Constraint Satisfaction Problems

HHAPTER 3, SECTION 7 AND WHAPTER 4, SECTION 4.4

Outline

AR IR G %

CSP examples

General search applied to CSPs
Backtracking

Forward checking

Heuristics for CSPs

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a “black box”"—any old data structure
that supports goal test, eval, successor

CSP:

state is defined by variables V; with values from domain D;

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

Example: 4-Queens as a CSP

Assume one queen in each column. Which row does each one go in?

Variables ()1, @2, @3, Q4

Domains D, = {1, 2, 3,4}

Constraints

Qi # Q; (cannot be in same row) — =
Qi — Qw._ # |i — j| (or same diagonal) OH =1 OM 3

Translate each constraint into set of allowable values for its variables

E.g., values for (Q1,Q)>) are (1,3) (1,4) (2,4) (3,1) (4,1) (4,2)

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

Example: Cryptarithmetic

Variables
DEMNORSY

Domains
{0,1,2,3,4,5,6,7,8,9}

S
M
O

=2 O m
m o =2
</m O

+
M

Constraints

M # 0, S # 0 (unary constraints)
Y=D+ForY =D+ F — 10, etc.
D+FE, D#M,D#N, etc.

Example: Map coloring

Color a map so that no adjacant countries have the same color

Variables c, |G
Countries C; C,
Domains

{Red, Blue, Green}

Constraints
C mm Cs, Cy mm C’s, etc. Ce

Constraint graph:

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

Applying standard search

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far

Initial state: all variables unassigned

Operators: assign a value to an unassigned variable

Goal test: all variables assigned, no constraints violated

Notice that this is the same for all CSPs!

Implementation

CSP state keeps track of which variables have values so far
Each variable has a domain and a current value

datatype CSP-STATE
components: UNASSIGNED, a list of variables not yet assigned
ASSIGNED, a list of variables that have values
datatype CSP-VAR
components: NAME, for i/o purposes
DOMAIN, a list of possible values
VALUE, current value (if any)

Constraints can be represented
explicitly as sets of allowable values, or
implicitly by a function that tests for satisfaction of the constraint

Standard search applied to

map-coloring

UNASSIGNED
ASSIGNED

Cl C2 C3

UNASSIGNED C2 C3
ASSIGNED Cl=RED

T

UNASSIGNED Cl1 C3
ASSIGNED C2 = BLUE

T

UNASSIGNED 1 C2
ASSIGNED

C3 = GREEN

T

Complexity of the dumb approach

Max. depth of space m = 77

Depth of solution state d = 77

Search algorithm to use??

Branching factor b = 77

This can be improved dramatically by noting the following:

1) Order of assignment is irrelevant, hence many paths are equivalent
2) Adding assignments cannot correct a violated constraint

Complexity of the dumb approach

Max. depth of space m = ?? n (number of variables)

Depth of solution state d = ?7 n (all vars assigned)

Search algorithm to use?? depth-first

Branching factor b = ?? >J;|D;| (at top of tree)

This can be improved dramatically by noting the following:

1) Order of assignment is irrelevant so many paths are equivalent
2) Adding assignments cannot correct a violated constraint

Backtracking search

Use depth-first search, but
1) fix the order of assignment, = b= |D;]
(can be done in the SUCCESSORS function)
2) check for constraint violations

The constraint violation check can be implemented in two ways:
1) modify SUCCESSORS to assign only values that
are allowed, given the values already assigned
or 2) check constraints are satisfied before expanding a state

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n =~ 15

Forward checking

|ldea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

Simplified map-coloring example: |_OH|
RED | BLUE | GREEN . Cs

C, ﬁ

Cs

Qw ON

Cy

Qw Ow

Can solve n-queens up to n =~ 30

X

X | X | XL

Heuristics for CSPs

More intelligent decisions on
which value to choose for each variable
which variable to assign next

Given C; = Red, Cys = Green, choose C3="77

Given C; = Red, Cy = Green, what next??

Can solve n-queens for n =~ 1000

Heuristics for CSPs

More intelligent decisions on
which value to choose for each variable
which variable to assign next

Given C7 = Red, C5=Green, choose C5=77

C'3 = Green: least-constraining-value c
5

Given C{ = Red, Cy = Green, what next??
C's: most-constrained-variable

Can solve n-queens for n =~ 1000

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints

operators reassign variable values

Variable selection: randomly select any conflicted variable

min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints

Example: 4-Queens

States: 4 queens in 4 columns (4* = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

=

= E B

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time
for arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

R number of constraints

number of variables

cru

time

_ >R
critical
ratio

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved
in O(n|DJ|?) time

Compare to general CSPs, where worst-case time is O(|D|")

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions and
complexity of reasoning.

Algorithm for tree-structured CSPs

Basic step is called filtering:

FiLTER(V], V))
removes values of V; that are inconsistent with ALL values of V,

Filtering example:

allowed pairs: _Hv remove 2 from
<1,1>
<3.2> domain of V.

<3 3> |

Algorithm contd.

1) Order nodes breadth-first starting from any leaf:

n to 1, apply FILTER(V], V) where V; is a parent of V

2) For j

3) For j =1 to n, pick legal value for V; given parent value

Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with
1) fixed variable order
2) only legal successors

Forward checking prevents assignments that guarantee later failure
Variable ordering and value selection heuristics help significantly
lterative min-conflicts is usually effective in practice

Tree-structured CSPs can always be solved very efficiently

