Introduction to the Linked List ADT

* Linked list: set of data structures (nodes)
that contain references to other data
structures

»NULL

list
head

Copyright © 2012 Pearson Education, Inc.

Linked Lists vs. Arrays and Vectors

 Linked lists can grow and shrink as
needed, unlike arrays, which have a fixed

size

* Linked lists can insert a node between
other nodes easily

»NULL

list
head

Copyright © 2012 Pearson Education, Inc.

Node Organization

A node contains:

— data: one or more data fields — may be
organized as structure, object, etc.

— a pointer that can point to another node

pointer
data .

Copyright © 2012 Pearson Education, Inc.

Linked List Organization

* Linked list contains O or more nodes:

»NULL

list
head

* Has a list head to point to first node
» Last node points to NULL

Copyright © 2012 Pearson Education, Inc.

Empty List

* |f a list currently contains O nodes, it Is
the empty list

* In this case the list head points to NULL

list
head

o—/— NULL

Copyright © 2012 Pearson Education, Inc.

Declaring a Node

 Declare a node:
struct ListNode

{

int data;

ListNode *next;
bi
 No memory Is allocated at this time

Copyright © 2012 Pearson Education, Inc.

Defining a Linked List

* Define a pointer for the head of the list:
ListNode *head = NULL;

* Head pointer initialized to NULL to indicate
an empty list

head

> NULL

Copyright © 2012 Pearson Education, Inc.

NULL Pointer

* Is used to indicate end-of-list
 NULL is just the O address, prefer using 0O

« Should always be tested for before using a
pointer:

ListNode *p;

while (p !'= 0)
« Can also test the pointer itself:
while (!p) ... // same meaning

// as above

Copyright © 2012 Pearson Education, Inc.

Linked List Operations

« Basic operations:
— append a node to the end of the list
— Insert a node within the list
— traverse the linked list
— delete a node
— delete/destroy the list

Copyright © 2012 Pearson Education, Inc.

Contents of NumberList.h

1 // Specification file for the NumberList class

2 #ifndef NUMBERLIST H

3 #define NUMBERLIST H

4

5 <class NumberlList

6 {

7 private:

8 // Declare a structure for the list

9 struct ListNode
10 {
11 double value; // The value in this node
12 struct ListNode *next; // To point to the next node
13 }i
14
15 ListNode *head; // List head pointer
16

Copyright © 2012 Pearson Education, Inc.

Contents of NumberList.h
(Continued)

17 public:

18 // Constructor

19 NumberList ()

20 { head = 0; }

21

22 // Destructor

23 ~NumberList () ;

24

25 // Linked list operations
26 vold appendNode (double) ;
277 vold insertNode (double) ;
28 vold deleteNode (double) ;
29 vold displaylList () const;
30 };

31 #endif

Copyright © 2012 Pearson Education, Inc.

Create a New Node

newNode

 Allocate memory for the new node:

newNode = new ListNode;

* Initialize the contents of the node: ,..noae

newNode->value = num;

23

« Set the pointer field to NULL:

newNode->next = 0; newNode

23 o »NULL

Copyright © 2012 Pearson Education, Inc.

Appending a Node

 Add a node to the end of the list

» Basic process:
— Create the new node (as already described)

— Add node to the end of the list:
* If list Is empty, set head pointer to this node
* Else,
—traverse the list to the end
— set pointer of last node to point to new node

Copyright © 2012 Pearson Education, Inc.

Appending a Node

| e
k////////////;odePtr
- I 9% | 1] L8] »NULL
list
head
- 29] . ,NULL
newNode

New node created, end of list located

Copyright © 2012 Pearson Education, Inc.

Appending a Node

e

5 13 19

® > ° > ° > e

list
head

23 "NULL

A 4
®

newNode

New node added to end of list

Copyright © 2012 Pearson Education, Inc.

C++ code for Appending a Node

11
12
13
14
15
16
17
18
19
20
21
22
23

void NumberList: :appendNode (double num)

{

ListNode *newNode; // To point to a new node
ListNode *nodePtr; // To move through the list

// Allocate a new node and store num there.
newNode = new ListNode;

newNode->value = num;

newNode->next = NULL;

// If there are no nodes in the list
// make newNode the first node.
if (!'head)

Copyright © 2012 Pearson Education, Inc.

C++ code for Appending a Node (Continued)

24
25
26
277
28
29
30
31
32
33
34
35
36
37

head = newNode;

else // Otherwise, insert newNode at end.

{

// Initialize nodePtr to head of list.
nodePtr = head;

// Find the last node in the list.
while (nodePtr->next)
nodePtr = nodePtr->next;

// Insert newNode as the last node.
nodePtr—->next = newNode;

Copyright © 2012 Pearson Education, Inc.

Inserting a Node into a Linked List

 Used to maintain a linked list In order

* Requires two pointers to traverse the list:

— pointer to locate the node with data value
greater than that of node to be inserted

— pointer to 'trail behind' one node, to point to
node before point of insertion

* New node Is inserted between the nodes
pointed at by these pointers

Copyright © 2012 Pearson Education, Inc.

Inserting a Node Into a Linked List

previousNode nodePtr
. Jo2 | e Jo13 . S0 . " NULL
list
head
. R »NULL

newNode

New node created, correct position located

Copyright © 2012 Pearson Education, Inc.

Inserting a Node Into a Linked List

previousNode nodePtr
5 13 19
o > o > o »NULL
1
list
head
° > 17 o
newNode

New node inserted in order in the linked list

Copyright © 2012 Pearson Education, Inc.

Traversing a Linked List

* Visit each node In a linked list: display
contents, validate data, etc.

» Basic process:

— set a pointer to the contents of the head
pointer

— while pointer is not NULL

* process data

* go to the next node by setting the pointer to the
pointer field of the current node in the list

— end while

Copyright © 2012 Pearson Education, Inc.

Traversing a Linked List

A

list
head

nodePtr points to the node containing 5, then the
node containing 13, then the node containing 19,

19

nodePtr

»NULL

then points to NULL, and the list traversal stops

Copyright © 2012 Pearson Education, Inc.

Deleting a Node

 Used to remove a node from a linked list

* If list uses dynamic memory, then delete
node from memory

* Requires two pointers: one to locate the
node to be deleted, one to point to the
node before the node to be deleted

Copyright © 2012 Pearson Education, Inc.

Deleting a Node

previousNode nodePtr

\

list
head

A 4
®
A 4
®

Locating the node containing 13

Copyright © 2012 Pearson Education, Inc.

A 4

19

»NULL

Deleting a Node

previousNode nodePtr

|

o »NULL

vy

list
head

Adjusting pointer around the node to be deleted

Copyright © 2012 Pearson Education, Inc.

Deleting a Node

previousNode nodePtr
5
[> ([
list
head

\4

19

Linked list after deleting the node containing 13

Copyright © 2012 Pearson Education, Inc.

»NULL

Destroying a Linked List

« Must remove all nodes used In the list

 To do this, use list traversal to visit each node

 For each node,
— Unlink the node from the list

— If the list uses dynamic memory, then free the node’s
memory

Set the list head to NULL

Copyright © 2012 Pearson Education, Inc.

STARTING OUT WITH ‘ -

From Control Structures
through Objects

seventh edition

TONY GADDIS

The STL 1ist Container

Copyright © 2012 Pearson Education, Inc.

The STL 1ist Container

 Template for a doubly linked list

« Member functions for

— locating beginning, end of list: front, back,
end

— adding elements to the list: insert, merge,
push back, push front

— removing elements from the list: erase,
pop back, pop front, unique

e See Table 17-1 for a list of member functions

Copyright © 2012 Pearson Education, Inc.

Introduction to the Stack ADT

« Stack: a LIFO (last In, first out) data
structure

« Examples:

— plates in a cafeteria

— return addresses for function calls
Implementation:

— static: fixed size, implemented as array

— dynamic: variable size, implemented as linked
list

Copyright © 2012 Pearson Education, Inc.

A LIFO Structure

Last plate in
: ' —P\5
first plate out A

: ; 2
First plate in, —3»3

last plate out

Copyright © 2012 Pearson Education, Inc.

Stack Operations and Functions

* Operations:
— push: add a value onto the top of the stack
— pop: remove a value from the top of the stack

Copyright © 2012 Pearson Education, Inc.

Stack Operations - Example

A stack that can hold char values:

push ('E") ; push ('K") ; i push ('G") ;

Copyright © 2012 Pearson Education, Inc.

Stack Operations - Example

A stack that can hold char values:

pop () ; pop () ; pop () 7
(remove G) E (remove K) (remove E)

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

18.2

Dynamic Stacks

STARTING OUT WITH ‘ =

From Control Structures
through Objects

seventh edition

TONY GADDIS

Dynamic Stacks

* Grow and shrink as necessary

« Can't ever be full as long as memory Is
available

* Implemented as a linked list

Copyright © 2012 Pearson Education, Inc.

Implementing a Stack

* Programmers can program their own
routines to implement stack functions

* Can also use the implementation of stack
available in the STL

Copyright © 2012 Pearson Education, Inc.

The STL stack container

« Stack template can be implemented as a
vector, a linked list, or a deque

* Implements push, pop, and empty
member functions

* Implements other member functions:
— size: number of elements on the stack
— top: reference to element on top of the stack

Copyright © 2012 Pearson Education, Inc.

Defining a stack

Defining a stack of chars, named cstack,
Implemented using a vector:

stack< char, vector<char> > cstack;

Implemented using a list:
stack< char, list<char> > cstack;

Implemented using a deque:
stack< char > cstack;

Spaces are required between consecutive >>,
<< symbols

Copyright © 2012 Pearson Education, Inc.

Introduction to the Queue ADT

* Queue: a FIFO (first In, first out) data structure.

« Examples:
— people in line at the theatre box office
— print jobs sent to a printer
* Implementation:
— static: fixed size, implemented as array
— dynamic: variable size, implemented as linked list

Copyright © 2012 Pearson Education, Inc.

Queue Locations and
Operations

* rear: position where elements are added

* front: position from which elements are
removed

* enqueue: add an element to the rear of
the queue

* dequeue: remove an element from the
front of a queue

Copyright © 2012 Pearson Education, Inc.

Queue Operations - Example

« A currently empty queue that can hold char values:

* enqueue('E'");

frorn\\\\\\\\

rear

Copyright © 2012 Pearson Education, Inc.

Queue Operations - Example

e enqueue ('K'");

front — |,
E K

~

e enqueue ('G'"); rear

front\

rear

Copyright © 2012 Pearson Education, Inc.

Queue Operations - Example

 dequeue(); // remove E

front — | g C

—

[——— rear

« dequeue (); // remove K

front——_

—>

G
\

rear

Copyright © 2012 Pearson Education, Inc.

Dynamic Queues

* Like a stack, a gueue can be implemented
using a linked list

 Allows dynamic sizing, avoids issue of
shifting elements or wrapping indices

—r——— NULL

front * | rear

Copyright © 2012 Pearson Education, Inc.

Implementing a Queue

* Programmers can program their own
routines to iImplement queue operations

« Can also use the implementation of queue
and dequeue avallable in the STL

Copyright © 2012 Pearson Education, Inc.

The STL deque
and queue Containers

« deque: a double-ended queue. Has

member functions to engqueue
(push back) and dequeue (pop front)

e queue. container ADT that can be used to
provide queue as a vector, list, or deque.
Has member functions to enque (push)
and dequeue (pop)

Copyright © 2012 Pearson Education, Inc.

Defining a queue

Defining a queue of chars, named
cQueue, Implemented using a deque:

deque<char> cQueue;

Implemented using a queue:
queue<char> cQueue;

Implemented using a 1ist:
queue< char, list<char> > cQueue;

Spaces are required between consecutive
>> << symbols

Copyright © 2012 Pearson Education, Inc.

