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1 INTRODUCTION

This chapter has a threefold purpose: (1) to introduce a general framework
for parallel/distributed computation, the computational network; (2) to expose
in detail a symbolic example of a computational network, related to expert
systems, called an expert network; and (3) to describe and investigate how an
expert network can be realized as a neural network possessing a hierarchical
symbolic/sub-symbolic architectural organization.

A computational network is essentially a directed graph in which each com-
ponent (vertex or directed edge) has data processing functionality, further en-
dowed with a concept of global network computation. Examples of computa-
tional entities that admit descriptions within the computational network model
include biological neural networks, artificial neural networks, the parallel virtual
machine model of loosely coupled MIMD computation, human collaborations
such as committees, and expert networks. Many of the principles of neural net-
work learning can be lifted to the level of computational networks. We present
a re-examination of backpropagation learning in this context and derive the
computational network backpropagation, or CNBP, learning algorithm.

An expert network is a computational network that can be obtained from an ex-
pert system. The architecture of the expert network is derived from the expert
system: the network topology from the rule base, the local processing func-
tionality of the vertices and edges from the system of inference, and the global
computation concepts from the inference engine. The process of constructing
an expert network from an expert system is reversible.
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Expert network backpropagation, or ENBP, is a learning method for expert
networks obtained as an instantiation of CNBP. ENBP has proven to be useful
in knowledge refinement, allowing an expert system builder to make the transi-
tion from coarse knowledge, in the form of rough-draft rules, to fine knowledge,
in the form of rules with subtlety represented by analog parameters such as
certainty factors, using supervised learning and the historical record of expert
behavior as a training set.

The symbolic-level nodes of an expert network can be represented by neu-
ral networks, which we view as computational networks of sub-symbolic pro-
cessors. We investigate the optimal architectures for these representations,
which provide a realization of an expert network as a neural network with
a hierarchical topological organization: a sparsely interconnected collection of
densely intraconnected neural nets. This hierarchical sparse/dense organization
is analogous to biological neural organization. It captures two levels of knowl-
edge: domain knowledge in the sparse superstructure and metaknowledge in
the dense substructures. The hierarchical structural parameters are well within
the connectivity constraints found in biology, making feasible the scaling up of
neural-based expert networks to sizes comparable to those of living systems.

2 COMPUTATIONAL NETWORKS:
A GENERAL SETTING FOR
DISTRIBUTED COMPUTATIONS

A computational network is a general framework for parallel/distributed com-
putation modeled on a directed graph in which the vertices and directed edges
have computational functionality and for which there is some holistic notion
of cooperative computation [32, 34]. Computational paradigms that fit within
the computational network framework include biological neural networks; arti-
ficial neural networks; distributed computation on a loosely coupled collection
of von-neuman machines connected to a digital communications network, as
exemplified by Parallel Virtual Machine [52, 53]; human collaborative decision-
making and problem-solving; and expert networks [31]. We return briefly to
each of these examples after introducing computational network concepts.
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2.1 Definitions and Notation

A computational network (CN) is a directed graph together with certain at-
tributes and specifications. These may be local or global, the former referring
to individual CN components (vertices or edges) and the latter to the CN itself.
In particular, to compute with a CN one must specify the types of data allowed
for (various parts of) the computation; the local functionalities associated with
digraph components; a method of timekeeping or scheduling to keep the global
computation organized; a method of aggregating the local computations into a
global network computation; and how data is to be presented to, and retrieved
from, the CN.

Data Types

The types of data with which the computational network is competent must
be specified. Depending on the setting, allowed data types may be specific
molecules, discrete or continuous numerical values, character data, or even
sounds that represent either analog data or discrete symbolic information. Dif-
ferent components of the CN may require different data types, and the CN may
operate internally with data types distinct from the I/O data types.

Local Functionalities

The components of a computational network must have computational at-
tributes. Thus each vertex of a CN must have an associated ability to receive
data at its incoming edges, process that data into an internal state, compute
an output value, and make this output value available to each of its outgoing
edges. Each directed edge must have an associated ability to receive data at
its initial end, compute a value, and make this value available at its terminal
end. We use the terms node and connection to mean, respectively, a vertex or
a directed edge in a CN together with its associated functionality.

Node functionality is broken down into two stages, an input or combining stage
and an output or firing stage. In the combining stage a node computes an
internal state y from its input data values z1,...,z,. We denote the function
so implied by I" and call it the combining function of the node (or associated
with the vertex). After computing its internal state y, a node must compute
an output value z. We denote this second function by ¢ and call it the firing
function of the node.



120 CHAPTER 4

The node combining functions of a computational network may be specified
in a number of ways, either explicitly or implicitly. For example, if time is
continuous I' may be determined implicitly by a differential equation, whereas
if time is discrete I' may be given by an explicit formula.

Connection functionality transforms the data received by a connection into a
transmitted signal value. The input to a connection is the output value z of the
node at its initial end. The connection computes one of the input values z for
the node at its terminal end. We denote the function making this computation
by ¢ and call it the synaptic function of the connection.

Commonly encountered synaptic functions may be linear functions; linear
threshold functions; sigmoidal functions; or simple conduits that transmit data
unchanged except for a possible time delay.

Time

A notion of timekeeping or scheduling of the various component computations
and data transactions is required in order to give meaning to whole-network
activation and computation. The possibilities for timekeeping range intrinsic
such as self-organization to extrinsic such as management by outside expertise.

Global Activation

The local components of a CN are activated by simply applying their function-
ality to whatever input they have at any given time. For global computation,
however, these local activations must be orchestrated in some way to define
a notion of global or network activation. Options include: synchronous acti-
vation, in which each network component is activated simultaneously; asyn-
chronous activation, in which network components are activated randomly one
at a time; event-driven activation, in which a network component activates
when one of its input values changes; and managed activation, in which com-
ponents activate on the command of a central scheduler or manager.

Network Computation

A computational network is intended to be used as a computer, and like a tra-
ditional computer the computations of the various parts must be orchestrated
into a holistic whole-network computation in some way. In all cases, the global
network computation is obtained by successive global activations. The cases
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differ in how they determine when a network computation is completed. There
are two basic choices: either activate for a certain length of time, or activate
until the network has reached some kind of global equilibrium state.

Input and Output

A method must be prescribed whereby data values may be introduced into,
and retrieved from, a CN from outside the network. For the purposes of this
work we will assume that I/O is accomplished by specification of two subsets
of nodes (possibly overlapping), “input” nodes and “output” nodes. Data is
inserted into the CN to begin a computation by externally setting the states
y of the input nodes to the input data values. After network computation is
completed, data is retrieved from the CN by reading the outputs z of the output
nodes.

2.2 Activation Dynamics

The attributes which collectively define a computational network are not in-
dependent. For example, the method of keeping time, the concept of holistic
computation, and the meaning of I/O are all interelated, and some choices in
one direction may preclude a possibility in another direction. A coherent set
of attributes for timekeeping, global activation, network computation, and I/O
together constitute the rules for activation dynamics of the CN. We consider
briefly some of the most often used network computation strategies.

Centrally Managed Computation

Usually used with discrete time, although possible with continuous time. A
central entity, such as an operating system or a manager, makes decisions as
to timing of local computations and routing of data. Output is read at a time
specified by the computation manager.

Synchronous Equilibrium Computation

Used with either discrete or continuous time. This method activates the local
functionalities indefinitely at each clock tic (or continuously) until a dynamic
equilibrium is reached. Output is read at equilibrium. Classically this equi-
librium is assumed to be a fixed point in the space of node states, but more
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general attractors are sometimes allowed [21, 10, 39, 49]. It may be quite chal-
lenging to decide whether appropriate equilibria are always attained in a given
CN [19]. Virtually all continuous-time CNs use synchronous activation, and
most use equilibrium dynamics to define network computation.

Fized Time Delay Computation

Used with either discrete or continuous time. The network is activated as in
synchronous activation above, but for a certain number of iterations (or length
of time) after which output is retrieved. This is often used in place of an
equilibrium rule. The time of activation is chosen so that the network will be
close to equilibrium upon completion.

Asynchronous Equilibrium Computation

This makes sense only for discrete time. There are two variations, a global
one in which a node is chosen at random and its incoming connections and
the node itself are activated, and local one in which each component chooses to
activate at random times. In either case the process continues until equilibrium
is reached. When the probability of local activation is kept small, these produce
equivalent equilibrium dynamics [18, 20].

Event Driven Computation

Again for discrete time only. Each component of the CN activates whenever
it receives a new input value, until no values change. This is equivalent to
synchronous equilibrium dynamics [32]. Expert networks and human collab-
orations typically use event-driven activation, and results are generally useful
only when an equilibrium state is achieved.

2.3 Examples

In a biological neural network (BNN), the local functionalities are determined
by the extraordinarily complex biochemical processes of synaptic transmission,
membrane channels, and internal cell chemistry. The synaptic functions reflect
the type and density of transmitter molecules, together with properties of the
inbound membrane channels of the receiving cell. The combining and firing
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functions reflect the internal cell biochemical accrual process and the sensitivity
and other properties of the outbound membrane channels, respectively.

An artificial neural network (NN) is a mathematical analogy of a BNN. The
synaptic and firing functions are usually specified explicitly. Quite typically,
the synapses are simple linear functions. The firing functions may be of vir-
tually any type, but most often are sigmoidals such as logistic or hyperbolic
tangents, threshold functions (with discrete output), symmetric distributions
such as the gaussian, or some combination of these types. In discrete time NNs,
the combining function is usually given explicitly, with simple additive accrual
being the most common, while in continuous time NNs I' is more often given
implicitly by constraints on its derivatives.

A typical use of parallel virtual machine (PVM) is to perform a computation
by parceling out identifiable sub-computations to various computers on a high
speed communications network. The synaptic functions are pure transmissions
of data, with some small time delay. The node functionalities are quite com-
plex and determined by user programs. Global activation is event-driven and
network computation is centrally managed.

In human collaborations (HC) the synaptic functions transmitting human-
human communication are again simple conduits, albeit of very complex data.
The combining functions reflect the receiving and interpretation by one person
of the information supplied by all the others in the collaboration. The firing
functions reflect the formulation and transmission of personal information and
conclusions out to other members of the collaboration. Activation dynamics
can be a form of managed computation, for example when there is a strong
leader such as a teacher or supervisor. Often more effective is the committee
model, with event-driven activation. There is no guarantee of convergence;
convergence is a goal of the collaboration.

An ezxpert network (EN) is a computational network derived from a rule-based
expert system (production system). The digraph topology is determined by the
domain rule base; the local functionalities are determined by the inference sys-
tem; and the timing mechanism is derived from the computational scheduling
method of the expert system shell. ENs typically use discrete time, have acyclic
topology, and process analog data. Expert networks are discussed further in
following sections.
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Table 1 Classification of example CNs.

BNN NN PVM HC EN
DD/AD 1 X 0 X 1
DT/CT 1 x 0 0 0
AT/RT 1 X 1 1 0

2.4 CN Classification

There are three broad dichotomies that occur very naturally in the specifica-
tion of a CN. The five examples discussed briefly above give evidence that the
resulting categories are non-vacuous and interesting. These dichotomies, and
some notation we will use for the resulting classification, are as follows:

s DD/AD: Discrete or Analog Data
s DT/CT: Discrete or Continuous Time

s AT/RT: Acyclic or Recurrent Topology

Only when compactness of notation is convenient, we use a 3-digit binary en-
coding to represent a set of choices in these three dichotomies, the left digit
representing data type, the middle digit representing time type, and the right
digit representing topology type. We also use ’x’ as a don’t-care or union of
types. For example, A CN of type 101 computes with analog data using dis-
crete time and a recurrent topology, while type 10x has the same data and time
restrictions but does not specify whether the topology is acyclic or not.

Classification of the five examples discussed above is given in Table 1. Some
of the classification choices are arguable, but most will agree that these choices
indicate a legitimate point of view within which the paradigm may be studied
and that some choice must be made in order to focus the study.

2.5 Discrete Time Computational Networks:
Notation
We establish some notation for updating discrete time (or “type x0x”) CNs.

Similar notation is appropriate for continuous time CNs except that often some
of the local functionalities are specified implicitly through differential equations.
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A CN consists of nodes and connections organized into a directed graph struc-
ture. We will use an adjacency matrix notation system for the CN components
based on a labeling of the nodes: a single subscript indicates an association
with the vertex so labeled, and a double subscript indicates association with
a directed edge, with “assignment statement order” for the edge subscripts: a
subscript ji indicates association with the edge from vertex i to vertex j. In
this notation, I'; and ¢; are the combining and firing function, respectively, of
node j, and oj; is the synaptic function of the connection from node ¢ to node
j- We also use z to denote node output (or activation value) and y to denote
node internal state. If the ji synapse is linear, then ¢;;(2;) = wj;2;, where wj;
is the weight of the connection. We assume in this discussion that the node
labels constitute an enumeration 1,...,n.

The internal state of the CN at a particular time ¢ consists of all the node states
y;(t) usually collected into a vector y(t) = (y1(t),...,yn(t)). Similarly, the
activation state of the CN at time ¢ is the vector z(t) = (21(t),. .., 2, (t)) of local
activation values at time ¢. (It should be kept in mind that important properties
of these state vectors are symmetric, that is, independent of the particular
vertex ordering.) New states are calculated using the update equations

Tj; = Uj,-(zi) for i = 1,...,’]’L (4.1&)
Yy; = Fj(lea---;xjn) (41b)
zj = 9;(y;) (4.1¢)

during three time steps (or in one time step split into three sub-steps). How
local updates are organized into network activation varies as discussed earlier.
Activation dynamics is the study of the behavior of network states as they
change over time.

One requirement not often made explicit for computational networks is sym-
metry of combining functions: I'; should give output that is independent of
the labeling order of the nodes. Another system of notation that makes this
requirement more obvious is based on predecessor/successor relations in the
network topology. Define a predecessor of node j to be any node in the network
that initiates a connection into j. The set of predecessors of j is defined and
denoted as
Pred(j) = {i|there is an edge from i to j}.

The update equations can be restated in terms of predecessors as follows. First
compute post-synaptic input for node j:

zji = 0i(2:)
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for all ¢ € Pred(j), where o;; is the synaptic function of the connection from i
to 7. Denote the vector of all post-synaptic input for node j by x;. This vector
has dimension |Pred(j)|, one component z;; for each i € Pred(j), but the order
of components is not important. Next compute the internal state of node j:

y; == Tj(x;)

where I'; is the combining function for node j. I'; is a symmetric function of
|Pred(j)| variables. Finally compute the activation value of node j:

zj = ¢;(y;)

where ¢; is the output function of node j.

We will generally stick to the simpler adjacency matrix notation of equations
4.1. This simplicity does blur certain subtleties, however, by making the tacit
assumption that computation doesn’t need to distinguish between no connec-
tion from ¢ to j and a connection from ¢ to j with o; = 0. Cases can arise
where this distinction is important. In such cases the missing connectivity in-
formation can be maintained in a seperate adjacency matrix. If the network
is sparse, it may be appropriate to use more compact representations such as
adjacency lists that implement the predecessor/successor notation.

3 TYPE x00 COMPUTATIONAL
NETWORKS

For the remainder of this chapter we restrict our attention to computational
networks of type x00, that is, we assume discrete time and acyclic topology but
allow either discrete or analog data types both internally and as I/O.

3.1 Activation Dynamics

Activation dynamics of acyclic, discrete-time computational networks may as-
sume any of the forms discussed in Section 2.2. Synchronous, asynchronous,
and event-driven activation are all equivalent to fixed time delay (if the delay
is appropriately large) and all result in reaching a terminal activation state in
finite time [32]. In other words, given a CN of type x00, we can activate using
any of these methods for a globally fixed amount of time, after which activa-
tion will cease to produce changes in any of the internal states of the CN. This
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activation may be component-parallel, component-distributed, or component-
serial. The type x00 CN thus becomes a (parallel/distributed) computer with
a fixed number of local computations required for I/O: insert input, compute a
fixed number of local activations, then retrieve output. The local computations
consist of applying the update assignment statements given by equations 4.1
until a steady activation state (21, ..., 2,) is reached. We call this the terminal
activation state of the network and refer to the component z; as the terminal
activation value of node j.

3.2 Influence and Error

Backpropagation is one of the most widely known and successfully used con-
nectionist learning methods [55, 42]. Most often, backpropagation is applied
to layered feedforward computational networks with the kind of simple pro-
cessing functionality associated with low-level, sub-symbolic networks: linear
synapses, additive combining functions, and sigmoidal or gaussian output func-
tions. Many of the ingredients of backpropagation learning can be generalized
for general computational networks. For CNs, the standard algorithm requires
two changes: localize forward and backward activation to free the algorithm of
the layer structure, and decouple the process of node error assignment from the
weight correction step. The first is described previously and in [36]. The second
uses the concept of influence factor, introduced in [32]. Influence factors are
associated with connections and specific network input. The influence factor
er; of the connection from node j to node k is the rate of change of output of
node k with respect to the output of node j, evaluated at the terminal activa-
tion state: ex; = 0zk/0%;(2;). Expanding this derivative using the chain rule
we obtain

ekj = Pk (yr) X grk (Tt -+ - s Thn) X U;cj(zj)' (42)
Tk

Again we emphasize that influence factors are dependent on particular network

input: The derivative of ¢y, is evaluated at the terminal internal state of node

k, the partial of I'y is evaluated at the terminal post-synaptic input to node

k, and the derivative of o}; is evaluated at the terminal output of node j.

Influence factors are associated with connections and are calculated during

forward activation of the network.

Once influence factors have been calculated for all the connections of an acyclic
CN during forward activation, error can be assigned to all of the nodes in
the CN during a reverse activation. This reverse activation is in essence an
activation of the reverse or dual of the CN. The dual network topology consists
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of the vertices and edges of the original network, but with all edge orientations
reversed. The nodes of the dual network use summation combining function and
the identity activation function, i.e., the nodes are linear units. The synaptic
functions are also linear with weight equal to the influence factor. Note that
the dual network is also acyclic.

Error is assigned to each of the output nodes using equation 4.3a, where I is
ideal output, and to all non-output nodes using equation 4.3b:

ej = Ii=¢, (4.3a)
€; = Zekjek. (4.3b)
k

Applying equation 4.3b recursively is an activation of the dual network with
input given by 4.3a. The resulting terminal dual activation state is an error
assignment throughout the network. The error assignment process works in
any acyclic CN for which the derivatives of equation 4.2 are defined.

3.3 Local Gradient Descent

Once error has been distributed among the nodes in a computational network,
we can apply gradient descent learning both selectively and locally to any node
whose incoming synapses are linear. This decoupling of error assignment and
learning means we can allow more complex synaptic functionality into certain
nodes, we can have hard-wired connections into perhaps other selected nodes,
and suppress learning at any selection of sites, while maintaining a global learn-
ing process. Local gradient descent amounts to applying the Widrow-Hoff delta,
rule using local error.

Calculating the gradient of squared local error at node j with respect to synaptic
weights wji,...,w;, and taking a step in the opposite direction yields the
following learning rule:

or;
—L(Tj1,- s Tjn)2i + pAWE Y. (4.4)

Wiy 7763(?] (y])am]z ji

This equation defines one learning step with learning rate n and momentum pu
in the direction of steepest descent of square local error.
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3.4 CNBP

Putting all these components together results in a learning method called Com-
putational Network BackPropagation, or CNBP. CNBP applies to type x00 CN
at any nodes with linear incoming synapses. All that is required to complete an
implementation of CNBP is calculation of the derivatives appearing in equa-
tions 4.2 and 4.4. CNBP is summarized as follows.

Assume given a set of training exemplars (¢/,1!),1 = 1,2, ... consisting of input
&= (&,...,€) and ideal output I! = (I},... I!). The basic learning process
goes as follows:

Initialize

present & to input nodes
Activate

calculate terminal activation state zé for each node

calculate influence factors ey; for each connection
Initialize error

present external error €}, = I! — 2! to output nodes
Reverse activate

activate the dual network, assigning error eé- to each node
Learn

change soft weights using local gradient descent

The learn step can be carried out after each exemplar presentation (on-line
learning) or accumulated and carried out at the end of an epoch (batch learn-
ing). The entire procedure loops until error is reduced sufficiently.

4 EXPERT SYSTEMS

An expert system (ES) captures domain-specific knowledge and uses this knowl-
edge to reason about problems in the domain. By far the most successful type
of expert system so far has been the rule-based system [15]. A rule-based ex-
pert system consists of an inference engine that defines and executes the rules
of inference and a rule base that comprises the domain-specific knowledge of
the system.

Rule-based expert systems have become a mature advanced technology, with
many successful software shells on the market, whether success is measured by
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technical achievement or commercial viability. Three of these are particularly
pertinent to the research, development, and production discussed here: M-41,
CLIPS2, and G23. These products are all in significant use in a wide variety
of application domains by a heterogeneous user community. Commercial users
of M-4 have valuable (and proprietary) rule bases ranging in size from a few
dozen to ten thousand rules.* CLIPS has an avid following despite its lack
of user amenities, due in part to its low cost. G2 is the most elaborate (and
costly) of the three, with commercial site licenses listing at $42,000. Many of
the worlds largest corporations have signed with Gensym for developing their
real-time expert system needs, including ASEA Brown Boveri, GE, Monsanto,
Occidental Petroleum, Boeing, Du Pont, Texaco, Lafarge Coppee, and 3M [17].

These three shells each deal with uncertainty using a form of EMYCIN logical
semantics. M.4 is discussed in some detail below; Hruska and coworkers have
constructed a superset of CLIPS that uses essentially the same uncertainty
semantics as M.4 [43]; and G2 uses a classical version of fuzzy inference.

4.1 EMYCIN

A seminal demonstration of the efficacy of rule-based systems was a med-
ical diagnosis and treatment advisory system for infectious diseases called
MYCIN[46, 1]. A natural consequence of the success of MYCIN was its ab-
straction to an “expert system shell” in order to apply the same reasoning
automation in other domains. A shell is just an expert system with an empty
knowledge base and a user interface system to facilitate the insertion and modi-
fication of rules. A shell that implements the MY CIN reasoning system is called
EMYCIN (for “Empty MYCIN”). M.4 is a commercially available EMYCIN
shell. The computational experiments discussed below are based on M.4. The
features of EMYCIN inferencing that are important in what follows are the
evidence accumulator and the various logical operations [47, 14].

A rule in EMYCIN has the form
IF a THEN b (cf)

where a and b are assertions and cf is a certainty factor or confidence factor as-
sociated with the rule. The certainty factor may take on any value in the range

IProduct of Cimflex Teknowledge Corporation.

2Designed and Produced by NASA, distributed as shareware.
3Product of Gensym Corporation.

4Private communication from representative of Cimflex Teknowledge
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—1 < c¢f < 1. We use the notation cfy, to denote the certainty value of the
implication IF a THEN b. Certainty factors are static numerical attributes of
rules. They reside in the knowledge base and do not change during inferencing.

An assertion b may take on an evidence value (also sometimes called a certainty
factor). The evidence value of an assertion is dynamically updated during infer-
encing, either through assignment when a query is made or through calculation
in terms of evidence values of other assertions previously calculated or assigned
during the inference. We denote the evidence value of assertion b by y. ys may
range in the interval —1 <y < 1. The dynamically calculated evidence value of
an assertion may be interpreted as a degree of confidence or correctness of the
assertion. The evidence value y; is then converted to a firing value z, through
the use of a threshold or other postprocessing criterion. The firing value (in
this version of EMYCIN) is restricted to the range 0 < z < 1.

Suppose that we have a current dynamic evidence value y; for assertion b and
subsequently encounter another assertion IF a THEN b (¢f). Then EMYCIN
adjusts yp by adding an amount proportional to the firing value z, for a, the
certainty factor c¢f = cfy|, for the rule, and the proximity of y; to its domain
limits. (When the current evidence value g and the rule certainty factor cfy,
have opposite signs, a mediation process is used instead.) The output value z;
for assertion b is then updated by applying the firing criterion to y,. The firing
criterion may vary somewhat from one EMYCIN shell to another. M.4 uses
the linear-threshold firing function with threshold value of 0.2.

This update process breaks naturally into three steps. First calculate the
certainty-mediated input evidence:

Tpla = Cfb|a X Za; (45)
then update the evidence value:

Yo + Tpja(1 —up) , if both gy, and xp), are positive,

yrew .= Yo Tpo(1+9s) , if both yp and x|, are negative, (4.6)
__ ®hlat¥p .
T—min{|ys|,|70/a]} ’ otherwise;
then recalculate the firing value:
e { 0, otherwise. (4.7)

This firing value is then used as input to other rules of the form IF b THEN
¢ (cf), and so on, until all firing values are stabilized. The inference process
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begins with external setting of the firing values of selected rule antecedents and
spreads through the rule base under control of the inference engine. After the
inference process terminates, the values of consequents with non-zero values
constitute the conclusions of inference.

The reader will probably have noticed the similarity between the equations
above and equations 4.1 as well as a principal distinction: 4.6 represents an
accumulation process over rules with b as consequent, while 4.1b represents the
evaluation of a combining function over all incoming connections simultane-
ously. We give a closed form version of 4.6 in the next section.

EMYCIN shells differ somewhat in their treatment of logical operations, al-
though they typically use minimum and maximum for AND and OR, respec-
tively, and some kind of inversion for NOT. The differences among shells appear
in the way these values are thresholded (or otherwise postprocessed), after ap-
plying this common calculation, to determine whether the compound assertion
fires. Generally, rules are allowed to have compound antecedents (using the
defined logical operations) but compound consequents are discouraged.

M.4 recognizes three logical operations explicitly: AND, NOT, and UNK. The
UNK (for “unknown”) operation is a version of NOR (NOT following OR).® For
AND, M.4 uses the same firing function as for evidence combining, given above
by 4.7. For NOT, M.4 uses a firing function that is a strict threshold, with
threshold value 0.8, resulting in discrete values for NOT and NOR operations.

Each of the operations can be described in three functional steps analogous to
4.5, 4.6, and 4.7 above. These operations, along with the evidence accumu-
lation process, provide functionality to the vertices and edges of an inference
network model of the knowledge base, resulting in a computational network.
We describe this network, along with explicit M.4 functionalities, in detail in
the next section.

5 EXPERT NETWORKS

Expert Network learning technology, a process developed by a group at FSU®
in partnership with the Florida High Technology and Industry Council, pro-

5M.4 does not recognize an explicit OR operation, hence the non-standard terminology.
M.4 implicitly uses two different versions of OR — the DeMorgan dual of AND as well as the
evidence accumulator.

6Lacher, Hruska, and Kuncicky
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vides a means of automated knowledge refinement in rule-based expert systems.
In settings where sufficient historical data exists, expert network learning can
significantly improve both the development time and the ultimate level of ex-
pertise captured in an expert system project.

The expert network method, at the algorithm level, is a method for knowledge
refinement in a rule-based expert system that uses uncertainty. The uncer-
tainty theory can be that of EMYCIN certainty factors as in M-4, fuzzy logic
as in G2, probability, Dempster-Shaffer theory, or any other theory that uses a
continuously variable value or values to define a level or degree of certainty to
implications and/or factual statements. In all such systems the role of uncer-
tainty is to represent the subtle variations of knowledge that, once discovered
and captured, complete the transition from coarse novice-level knowledge to
refined expertise.

Expert networks allow these systems to make this passage from novice to expert
through neural network style learning from data rather than from laborious hu-
man expert tinkering. The data required may be either historical records of
correct inferences, in which case the learning methods are supervised, partic-
ularly Expert Network BackPropagation (ENBP); or the data may be in the
form of critique of the expert system’s conclusions by experts, in which case the
learning methods are reinforcement methods such as Expert Network Tempo-
ral Difference (ENTD(A)). The critical technology implementing both of these
learning methods is that of influence factors.

The expert network, or ExNet, technology consists of two major components:
Translation and Learning.

Translation

The rule base is translated into a directed graph. The vertices of this digraph
represent atomic-level factual statements or actions; these are the antecedents
and consequents of the rules. The directed edges represent implications.

The logical semantics, or rules of inference, of the expert system, including the
rules dealing with uncertainty, are used to assign information processing func-
tionality to the vertices and edges. Thus the digraph becomes a computational
network. This is called the ezpert network associated with the original expert
system.
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After the expert network has been modified during the learning phase (de-
scribed below), the modified expert network is translated back into expert
system form, resulting in a new, or refined, set of rules that have optimized
performance with respect to the training data. This step requires nothing
more than applying the translation process in reverse.

Learning

Neural network learning methods are applied to the expert network. This
learning process results in changes in the parameter values for the uncertain-
ties in the rules, optimized for set of correct inference instances data set (i.e.,
history). There are several difficult problems to overcome to make this idea
actually work, including how to assign a local error to the nodes and how to
reduce this local error through gradient descent. We have worked out and im-
plemented all details of this idea in the case of EMYCIN (M-4) and for fuzzy
inference. The solutions are detailed in the papers [31, 32, 34, 37]. When the
expert system uses EMYCIN certainty factors and/or fuzzy logic to capture
uncertainty, ExNet has been completely derived, proved, tested, and covered
with patents (pending). In the following treatment we restrict to the M.4 in-
stantiation of EMYCIN.

5.1 Translation

The network topology is constructed in two stages. First an inference network is
created from the rule base. Each vertex in this network represents an antecedent
or consequent of a rule and each directed edge represents a rule. The certainty
factor of the rule is placed on the edge as a weight. Thus a rule of the form

IF o THEN b (cf)

where a and b are assertions and cf = cfy|, is the certainty or confidence factor,
defines a connection
cf
a —b.

At this point we have constructed an inference net in the usual sense (see [15],
page 237).

The evidence accumulation process (equations 4.5, 4.6, and 4.7) of the infer-
ence engine defines functionality for the vertices of this inference net, and the
edges process initial to terminal value by multiplication by c¢f (defining linear
synaptic functions). The resulting computational network is the first order
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expert network defined by the expert system. Note that all of the nodes in
this network represent assertions; they are called regular or evidence nodes and
denoted as REG nodes.

The second stage of construction is to expand each regular node that repre-
sents a compound antecedent statement into a subnetwork. A regular node
antecedent such as in the connection

OP(ai,...,ar) L b

expands to the subnetwork

Those a; that are consequents of other rules are already represented by existing
nodes. New nodes are created for the other a;. A connection of weight 1
is added from each a; to the new OP node, and a connection of weight cf
added from the OP node to the consequent b replaces the original outgoing
connection. All connections into OP nodes have fixed weight 1 and are called
hard connections. Connections into REG nodes have weight originating as a
certainty factor of a rule and are called soft connections.

The combining function for an OP node performs the logical computation de-
fined by the rules of inference used by the expert system. The output function
for an OP node is the firing condition for the logical operation. The result-
ing computational network is the second order expert network defined by the
expert system.

Note that there are two kinds of nodes in the second order expert network:
REG nodes representing assertions and OP nodes representing logical opera-
tions. Note also that all synaptic functions are linear with weights as already
described above: soft connections (incoming to REG nodes) have weight ¢f and
hard connections (incoming to OP) have weight 1. Thus synaptic functionality
is completely specified. We now give more detailed descriptions of the node
functionalities in EMYCIN/M.4 expert networks.
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REG Nodes

The EMYCIN evidence accumulator given by equation 4.6 can be written in
closed form. Let b be a REG node, and suppose b has at least one predecessor
in the expert network. (In the parlance of expert systems, b is an assertion that
is consequent to at least one other assertion.) For each predecessor a of b let
Tqp denote the corresponding post-synaptic input cfyjq X 2a-

The positive and negative evidence values for regular node b are given by

yh = 41— H (1 —xp,) and (4.8a)
$b|a.>0

y, = -1+ J[ (@ +zy), (4.8Db)
Zb|a<0

respectively. Positive and negative evidence are then reconciled, yielding the
internal state of the node as the value of the REG combining function:

v +y,
1 —min{y;", —y; }

Yp = FREG (:Eb|1, .. -:-'L'b|n) = (4.9)

Note that I',,. is a symmetric function. The only input variables which affect
the values of I',,, are those labeled by predecessors of b, and we could use
alternative notation (as described in section 2) to reflect this fact. The notation
above assumes that zy, = 0 whenever a is not a predecessor of b.

The output function ¢, for a regular node b is the firing function for asser-
tions defined by equation 4.7:

5= s ) = {1 G (410
OP Nodes
Consider an AND node generated by the antecedent of the rule
IF a; AND as; AND ... AND a;, THEN b (cf)
for some assertions (nodes) ay,...,ar in the expert net. Let a denote the
compound antecedent AND(ay,...,ar). Thus a is an OP node in the second

order network. To define the logical AND operation as a function of dynamic
evidence values is to define the combining and firing functions of a.
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The combining function for a is given by
Yo =T ynp (@1, -, 28) = mzln{:c,} (4.11)

where x; = z,, is post-synaptic input. The output function is the same thresh-
old function used for REG nodes:

_ [ ya, ify,>0.2;

Za = Pano (Ya) = {0 otherwise. (4.12)

A NOT node such as generated by the antecedent of
IF NOTa THEN b (cf)

has only a single incoming connection, from a. The combining function is given
by
y=Tyor(®)=1—2 (4.13)

(where ¢ = z,) and the output function is

#=eor® = {0 oiheruine (419
An UNK node may be generated by the antecedent of a rule such as
IF a; UNK a3 UNK ... UNK a; THEN b (cf)
for some assertions (nodes) ag,...,a; in the expert net. Let a denote the
compound antecedent UNK(ay, ..., ar). The combining function for a is given
b
g Yo = Lo (T, .., 2k) =1 — mf]x{a:,} (4.15)

where x; = z,, is post-synaptic input. The output function is the same as for
NOT:
_J1, ify,>038;

Za = Ponic (Ya) = { 0, otherwise. (4.16)

Notwithstanding the fact that M.1 does not explicitly acknowledge an OR op-
eration, we could define an OR node that might be generated by the antecedent
of a rule such as

IF a; OR a; OR ... OR a; THEN b (cf)
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for some assertions (nodes) aj,...,a in the expert net. As usual letting a de-
note the compound antecedent OR(ay,...,a;), we define the combining func-
tion for a to be

Yo :=Top(®1,...,2k) = m?x{:ci} (4.17)

where z; = z,, is post-synaptic input and the output function to be the same

as for AND:
Yo , ify, >0.2;

%0 1= Por(¥a) = { 0, otherwise. (4.18)

Given this definition of OR, it is easily verified that UNK = NOT(OR).

Logical Functions

Composing appropriate functions given above yields the following throughput
functions (from input to firing value) for logical operations in M.4:

min{z;} , if min{z;} > 0.2,
AND(z1,...,21) = {0 {zi} Othervjisg 2 (4.19a)
1, ifz<02,
NOT(2) == {0 otherwise; (4.19b)
1, if max{z;} <0.2,
UNK(z1,...,o5) = {0 i max{z:} < (4.19¢)

where as usual z is interpreted as post-synaptic input for the node (or current
evidence value during inference).

5.2 Learning

An EMYCIN expert network satisfies all the requirements for CNBP learning;:
an acyclic CN with linear synapses. Learning can take place only at soft con-
nections (connections into regular nodes), but of course all connections must
be used in the error assignment process.

Of the derivatives appearing in equations 4.2 and 4.4, a;cj is just the weight
wy; of the kj connection, and cp;- is easily calculated, but may vary because of
choices of ¢ made during a particular implementation. If we can calculate (or
“define””) the partial derivatives of the node combining functions then we can
implement CNBP in expert networks.

"The CNBP learning algorithm is sufficiently robust to accommodate approximations.
Thus if an approximate derivative can be devised it may work as well as a real derivative.
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For a REG node k the partial derivatives are given by

( 1 1*y+ e+ _ )

1—zp); 1+y:—7 lfyk > |yk | and Trj > 0;
1 4y, e 4 _ . )
Ol'pss _ ) 1-mwy 1y if Yp < |yk | and Zr; > 0;

Ox (xi) = S 11—y n (4.20)
' k i - . .
kj 1+mk\j ]_+y; ) lf yk 2 |yk | and 'Z.k] < 07
1 1+y, . + _ '
\ 1+zp; 1,yz+—7 if Yp < ka | and Trj < 0

provided z; # £1. Here xy; is c¢fy; X 25, the post-synaptic input to node k
from node j, and yi¥ is given by equation 4.8. (See [36] for details.)
For AND nodes we have

1) AN, _ 1 iy = mini{zy);}
Ozy;j 0 , otherwise

(4.21)

It is interesting to examine what this means for reverse error assignment: the
AND node assigns error backward through node k acting as a demultiplexer
switch to the line with lowest incoming value.

Similar results hold for NOT and UNK nodes.

5.3 ENBP

Having calculated the derivatives appearing in equations 4.2 and 4.4, we can
apply CNBP in the context of expert networks. This instantiation of CNBP is
called Expert Network BackPropagation, or ENBP.

ENBP has been tested on several M.4-based expert systems, including the
Wine Advisor [9] and the Control Chart Selection Advisor of Dagli and Stacey
[3, 23, 24]. A functioning expert system is used to define expert knowledge
by generating specific examples of correct reasoning. In ablation testing, a set
of soft connections is ablated by setting their connections weights to zero. In
refinement testing, all of the soft connections are initialized to the neutral value
0.5. The object of the tests is to determine whether the network can recover
the knowledge embodied in the connection weights.

In these tests, both learning and generalization have worked remarkably well.
The algorithms converge the ablated system to a knowledge state that correctly
inferences on the training set, and generalization is perfect: the new system
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reasons correctly on all possible inputs. Moreover, the ratio of training set size
to test set size is small. For example, as few as 22 correct inferences are required
to move a 25-connection ablation of wine advisor (a 97 node expert network)
to a system that inferences correctly on all 6,912 sensible input queries [34].
Refinement tests have yielded 95-100% generalization rates using training sets
of 40 or more exemplars [9].

6 NEURAL NETWORKS

By a neural network (NN) we mean a discrete-time computational network with
linear synapses, linear combining functions, and non-decreasing firing functions.
An expert network is a symbolic computer. The individual nodes have exter-
nally assigned and understood meaning — either assertion or logical operation
— and the dynamically computed and transported values also have external
meaning — degrees of certainty in a conclusion. A neural net, in contrast, is a
sub-symbolic computer. The individual nodes and values have external mean-
ing only collectively and selectively. In most cases, an individual node in a NN
has no identifiable meaning to an outside observer.

It has been argued that an expert network can be realized as a neural network
by replacing each node in the EN with a small NN [34]. We present here some
results on the practicality of that process.

6.1 Optimal Architectures

We are interested in finding the “optimal” sub-symbolic NN to replace a sym-
bolic node in an expert net. We consider here two nodes types: REG and AND.
We restrict our investigation to the class of layered feedforward networks with
one hidden layer and sigmoidal output functions, and we use standard back-
propagation to train these networks. (See [50, 51] for similar considerations.)
Thus the only architectural variable is the number of units in the hidden layer.
Our working definition of “optimal” is as follows.

For a given architecture we train the NN until generalization error reaches a
minimum value. Generally the generalization, or test, error reaches a minimum
and begins to increase due to the “overtraining effect”. The state of the NN
at this minimum generalization error is saved as the acceptable state for that
NN. This test is repeated a number of times to obtain an average minimum
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Figure 1 NN for REG node.

generalization error (MGE) for a given architecture. The MGE is then plotted
as a function of the architecture. As the number of units increases, this plot can
be expected to reach a minimum and begin to increase due to the “memoriza-
tion effect”. The architecture that attains this minimum MGE is our optimal
architecture .

It is now well known that many functions can be approximated by neural net-
works (see [12, 22] for example). In particular, all of the node combining and
output functions for EMYCIN/M.4, given section 5.1, can be approximated
with NNs. We now present some experimental results on finding these approx-
imations. All of the data discussed below was generated using 50 randomly
generated training exemplars and 10 randomly generated test exemplars for
each training run on each architecture. Five such training runs were made for
each architecture, and the average training and testing error over all five runs
was used to determine MGE for each architecture.

We are investigating two methods of constructing REG nodes. The first, shown
in Figure 1, uses a parallel evidence network (labeled A) followed by a reconciler
(T). To determine an “optimal” architecture for the evidence network we follow
the process described in section 6.1 above. The results of averaging five training
trials on a 4-4-1 architecture for a 4-input y network are illustrated in Figure
2. The generalization curve attains a minimum at 41 epochs with MGE =
5.6 x 1072, The MGE for 4-n-1 architectures, n= 2,...,9, are given in Figure
3. These computations show that 4-6-1 is the optimal architecture (in the class
under consideration) for the 4-input y* network, with MGE = 3.9 x 1073.

The second architecture we are currently testing for REG nodes is a modu-
lar construction as illustrated in Figure 4. The modularity is based on the
accumulation of evidence as given in equation 4.6. Modularity allows us to
concentrate on solving the 3-input REG problem and then build more general
REG nodes using extant components. The modules labeled A and B in Figure
4 are identical 3-n-2 NNs that take three evidence values as input and give the
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Figure 2 Training and generalization error for 4-4-1 yt network (average of
five runs).

values yT and y~ as output. Once the optimal 3-n-2 module is trained it can
be used in cascade fashion to build an evidence accumulator for any number
of inputs. The savings in training effort is offset by loss of parallelism in the
evidence computation. The MGE plot for 3-n-2 indicates that 3-6-2 is optimal.

We have tested the idea of replacing symbolic nodes with these subsymbolic
networks and subsequently training the EN/NN with ENBP (as in section
5.3). For the small expert net we used for testing this experiment worked as
one would expect: the EN/NN learned with about the same efficiency as the
original EN.

We are carrying out exhaustive experiments to determine optimal architectures
for y*,y~ as well as “black box” REG nodes with n inputs, n = 3,4, .... These
should give a good picture of how parallel REG NNs scale with the number of
inputs. For models of human reasoning, however, this scaling may be irrelevant:
it seems likely that the modular architecture approach more closely resembles
human evidenciary techniques — we tend to weigh evidence a few components
at a time and “build a case” rather than process many pieces of evidence
in parallel. What even these preliminary results show is that symbolic-level



Hierarchical Architectures for Reasoning 143

10

MGE x 1000
)

T

(@] I I I I | |
2 3 4 5 6 7 8 o
Nunber of Hi dden Nodes

Figure 3 Minimum generalization error x1000 for 4-n-1 y* networks.

nodes in an expert network can be built with very simple sub-symbolic neural
networks and standard training techniques.

7 SUMMARY

We have defined a general framework for parallel/distributed computation, the
computational network, or CN. Examples of computational phenomena, that
admit descriptions within the CN model include biological neural networks,
artificial neural networks, the parallel virtual machine model of loosely coupled
MIMD computation, human collaborations such as committees, and expert
networks. A CN is essentially a directed graph in which each component (vertex
or directed edge) has data processing functionality, further endowed with a
concept of global network computation.

A computational network can be classified according to whether it (1) processes
discrete or analog data, (2) uses discrete or continuous time, and (3) has an
acyclic or recurrent network topology. Expert networks are CNs of “type x00”,
according to this classification.
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Figure 4 Modular NN for REG node.

The principles of backpropagation learning are re-examined in the context of
computational networks, and a general learning method, computational net-
work backpropagation, or CNBP, is derived.

Expert networks, or ENs, are the focus of the remainder of the chapter. An
expert network is a symbolic-level computational network that can be derived
from an expert system (ES). The network topology of the EN is derived from
the rule base of the ES, the local processing functionality of the EN components
from the rules of inference of the ES, and the global computation concepts of
the EN from the inference engine of the ES. The process of constructing an
EN from an ES is called translation. Translation, before or after learning, is a
reversible process.

Learning methods for CNs can be instantiated for expert networks. In particu-
lar, CNBP specializes to expert network backpropagation, or ENBP, a learning
method that has proven to be useful in knowledge acquisition and refinement.
ENBP allows an expert system builder to make the transition from coarse
knowledge, in the form of rough-draft rules, to fine knowledge, in the form
of rules with subtlety represented by analog parameters such as certainty fac-
tors, using supervised learning and the historical record of expert behavior as a
training set. This relieves the human expert whose knowledge is being captured
from specifying any parameters such as probabilities or certainties.

We conclude with an investigation of how an EN can be given the structure of an
artificial neural network. By a neural network, or NN, we mean a computational
network consisting entirely of sub-symbolic processors such as linear/sigmoidal
units. The nodes of an EN can, in principle, be represented by small NNs, and
we investigate the practicality of this theory. We show in practice how such
components can be constructed and determine optimal neural architectures
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for such components. In this way an expert network is given a realization
as a neural network with a hierarchical topological organization: a sparsely
interconnected (O(n)) collection of densely intraconnected (O(n?)) neural nets.

This hierarchical sparse/dense EN/NN organization is analogous to biological
neural organization. It captures two levels of knowledge: domain knowledge in
the sparse superstructure and metaknowledge in the dense substructures. The
sparse/dense architecture also scales much more comfortably than the dense
O(n?) connectivity of, for example, feedforward NNs. Memory stability is
supported by constructive EN learning methods. Using conservative estimates
of 10'° neurons and 10'® synapses in the human cerebral cortex, and assuming
a sparse/dense topology with constant size dense subnetworks, an estimated
subnetwork size is 1,000 units. This is more than enough resource to train
complex symbolic-level components.

Research continues in this area. Projects using expert networks as a tool in
large expert system development are testing the limits of usefulness of EN
technology. Other more fundamental work investigates how dual sparse/dense
representations of expert networks may self-organize from random soup of neu-
ral networks and may shed light on questions of the role of early learning in
cognitive development.

Computational networks are ubiquitous in the natural world and in the cre-
ations of humankind.
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ABSTRACT

(Reprinted from Chapter 4 of Computational Architectures for Integrating Neural and
Symbolic Processes (R. Sun and L. Bookman, eds.), Kluwer Academic Publishers,
1994, pp 117-150.)

We introduce a general framework for parallel/distributed computation, the computa-
tional network. Computational networks provide a context for the comparative study
of many different kinds of computation, including biological neural networks, artificial
neural networks, parallel virtual machine, human collaborations, and symbolic and
sub-symbolic models of reasoning. Computational network backpropagation (CNBP)
learning is derived.

We discuss the method of expert networks (a symbolic model) and how expert net-
works can be realized by organization in a neural network (a sub-symbolic model).
The architecture of the expert network is derived from the expert system: the net-
work topology from the rule base, the local processing functionality of the vertices
and edges from the system of inference, and the global computation concepts from
the inference engine. Expert network backpropagation (ENBP) learning is obtained
as a special case of CNBP.

We show how both the symbolic and sub-symbolic systems process inferences and
learn from incorrect inferencing. We illustrate how individual symbolic nodes can be
realized by low-level neural networks and how dual super/sub organizational levels
facilitate scaling expert networks up to very large size.



