Informed search algorithms

Chapter 4, Sections 1–2, 4

Outline

- ♦ Best-first search
- \Diamond A* search
- Heuristics Hill-climbing
- ♦ Simulated annealing

Review: General search

```
function General-Search(problem, Queuing-Fn) returns a solution, or failure
end
                                                                                                                                                                                                                                                                                                                                                                                                     nodes \leftarrow \text{Make-Queue}(\text{Make-Node}(\text{Initial-State}[problem]))
                                                                                                                                                                                                                                                                  if nodes is empty then return failure
                                                       nodes \leftarrow \text{QUEUING-FN}(nodes, \text{Expand}(node, \text{Operators}[problem]))
                                                                                                                    if Goal-Test[problem] applied to State(node) succeeds then return node
                                                                                                                                                                                             node \leftarrow \text{Remove-Front}(nodes)
```

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function for each node estimate of "desirability"

⇒ Expand most desirable unexpanded node

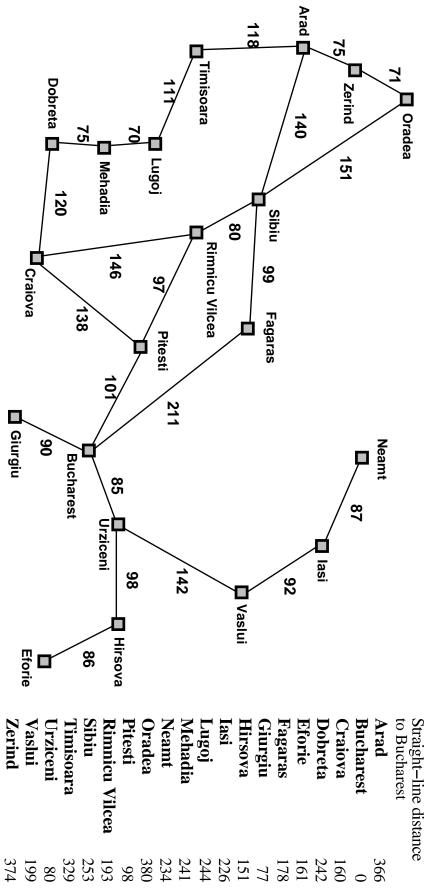
Implementation:

QUEUEINGFN = insert successors in decreasing order of desirability

Special cases:

greedy search A* search

with step costs \mathbf{n}



Bucharest r ad	366
ıcharest	0
raiova	160
obreta	242
orie	161
lgaras	178
iurgiu	77
irsova	151
Si.	226
Igoj	244
ehadia	241
eamt	234
radea	380
testi	98
mnicu Vilcea	193
biu	253
•	

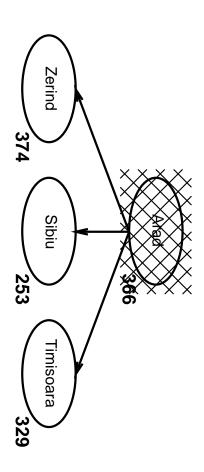
Greedy search

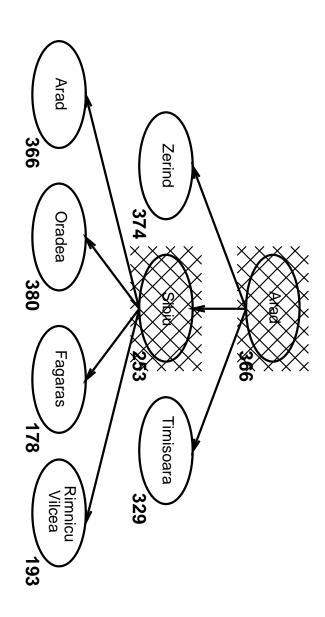
Evaluation function h(n) (heuristic) = estimate of cost from n to goal

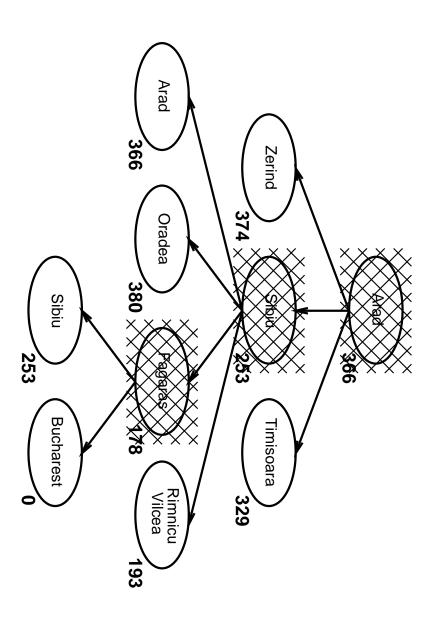
E.g., $h_{\mathrm{SLD}}(n) = \mathrm{straight}\text{-line}$ distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Greedy search example







Properties of greedy search

Complete??
Time??

Space??

Optimal??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g.,

lasi ightarrow Neamt ightarrow lasi ightarrow Neamt ightarrow

Complete in finite space with repeated-state checking

 $\overline{ ext{Time}}$?? $O(b^m)$, but a good heuristic can give dramatic improvement

 $\underline{\underline{\mathsf{Space}}} ?? \ O(b^m) \underline{\mathsf{--keeps}} \ \mathsf{all} \ \mathsf{nodes} \ \mathsf{in} \ \mathsf{memory}$

Optimal?? No

A* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

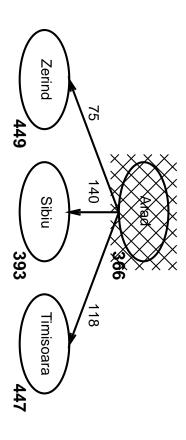
 $g(n) = \cos t$ so far to reach nh(n) =estimated cost to goal from n $f(n) = \mathsf{estimated}$ total cost of path through n to goal

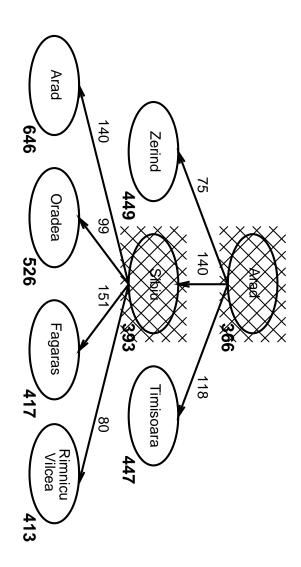
i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the true cost from n. A^* search uses an admissible heuristic

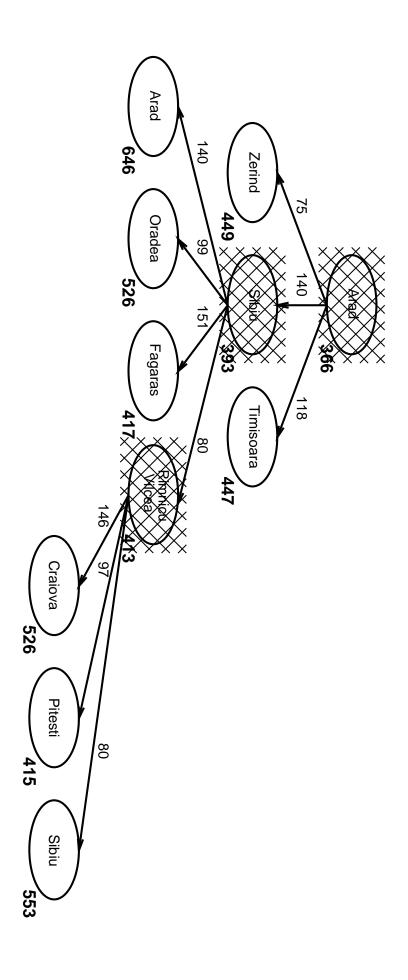
E.g., $h_{\mathrm{SLD}}(n)$ never overestimates the actual road distance

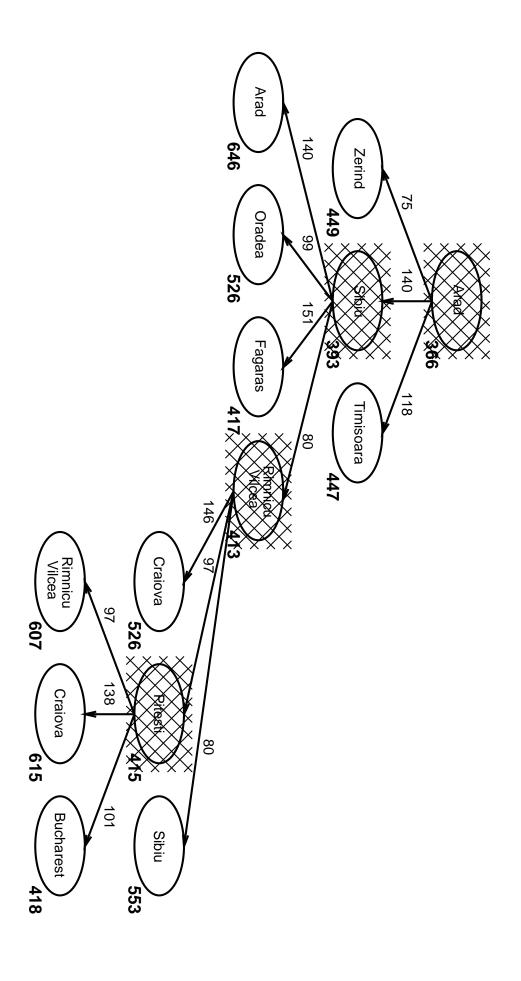
Theorem: A* search is optimal

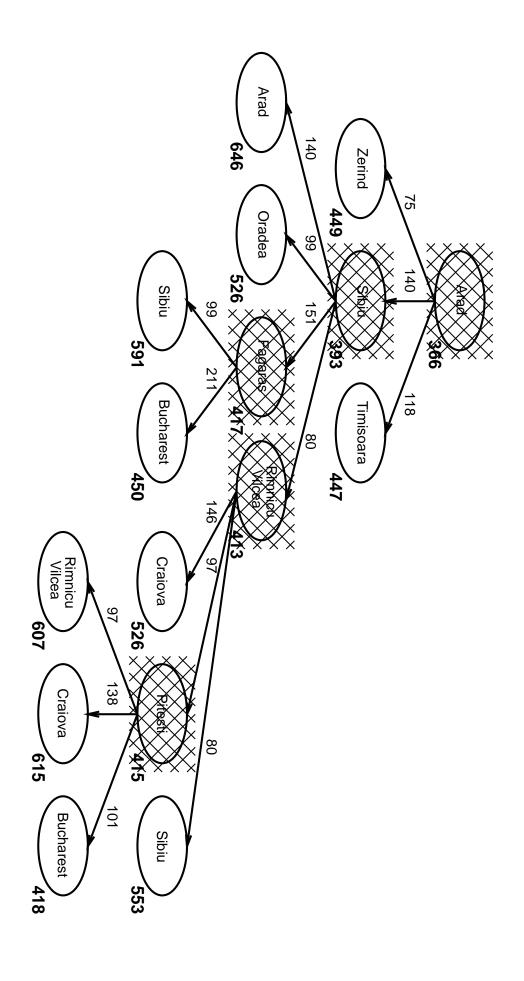
A^* search example





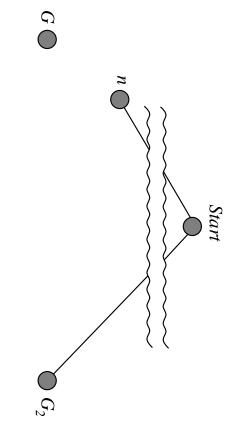






Optimality of A^* (standard proof)

goal G_1 . queue. Let n be an unexpanded node on a shortest path to an optimal Suppose some suboptimal goal G_2 has been generated and is in the



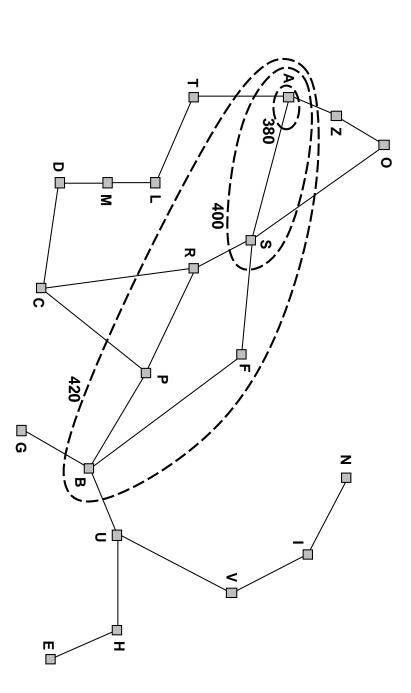
$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $g(G_2) = g(G_2)$ since $g(G_2) = g(G_2)$

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion

Optimality of \mathbf{A}^* (more useful

Lemma: A^* expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f=f_i$, where $f_i < f_{i+1}$



Properties of A^*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time</u>?? Exponential in [relative error in h imes length of soln.]

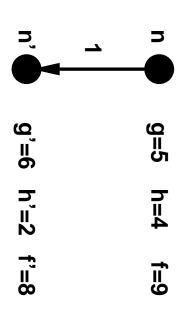
Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

Proof of lemma: Pathmax

For some admissible heuristics, f may decrease along a path

E.g., suppose n' is a successor of n



But this throws away information!

 $f(n)=9 \Rightarrow$ true cost of a path through n is ≥ 9 Hence true cost of a path through n' is ≥ 9 also

Pathmax modification to A*:

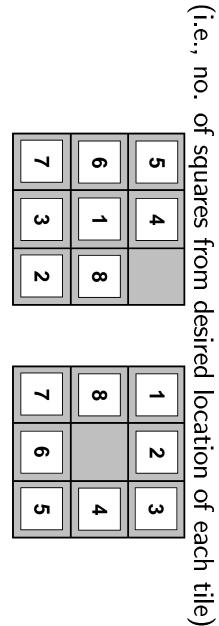
Instead of
$$f(n') = g(n') + h(n')$$
, use $f(n') = max(g(n') + h(n'), f(n))$

With pathmax, f is always nondecreasing along any path

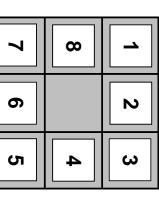
Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) =$ number of misplaced tiles $h_2(n) =$ total <u>Manhattan</u> distance



Start State



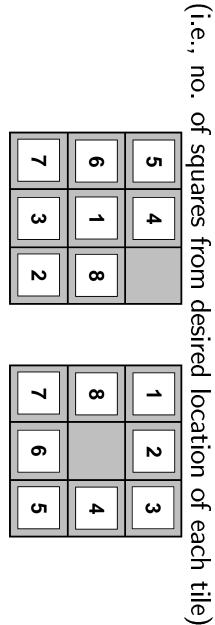
Goal State

$$\frac{h_1(S) = ??}{h_2(S) = ??}$$

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) =$ number of misplaced tiles $h_2(n) =$ total <u>Manhattan</u> distance



 ∞

Goal State

Start State

$$h_1(S) = ?? 7$$

 $h_2(S) = ?? 2+3+3+2+4+2+0+2 = 18$

Dominance

then h_2 dominates h_1 and is better for search If $h_2(n) \ge h_1(n)$ for all n (both admissible)

Typical search costs:

$$d = 14$$
 IDS = 3,473,941 nodes
 $A^*(h_1) = 539$ nodes
 $A^*(h_2) = 113$ nodes
 $d = 14$ IDS = too many nodes
 $A^*(h_1) = 39,135$ nodes
 $A^*(h_2) = 1,641$ nodes

Relaxed problems

solution cost of a relaxed version of the problem Admissible heuristics can be derived from the exact

then $h_1(n)$ gives the shortest solution If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,

then $h_2(n)$ gives the shortest solution If the rules are relaxed so that a tile can move to any adjacent square,

For TSP: let path be any structure that connects all cities ⇒ mınımum spanning tree heuristic

Iterative improvement algorithms

the goal state itself is the solution In many optimization problems, path is irrelevant;

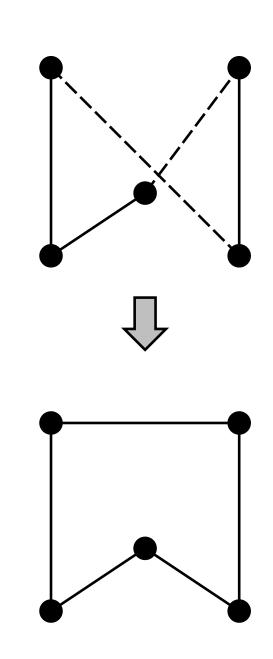
Then state space = set of "complete" configurations; or, find configuration satisfying constraints, e.g., n-queens find optimal configuration, e.g., TSP

keep a single "current" state, try to improve it In such cases, can use iterative improvement algorithms;

Constant space, suitable for online as well as offline search

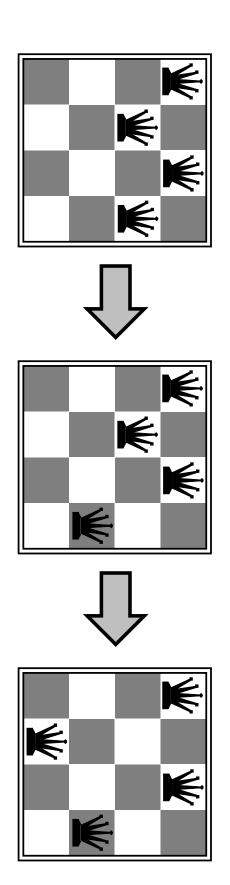
Travelling Salesperson Problem

Find the shortest tour that visits each city exactly once



Example: n-queens

row, column, or diagonal Put n queens on an $n \times n$ board with no two queens on the same



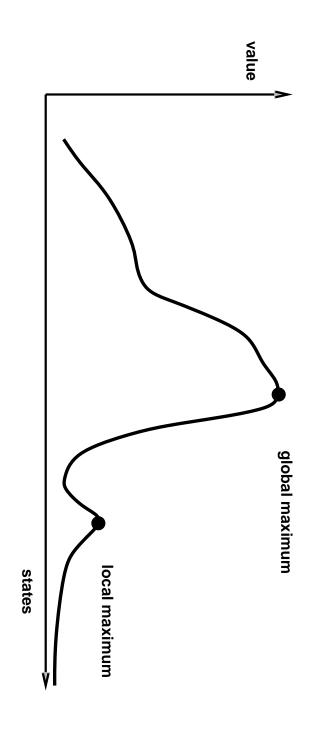
Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"

```
function Hill-Climbing(problem) returns a solution state
end
                                                                                                                                                         loop do
                                                                                                                                                                                             current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
                                                                                                                                                                                                                                                                                                                                    inputs: problem, a problem
                                                                                                                                                                                                                                                                                              local variables: current, a node
                                  current \leftarrow next
                                                                   if Value[next] < Value[current] then return current
                                                                                                                  next \leftarrow a highest-valued successor of current
                                                                                                                                                                                                                                                       next, a node
```

Hill-climbing contd.

Problem: depending on initial state, can get stuck on local maxima



Simulated annealing

but gradually decrease their size and frequency Idea: escape local maxima by allowing some "bad" moves

function Simulated-Annealing (problem, schedule) **returns** a solution state **inputs**: problem, a problem

schedule, a mapping from time to "temperature"

local variables: current, a node

next, a node

T, a "temperature" controlling the probability of downward steps

 $current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])$

for $t \leftarrow 1$ to ∞ do

 $T \leftarrow schedule[t]$

if T=0 then return current

 $next \leftarrow$ a randomly selected successor of *current*

 $\Delta E \leftarrow \text{Value}[next] - \text{Value}[current]$

if $\Delta E > 0$ then $current \leftarrow next$

else $current \leftarrow next$ only with probability $e^{\Delta E}/T$

Properties of simulated annealing

Boltzman distribution At fixed "temperature" T, state occupation probability reaches

$$p(x) = \alpha e^{\frac{E(x)}{kT}}$$

T decreased slowly enough \Longrightarrow always reach best state

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.