LECTURE 6

Numerical and Scientific Packages

NUMERICAL AND SCIENTIFIC
APPLICATIONS

As you might expect, there are a number of third-party packages available for numerical
and scientific computing that extend Python’s basic math module.

These include:

NumPy/SciPy — numerical and scientific function libraries.

Numba - Python compiler that supports JIT compilation.

ALGLIB — numerical analysis library.

Pandas - high-performance data structures and data analysis tools.
PyGSL — Python interface for GNU Scientific Library.

ScientificPython — collection of scientific computing modules.

SCIPY AND FRIENDS

By far, the most commonly used packages are those in the SciPy stack. We will focus
on these in this class. These packages include:

NumPy

SciPy

Matplotlib — plotting library.
[Python — interactive computing.
Pandas — data analysis library.

SymPy — symbolic computation library.

INSTALLING NUMPY AND MATPLOTLIB

* You can install NumPy and Matplotlib on our virtual machine in the following way:

$ sudo apt-get install python-numpy
$ sudo apt-get install python-matplotlib

NUMPY

Let’s start with NumPy. Among other things, NumPy contains:

A powerful N-dimensional array object.

Sophisticated (broadcasting/universal) functions.

Tools for integrating C/C++ and Fortran code.

Useful linear algebra, Fourier transform, and random number capabilities.

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-
dimensional container of generic data.

NUMPY

The key to NumPy is the ndarray object, an n-dimensional array of homogeneous data
types, with many operations being performed in compiled code for performance.
There are several important differences between NumPy arrays and the standard
Python sequences:

NumPy arrays have a fixed size. Modifying the size means creating a new array.
NumPy arrays must be of the same data type, but this can include Python objects.

More efficient mathematical operations than built-in sequence types.

NUMPY DATATYPES

To begin, NumPy supports a wider variety of data types than are built-in to the Python
language by default. They are defined by the numpy.dtype class and include:

* intc (same as a C integer) and intp (used for indexing)
* Int8,intl6, int32, int64

* uint8, uintl6, uint32, uint64

 floatl6, float32, float64

 complex64, complex128

* bool_,int_,float_, complex_ are shorthand for defaults.

These can be used as functions to cast literals or sequence types, as well as
arguments to numpy functions that accept the dtype keyword argument.

* Some examples:

NUMPY DATATYPES

>>> import numpy as np

b 15—
>>> X
R,

>>> vy
>>> vy
array.l [Me s s
>>> 7 =
>>> 7

array.GRo, s
>>> z.dtype
dtype ('uint8"')

298}

np.arange (3,

21,

np . £ Loa €t 3218

np «int G 28 die)

dtype=np.uint8)

dtype=uint8)

NUMPY ARRAYS

There are a couple of mechanisms for creating arrays in NumPy:
Conversion from other Python structures (e.qg., lists, tuples).
Built-in NumPy array creation (e.qg., arange, ones, zeros, etc.).

Reading arrays from disk, either from standard or custom formats (e.g. reading in
from a CSV file).

and others ...

NUMPY ARRAYS

* In general, any numerical data that is stored in an array-like container can be
converted to an ndarray through use of the array() function. The most obvious
examples are sequence types like lists and tuples.

>>> X = np.array (L suise)

>>> x = np.array (2o st

>>> x = np.array ([L1725 0 [t s)

>>> x = np.arrayll [s e S E e e e GO], [L. +1.7, 3.40.711)

NUMPY ARRAYS

There are a couple of built-in NumPy functions which will create arrays from scratch.

zeros(shape) -- creates an array filled with O values with the specified shape. The

default dtype is float64.
>>> np.zeros((2, 3))

iz ey AR e SIS @ Sl el 0. 04, 0.11])

ones(shape) -- creates an array filled with 1 values.

arange() -- creates arrays with regularly incrementing values.

>>> np.arange (10)

array ([0, 1, 2, 35 A casERitr ity 2
>>> np.arange(2, 10, dtype=np.float)
array ([2., 3%, 4SSt inC IS Frtaie et

>>> np.arange (2,5 o, =N

array ([2. 0,0 2 R s P E A AP/ SRS P e - e) S = 2 .9)

NUMPY ARRAYS

* linspace() -- creates arrays with a specified number of elements, and spaced equally
between the specified beginning and end values.

>>> np.linspace(l., 4., 6)
array ([1. , 1.6, V252 2 SErns -l

 random.random(shape) — creates arrays with random floats over the interval [0,1).

>>> np.random.random((2,3))
array ([[0.75688591 10 4k Cior ey SRt p S SRR cr]

[0.77164187 , 0. 058RS R UM ERRSD SlcR SIS

NUMPY ARRAYS

>>> import numpy as np
>>> a = np.arange (3)
>>> print (a)
iy At
>>> a
* Printing an array can be done AP Ll RO Pt e 2])
with the print statement. >>> b = np.arange (9) .reshape (3, 3)
>>> print (b)
RN N |
[+35" 4 5]
ol el]
>>> c = np.arange(8) .reshape(2,2,2)
>>> print (c)
PO s |
L2 ogetl |

INDEXING

* Single-dimension indexing is accomplished as usual.

>>> x = np.arange(10)
>>> x[2]

2

>>> x[-2]

8

* Multi-dimensional arrays support multi-dimensional indexing.

[0123456789 }

>>> x.shape = (2,5) # now x 1is 2-dimensional

>>> x[1,3]
8

>>> x[1,-1]
9

a1 O
N =
~N DD
00 W

© »
N\ o NN

INDEXING

* Using fewer dimensions to index will result in a subarray.

>>> x[0]
array ([0 1 vZuseSuue i

e Thismeansthat x[i, j] == x[1i][j] butthe second method is less efficient.

INDEXING

 Slicing is possible just as it is for typical Python sequences.

>>> x = np.arange(10)

>>> x[2:5]

array ([2, Sl is)

>>> x[:-7]

array (O sty

>>> X [NE T

array-([[18: S sEciN

>>> yv = np.arange (35) .reshape (5, 7)
>>> v [15,55 Zig FPr]

array (['[7, 10 S0 e s s e . o

ARRAY OPERATIONS

>>> a = np.arange (D)

>>> b = np.arange(5)

>>> a+b

array ([0, 2, 45 soyascels

>>> a-b

array ([0, -0, 0Tt n

>>> g**)

array ([0, =1, - 5024, S rOauss e

>>> a>3

array([False, False, False, False,

>>> 10*np.sin (a)
array ([0., 88 4FsEcss
>>> a*b

eSO IR 4. 9 /S vGilm

900929 A

(b= [

B Al 2 QR G

* Basic operations apply element-wise. The

result is a new array with the resultant
elements.

Operations like *= and += will modify the

existing array.

dtype=bool)

Fyeeo0002495])

ARRAY OPERATIONS

¢ Since multiplication is done
element-wise, you need to
specifically perform a dot
product to perform matrix
multiplication.

>>> a = np.zeros(4) .reshape(2,2)
>>> a

Gl | S aery - 0],
EalEs 0. 1])

>>> a[0,0] =1

>>> al[l,1] =1

>>> b = np.arange (4) .reshape(2,2)
>>> b
i el VA U e 1]

| AN
>>> a*b
e e e CNEO 04 -,
[ReCra o 3%’])
>>> np.dot (a,b)
ELigh <Ry T g e P et o
T e AR

ARRAY OPERATIONS

 There are also some built-in
methods of ndarray objects.

Universal functions which
may also be applied
include exp, sqrt, add, sin,
cos, etc...

>>> a = np.random.random((2,3))

>>> a

SEDeC IR e o el 98943098, 0.69361582],
e S D6 2197125, 0.40517936]])

>>> a.sum()

4.1807421388722164

>>> a.min ()

O A 0BRSSO 174 3

>>> a.max (axis=0)

ciie e AR WOTSSFISIE SI0 S R0 508943098, 0.69361582])

>>> a.min(axis=1)

admga = (4 GRRoiI 0o S 1. 00 40517936])

ARRAY OPERATIONS

>>> a = np.floor(10*np.random.random((3,4)))

>>> (a)
B aE A
* An array shape can be B T S
manipulated by a number e PP e VRN
>>> a.shape
of methods. (3, 4)

>>> a.ravel ()

BRI R e e S ., 9., 1., 8.,
resize(size) will modify an >>> a.shape = (6,2)
array in place. % (@)
ymnp RIS ok
[, $AO Y]
reshape(size) will return a { ; 5}
copy of the array with a PR 7R
[&7 TeS

new shape. :
>>> a.transpose()

it il T e T A IR o) e S
i Yo U “Nerraiat J i S0P

LINEAR ALGEBRA

¢ One of the most common reasons for ~>>> from numpy import *
>>> from numpy.linalg import *

using the NumPy package is its linear B S T 0, 2.0]1, [3.0, 4.011)
algebra module. >>> print (a)
il 2]
B2 B k]
>>> a.transpose()
Blersoln SIEE [%le SbY. 50 370
o 280" a0] 1)
>>> inv(a) # inverse
SHar e T B SR R
SRR T 075)

LINEAR ALGEBRA

>>> u = eye(2) # unit 2x2 matrix; "eye" represents "I"
>>> u
arrayi([L8 505
[0 &gkl
>>> j = array ([[0. 0,78 Gl 0t st et)
>>> dot(j, Jj) # matrix product
array ([e
[O AL
>>> trace(u) # trace
2%
>>> y = array ([[k
>>> solve(a, y) # solve linear matrix equation
array il e
[NSINE
>>> eig(j) # get eigenvalues/eigenvectors of matrix
(array ([+ 054 1) Con=—"New s i
array ([0.707 L@ 7 SsR0sme it et lsRicw SER L Rl
[-0 .:00000000: 0TSl s S s U GO0 00N OF. 70710678751 1))

MATRICES

e e oo (1.0 2.0; 3.0 4.0")
>>> A
R~ e 2]

* There is also a matrix class which e, 38y a8 ¢ |

inherits from the ndarray class. AR Do A) =0 , ,
<class 'numpy.matrixlib.defmatrix.matrix'>

>>> A.T # transpose
There are some slight differences but 8 s ¥
matrices are very similar to general et AT o]
arrays. o X e=llae r 1 x ('S5.0 7.0")
>>> Y = X.T
: >>> print (A*Y) # matrix multiplication
In NumPy’s own words, the question of [[19.]
whether to use arrays or matrices comes SR
down to the short answer of “use arrays”. >>> print (A.I) # inverse
Nl Rt gl S
| S AU 9%]

>>> solve(A, Y) # solving linear equation
NiichEamisMER=al L S T+ A5 1.7)

NUMPY DOCS

* There is a very nice table of NumPy equivalent operations for MATLAB users.

However, even if you do not know MATLAB, this is a pretty handy overview of NumPy
functionality.

There is also a pretty comprehensive list of example usage of all the NumPy functions
here.

http://mathesaurus.sourceforge.net/matlab-numpy.html
https://docs.scipy.org/doc/numpy/reference/routines.html?highlight=((Numpy+Example+List+With+Doc))

SCIPY

* Now we move on to SciPy. In it’s own words:

SciPy is a collection of mathematical algorithms and
convenience functions built on the Numpy extension of
Python. It adds significant power to the interactive
Python session by providing the user with high-level
commands and classes for manipulating and visualizing
data. With SciPy an interactive Python session becomes
a data-processing and system-prototyping environment
rivaling sytems such as MATLAB, IDL, Octave, R-Lab, and
Scilab.

» Basically, SciPy contains various tools and functions for solving common problems in
scientific computing.

SCIPY

SciPy’s functionality is implemented in a number of specific sub-modules. These include:

Special mathematical functions (scipy.special) -- airy, elliptic, bessel, etc.
Integration (scipy.integrate)

Optimization (scipy.optimize)

Interpolation (scipy.interpolate)

Fourier Transforms (scipy.fftpack)

Signal Processing (scipy.signal)

Linear Algebra (scipy.linalg)

Compressed Sparse Graph Routines (scipy.sparse.csgraph)
Spatial data structures and algorithms (scipy.spatial)
Statistics (scipy.stats)

Multidimensional image processing (scipy.ndimage)

Data IO (scipy.io)

Weave (scipy.weave)

and more!

SCIPY

* We can’t possibly tour all of the SciPy library and, even if we did, it might be a little

boring. So let’s just look at some example modules with SciPy to see how it can be used in
a Python program.

Let’s start with a simple little integration example.
Say we wanted to compute the following:

b
j sin x dx
a

* Obviously, the first place we should look is
scipy.integrate!

SCIPY.INTEGRATE

Methods for Integrating Functions given a function object:

quad -- General purpose integration.

dblquad -- General purpose double integration.

tplquad -- General purpose triple integration.

fixed quad -- Integrate func(x) using Gaussian quadrature of order n.
quadrature -- Integrate with given tolerance using Gaussian quadrature.
romberg -- Integrate func using Romberg integration.

Methods for Integrating Functions given a fixed set of samples:

trapz -- Use trapezoidal rule to compute integral from samples.

simps -- Use Simpson's rule to compute integral from samples.

romb -- Use Romberg Integration to compute integral from (2**k + 1) evenly-spaced
samples.

SCIPY.INTEGRATE

We have a function object — np.sin defines the sin function for us. We can compute the definite
integral from x = 0 to x = m using the quad function.

* >>> result = scipy.integrate.quad(np.sin, 0, np.pi)
>>> print (result)
(2.0, 2.220446049250313e-14) # 2 with a very small error margin!
>>> result = scipy.integrate.quad(np.sin, -np.inf, +np.inf)
>>> print (result)
(0.0, 0.0) # Integral does not converge

SCIPY.INTEGRATE

Let’s say that we don’t have a function object, we only have some (x,y) samples that “define” our function.
We can estimate the integral using the trapezoidal rule.

>>> sample x = np.linspace (e srpeus ot 00 0)

>>> sample y = np.sin(sample x) # Creating 1,000 samples

>>> result = scipy SinEcEiEsiF= S iFsis M= Tiipie S n, s ample x)

>>> print (result)

1. 9999¢ eI

>>> sample x = np. PrRSEpEiCelrnie Sehiras 0 08.0.0%

>>> sample vy ="np.ciinsis detaassTareRe G o ;000,000 samples
>>> result = sSCipy.SLRtECiEcnse Seaelelntcciupiliers v Ssamp le x)

>>> print (result)

2.0

MATPLOTLIB

* We’re going to continue our discussion of scientific computing with matplotlib.

Matplotlib is an incredibly powerful (and beautiful!) 2-D plotting library. It’s easy to
use and provides a huge number of examples for tackling unique problems.

ﬁ;_iill’ 1] e
=

PYPLOT

» At the center of most matplotlib
scripts is pyplot. The pyplot
module is stateful and tracks
changes to a figure. All pyplot
functions revolve around creating
or manipulating the state of a
figure.

matplotlib.pyplot OREG
PG (12 ,3,4,5])

plt.ylabel ('some significant numbers')
plt.show()

u
=
i)
L
=
c
e
c
i)
v
=
=
S
w
£
o
w

When a single sequence object is passed to the
plot function, it will generate the x-values for you
starting with O.

PYPLOT

» The plot function can actually take any number of arguments. Common usage of plot:

plt.plot (x values, SV Vel SaisoNaiENRc NS oie] s, Sy, Tormat,])
* The format string argument associated with a pair of sequence objects indicates the color
and line type of the plot (e.g. ‘bs’ indicates blue squares and ‘ro’ indicates red circles).

Generally speaking, the x values and y values will be numpy arrays and if not, they
will be converted to numpy arrays internally.

Line properties can be set via keyword arguments to the plot function. Examples include
label,linewidth,animated, color,etc...

PYPLOT

numpy np

matpl ot LibSp P lieiE PAFE
evenly sampled time at .2 intervals
t = np.arange (05 SE iG]

red dashes, blue squares and green triangles
plt.plot(t, t, 'r==", L% ©F A S N RS G)
plt.axis ([0, 6, 0, 1501 #55 ol e el S Rse s

plt.show()

BEHIND THE SCENES

 It’s important to note that a figure is a separate idea from how it is rendered. Pyplot
convenience methods are used for creating figures and immediately displaying them
in a pop up window. An alternative way to create this figure is shown below.

numpy np
matplotlib.figure figure

t = np.arange (05 Sk

f = figure SESthe=sl

axes = f.addisubpliciEtsus)

axes.plot (t, t, Lrzsr 5N oart et Vet RS T A O)
axes.axis [0, o 0ssssls

A script can generate multiple figures,
but
typically you’ll only have one.

To create multiple plots within a
figure, either use the subplot ()
function which manages the layout of
the figure or use add axes ().

PYPLOT

import numpy as np
import matplotlib.pyplot as plt

def f(t):
return np.exp(-t) * np.cos(2*np.pi*t)

tl = np.arange (0.0, 5.0, 0.1)

E e R e A el B .08, 5.0, 0.02)

plt.figure(l) # Called implicitly but can use
for multiple figures

SR N TP e Ows, 1 column, Ist plot

RSN IRSIEt R ey SO, £2, £(t2), 'k')

PR NS e Y Tows, | column, Z2nd plot
EAEE SRAEOTESE - A COo S 2 NP . pi*t2) , 'r—-"')
plt.show()

PYPLOT

 The text () command can be used to add text in an arbitrary location

* xlabel () adds text to x-axis.

 ylabel () adds text to y-axis.

e title () adds title to plot.

* clear () removes all plots from the axes.

All methods are available on pyplot and on the axes instance generally.

PYPLOT

import numpy as np
import matplotlib.pyplot as plt

mu, Sligma =l E0TssEs
x = mu + sigma * np.random.randn(10000)

the histogram of the data
n, bins, patches = plt histiEc T atEaRneiiscdEEss racacollor="g"', alpha=0.75)

plt.xlabel ('Smarts')

plt.ylabel ('Brobalimsis s

plt.title (' HisEogramae=uEuiy)

plt.text (60, .025, r'$S\mu=100,\ \sigma=15S$') #TeX equations
plt.axis ([40, 1605 O S USEis)

plt.grid (True)

plt.show()

Histogram of 1Q

ceieeuibbome T e s

>,
+
5
o
o
=2
&

PYPLOT

» There are tons of specialized functions — check out the API here. Also check out the
examples list to get a feel for what matploblib is capable of (it’s a lot!).

You can also embed plots into GUI applications.

For PyQt4,use matplotlib.backends.backend gt4agg.

 Let’s do a little demonstration.

http://matplotlib.org/api/index.html
http://matplotlib.org/examples/index.html

PLOT GUI

* The two most important classes from matplotlib.backends.backend_qt4agg:
* FigureCanvasQTAgg (fig) : returns the canvas the figure fig renders into.

* NavigationToolbar2QT (canvas, prnt) : creates a navigation toolbar for canvas
which has the parent prnt.

Furthermore, a canvas object has the following method defined:

* canvas.draw () : redraws the updated figure on the canvas.

