider the GCD function: 
 int gcd(int a, int b)  

 { if (a==b) return a;  

   else if (a>b) return gcd(a-b, b);  

   else return gcd(a, b-a);  

 } 

a good compiler will optimize the function into: 
 int gcd(int a, int b)  

 { start:  

     if (a==b) return a;  

     else if (a>b) { a = a-b; goto start; }  

     else { b = b-a; goto start; }  

 }  
which is just as efficient as the iterative version:  
 int gcd(int a, int b)   

 { while (a!=b)  

     if (a>b) a = a-b;  

     else b = b-a;  

   return a;  

 } 
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Converting Recursive Functions 

to Tail-Recursive Functions 

 Remove the work after the recursive call and include it in some other 
form as a computation that is passed to the recursive call 

 For example, the non-tail-recursive function 
 
(define summation (lambda (f low high)  
  (if (= low high)  
      (f low)  
      (+ (f low) (summation f (+ low 1) high)))))  
 
can be rewritten into a tail-recursive function:  
 
(define summation (lambda (f low high subtotal)  
  (if (=low high)  
      (+ subtotal (f low))  
      (summation f (+ low 1) high (+ subtotal (f low)))))) 
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Example 

 Here is the same example in C: 
 
typedef int (*int_func)(int);  

int summation(int_func f, int low, int high)  

{ if (low == high) 

    return f(low)  

  else 

    return f(low) + summation(f, low+1, high);  

}  

 
rewritten into the tail-recursive form:  
 
int summation(int_func f, int low, int high, int subtotal)  

{ if (low == high) 

    return subtotal+f(low)  

  else 

    return summation(f, low+1, high, subtotal+f(low));  

} 
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When Recursion is Bad 

 The Fibonacci function implemented as a recursive function is very 
inefficient as it takes exponential time to compute: 
 
(define fib (lambda (n)  
  (cond ((= n 0) 1)  
            ((= n 1) 1)  
            (else (+ (fib (- n 1)) (fib (- n 2)))))))  
 
with a tail-recursive helper function, we can run it in O(n) time: 
 
(define fib (lambda (n)  
  (letrec ((fib-helper (lambda (f1 f2 i)  
                                 (if (= i n)  
                                     f2  
                                     (fib-helper f2 (+ f1 f2) (+ i 1))))))  
    (fib-helper 0 1 0)))) 
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Expression Syntax and Effect 

on Evaluation Order 

 An expression consists of 
 An atomic object, e.g. number or variable 

 An operator applied to a collection of operands (or arguments) 
that are expressions 

  Common syntactic forms for operators: 
 Function call notation, e.g. somefunc(A, B, C) 

 Infix notation for binary operators, e.g. A + B 

 Prefix notation for unary operators, e.g. -A 

 Postfix notation for unary operators, e.g. i++ 

 Cambridge Polish notation, e.g. (* (+ 1 3) 2) in Lisp 

 "Multi-word" infix, e.g. a>b?a:b in C and 
 myBox displayOn: myScreen at: 100@50 
in Smalltalk, where displayOn: and at: are written infix with 
arguments mybox, myScreen, and 100@50 
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Operator Precedence and 

Associativity 

 The use of infix, prefix, and postfix notation sometimes lead to 

ambiguity as to what is an operand of what 

 Fortran example: a+b*c**d**e/f 

 Operator precedence: higher operator precedence means that a 

(collection of) operator(s) group more tightly in an expression than 

operators of lower precedence 

 Operator associativity: determines evaluation order of operators of 

the same precedence 

 Left associative: operators are evaluated left-to-right (most common) 

 Right associative: operators are evaluated right-to-left (Fortran power 

operator **, C assignment operator = and unary minus) 

 Non-associative: requires parenthesis when composed (Ada power 

operator **) 
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Operator Precedence and 

Associativity 

 Pascal's flat precedence levels is a design mistake 
 
 if A<B and C<D then 
 
is the same as 
 
 if A<(B and C)<D then 

 

 Note: levels of operator precedence and associativity are 
easily captured in a grammar as we saw earlier 
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Evaluation Order of Expressions 

 Precedence and associativity state the rules for structuring 
expressions, but do not determine the operand evaluation order! 

 Expression 
  a-f(b)-b*c 
is structured as 
  (a-f(b))-(b*c) 
but either (a-f(b)) or (b*c) can be evaluated first 

 The evaluation order of arguments in function and subroutine calls 
may differ, e.g. arguments evaluated from left to right or right to left 

 Knowing the operand evaluation order is important 

 Side effects: suppose f(b) above modifies the value of b (f(b) has a 
“side effect”) then the value will depend on the operand evaluation order 

 Code improvement: compilers rearrange expressions to maximize 
efficiency, e.g. a compiler can improve memory load efficiency by 
moving loads up in the instruction stream 
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Expression Operand Reordering 

Issues 

 Rearranging expressions may lead to arithmetic overflow or different 
floating point results 
 Assume b, d, and c are very large positive integers, then if b-c+d is 

rearranged into (b+d)-c arithmetic overflow occurs  

 Floating point value of b-c+d may differ from b+d-c 

 Most programming languages will not rearrange expressions when 
parenthesis are used, e.g. write (b-c)+d to avoid problems 

 Design choices: 

 Java: expressions evaluation is always left to right in the order operands 
are provided in the source text and overflow is always detected 

 Pascal: expression evaluation is unspecified and overflows are always 
detected 

 C anc C++: expression evaluation is unspecified and overflow detection 
is implementation dependent 

 Lisp: no limit on number representation 
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Short-Circuit Evaluation 

 Short-circuit evaluation of Boolean expressions: the result of an 
operator can be determined from the evaluation of just one operand 

 Pascal does not use short-circuit evaluation 

 The program fragment below has the problem that element a[11] is 
read resulting in a dynamic semantic error: 
 var a:array [1..10] of integer; 
 ...  

 i := 1;  

 while i<=10 and a[i]<>0 do  

   i := i+1 

 C, C++, and Java use short-circuit conditional and/or operators 

 If a in a&&b evaluates to false, b is not evaluated 

 If a in a||b evaluates to true, b is not evaluated 

 Avoids the Pascal problem, e.g. 
 while (i <= 10 && a[i] != 0) ... 

 Ada uses and then and or else, e.g. cond1 and then cond2 

 Ada, C, and C++ also have regular bit-wise Boolean operators 
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Assignments and Expressions 

 Fundamental difference between imperative and 
functional languages 

 Imperative: "computing by means of side effects” 
 Computation is an ordered series of changes to values of 

variables in memory (state) and statement ordering is influenced 
by run-time testing values of variables 

 Expressions in functional language are referentially 
transparent: 
 All values used and produced depend on the local referencing 

environment of the expression 

 A function is idempotent in a functional language: it always 
returns the same value given the same arguments because of 
the absence of side-effects 
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L-Values vs. R-Values and Value 

Model vs. Reference Model 

 Consider the assignment of the form: a := b 

 The left-hand side a of the assignment is an l-value which is an 
expression that should denote a location, e.g. array element a[2] or a 
variable foo or a dereferenced pointer *p 

 The right-hand side b of the assignment is an r-value which can be any 
syntactically valid expression with a type that is compatible to the left-
hand side  

 Languages that adopt the value model of variables copy the value of 
b into the location of a (e.g. Ada, Pascal, C) 

 Languages that adopt the reference model of variables copy 
references, resulting in shared data values via multiple references 

 Clu copies the reference of b into a so that a and b refer to the same 
object 

 Java is a mix: it uses the value model for built-in types and the 
reference model for class instances 
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Special Cases of Assignments 

 Assignment by variable initialization 

 Use of uninitialized variable is source of many problems, sometimes 
compilers are able to detect this but with programmer involvement e.g. 
definite assignment requirement in Java 

 Implicit initialization, e.g. 0 or NaN (not a number) is assigned by default 
when variable is declared 

 Combinations of assignment operators 

 In C/C++ a+=b is equivalent to a=a+b (but a[i++]+=b is different from 
a[i++]=a[i++]+b, ouch!) 

 Compiler produces better code, because the address of a variable is 
only calculated once 

 Multiway assignments in Clu, ML, and Perl 

 a,b := c,d assigns c to a and d to b simultaneously, e.g. a,b := 
b,a swaps a with b 

 a,b := 1 assigns 1 to both a and b 


