
LECTURE 6

Numerical and Scientific Packages

NUMERICAL AND SCIENTIFIC

APPLICATIONS

• As you might expect, there are a number of third-party packages available for numerical

and scientific computing that extend Python’s basic math module.

• These include:

• NumPy/SciPy – numerical and scientific function libraries.

• Numba – Python compiler that supports JIT compilation.

• ALGLIB – numerical analysis library.

• Pandas – high-performance data structures and data analysis tools.

• PyGSL – Python interface for GNU Scientific Library.

• ScientificPython – collection of scientific computing modules.

SCIPY AND FRIENDS

• By far, the most commonly used packages are those in the SciPy stack. We will focus

on these in this class. These packages include:

• NumPy

• SciPy

• Matplotlib – plotting library.

• IPython – interactive computing.

• Pandas – data analysis library.

• SymPy – symbolic computation library.

INSTALLING NUMPY AND MATPLOTLIB

• You can install NumPy and Matplotlib on our virtual machine in the following way:

 $ sudo apt-get install python-numpy

$ sudo apt-get install python-matplotlib

NUMPY

• Let’s start with NumPy. Among other things, NumPy contains:

• A powerful N-dimensional array object.

• Sophisticated (broadcasting/universal) functions.

• Tools for integrating C/C++ and Fortran code.

• Useful linear algebra, Fourier transform, and random number capabilities.

• Besides its obvious scientific uses, NumPy can also be used as an efficient multi-

dimensional container of generic data.

NUMPY

• The key to NumPy is the ndarray object, an n-dimensional array of homogeneous data

types, with many operations being performed in compiled code for performance.

There are several important differences between NumPy arrays and the standard

Python sequences:

• NumPy arrays have a fixed size. Modifying the size means creating a new array.

• NumPy arrays must be of the same data type, but this can include Python objects.

• More efficient mathematical operations than built-in sequence types.

NUMPY DATATYPES

To begin, NumPy supports a wider variety of data types than are built-in to the Python

language by default. They are defined by the numpy.dtype class and include:

• intc (same as a C integer) and intp (used for indexing)

• int8, int16, int32, int64

• uint8, uint16, uint32, uint64

• float16, float32, float64

• complex64, complex128

• bool_, int_, float_, complex_ are shorthand for defaults.

These can be used as functions to cast literals or sequence types, as well as

arguments to numpy functions that accept the dtype keyword argument.

NUMPY DATATYPES

• Some examples:

>>> import numpy as np

>>> x = np.float32(1.0)

>>> x

1.0

>>> y = np.int_([1,2,4])

>>> y

array([1, 2, 4])

>>> z = np.arange(3, dtype=np.uint8)

>>> z

array([0, 1, 2], dtype=uint8)

>>> z.dtype

dtype('uint8')

NUMPY ARRAYS

• There are a couple of mechanisms for creating arrays in NumPy:

• Conversion from other Python structures (e.g., lists, tuples).

• Built-in NumPy array creation (e.g., arange, ones, zeros, etc.).

• Reading arrays from disk, either from standard or custom formats (e.g. reading in

from a CSV file).

• and others …

NUMPY ARRAYS

• In general, any numerical data that is stored in an array-like container can be

converted to an ndarray through use of the array() function. The most obvious

examples are sequence types like lists and tuples.

>>> x = np.array([2,3,1,0])

>>> x = np.array((2, 3, 1, 0))

>>> x = np.array([[1,2.0],[0,0],(1+1j,3.)])

>>> x = np.array([[1.+0.j, 2.+0.j], [0.+0.j, 0.+0.j], [1.+1.j, 3.+0.j]])

NUMPY ARRAYS

• There are a couple of built-in NumPy functions which will create arrays from scratch.

• zeros(shape) -- creates an array filled with 0 values with the specified shape. The

default dtype is float64.

• ones(shape) -- creates an array filled with 1 values.

• arange() -- creates arrays with regularly incrementing values.

>>> np.zeros((2, 3))

array([[0., 0., 0.], [0., 0., 0.]])

>>> np.arange(10)

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> np.arange(2, 10, dtype=np.float)

array([2., 3., 4., 5., 6., 7., 8., 9.])

>>> np.arange(2, 3, 0.1)

array([2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])

NUMPY ARRAYS

• linspace() -- creates arrays with a specified number of elements, and spaced equally

between the specified beginning and end values.

• random.random(shape) – creates arrays with random floats over the interval [0,1).

>>> np.linspace(1., 4., 6)

array([1. , 1.6, 2.2, 2.8, 3.4, 4.])

>>> np.random.random((2,3))

array([[0.75688597, 0.41759916, 0.35007419],

 [0.77164187, 0.05869089, 0.98792864]])

NUMPY ARRAYS

• Printing an array can be done

with the print statement.

>>> import numpy as np

>>> a = np.arange(3)

>>> print (a)

[0 1 2]

>>> a

array([0, 1, 2])

>>> b = np.arange(9).reshape(3,3)

>>> print (b)

[[0 1 2]

 [3 4 5]

 [6 7 8]]

>>> c = np.arange(8).reshape(2,2,2)

>>> print (c)

[[[0 1]

 [2 3]]

 [[4 5]

 [6 7]]]

INDEXING

• Single-dimension indexing is accomplished as usual.

• Multi-dimensional arrays support multi-dimensional indexing.

>>> x = np.arange(10)

>>> x[2]

2

>>> x[-2]

8

>>> x.shape = (2,5) # now x is 2-dimensional

>>> x[1,3]

8

>>> x[1,-1]

9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4

5 6 7 8 9

INDEXING

• Using fewer dimensions to index will result in a subarray.

• This means that x[i, j] == x[i][j] but the second method is less efficient.

>>> x[0]

array([0, 1, 2, 3, 4])

INDEXING

• Slicing is possible just as it is for typical Python sequences.

>>> x = np.arange(10)

>>> x[2:5]

array([2, 3, 4])

>>> x[:-7]

array([0, 1, 2])

>>> x[1:7:2]

array([1, 3, 5])

>>> y = np.arange(35).reshape(5,7)

>>> y[1:5:2,::3]

array([[7, 10, 13], [21, 24, 27]])

ARRAY OPERATIONS

• Basic operations apply element-wise. The

result is a new array with the resultant

elements.

Operations like *= and += will modify the

existing array.

>>> a = np.arange(5)

>>> b = np.arange(5)

>>> a+b

array([0, 2, 4, 6, 8])

>>> a-b

array([0, 0, 0, 0, 0])

>>> a**2

array([0, 1, 4, 9, 16])

>>> a>3

array([False, False, False, False, True], dtype=bool)

>>> 10*np.sin(a)

array([0., 8.41470985, 9.09297427, 1.41120008, -7.56802495])

>>> a*b

array([0, 1, 4, 9, 16])

ARRAY OPERATIONS

• Since multiplication is done

element-wise, you need to

specifically perform a dot

product to perform matrix

multiplication.

>>> a = np.zeros(4).reshape(2,2)

>>> a

array([[0., 0.],

 [0., 0.]])

>>> a[0,0] = 1

>>> a[1,1] = 1

>>> b = np.arange(4).reshape(2,2)

>>> b

array([[0, 1],

 [2, 3]])

>>> a*b

array([[0., 0.],

 [0., 3.]])

>>> np.dot(a,b)

array([[0., 1.],

 [2., 3.]])

ARRAY OPERATIONS

• There are also some built-in

methods of ndarray objects.

Universal functions which

may also be applied

include exp, sqrt, add, sin,

cos, etc…

>>> a = np.random.random((2,3))

>>> a

array([[0.68166391, 0.98943098, 0.69361582],

 [0.78888081, 0.62197125, 0.40517936]])

>>> a.sum()

4.1807421388722164

>>> a.min()

0.4051793610379143

>>> a.max(axis=0)

array([0.78888081, 0.98943098, 0.69361582])

>>> a.min(axis=1)

array([0.68166391, 0.40517936])

ARRAY OPERATIONS

• An array shape can be

manipulated by a number

of methods.

resize(size) will modify an

array in place.

reshape(size) will return a

copy of the array with a

new shape.

>>> a = np.floor(10*np.random.random((3,4)))

>>> print (a)

[[9. 8. 7. 9.]

 [7. 5. 9. 7.]

 [8. 2. 7. 5.]]

>>> a.shape

(3, 4)

>>> a.ravel()

array([9., 8., 7., 9., 7., 5., 9., 7., 8., 2., 7., 5.])

>>> a.shape = (6,2)

>>> print (a)

[[9. 8.]

 [7. 9.]

 [7. 5.]

 [9. 7.]

 [8. 2.]

 [7. 5.]]

>>> a.transpose()

array([[9., 7., 7., 9., 8., 7.],

 [8., 9., 5., 7., 2., 5.]])

LINEAR ALGEBRA

• One of the most common reasons for

using the NumPy package is its linear

algebra module.

>>> from numpy import *

>>> from numpy.linalg import *

>>> a = array([[1.0, 2.0], [3.0, 4.0]])

>>> print (a)

[[1. 2.]

 [3. 4.]]

>>> a.transpose()

array([[1., 3.],

 [2., 4.]])

>>> inv(a) # inverse

array([[-2. , 1.],

 [1.5, -0.5]])

LINEAR ALGEBRA

>>> u = eye(2) # unit 2x2 matrix; "eye" represents "I"

>>> u

array([[1., 0.],

 [0., 1.]])

>>> j = array([[0.0, -1.0], [1.0, 0.0]])

>>> dot(j, j) # matrix product

array([[-1., 0.],

 [0., -1.]])

>>> trace(u) # trace

2.0

>>> y = array([[5.], [7.]])

>>> solve(a, y) # solve linear matrix equation

array([[-3.],

 [4.]])

>>> eig(j) # get eigenvalues/eigenvectors of matrix

(array([0.+1.j, 0.-1.j]),

 array([[0.70710678+0.j, 0.70710678+0.j],

 [0.00000000-0.70710678j, 0.00000000+0.70710678j]]))

MATRICES

• There is also a matrix class which

inherits from the ndarray class.

There are some slight differences but

matrices are very similar to general

arrays.

In NumPy’s own words, the question of

whether to use arrays or matrices comes

down to the short answer of “use arrays”.

>>> A = matrix('1.0 2.0; 3.0 4.0')

>>> A

[[1. 2.]

 [3. 4.]]

>>> type(A)

<class 'numpy.matrixlib.defmatrix.matrix'>

>>> A.T # transpose

[[1. 3.]

 [2. 4.]]

>>> X = matrix('5.0 7.0')

>>> Y = X.T

>>> print (A*Y) # matrix multiplication

[[19.]

 [43.]]

>>> print (A.I) # inverse

[[-2. 1.]

 [1.5 -0.5]]

>>> solve(A, Y) # solving linear equation

matrix([[-3.], [4.]])

NUMPY DOCS

• There is a very nice table of NumPy equivalent operations for MATLAB users.

However, even if you do not know MATLAB, this is a pretty handy overview of NumPy

functionality.

There is also a pretty comprehensive list of example usage of all the NumPy functions

here.

http://mathesaurus.sourceforge.net/matlab-numpy.html
https://docs.scipy.org/doc/numpy/reference/routines.html?highlight=((Numpy+Example+List+With+Doc))

SCIPY

• Now we move on to SciPy. In it’s own words:

• Basically, SciPy contains various tools and functions for solving common problems in

scientific computing.

SciPy is a collection of mathematical algorithms and

convenience functions built on the Numpy extension of

Python. It adds significant power to the interactive

Python session by providing the user with high-level

commands and classes for manipulating and visualizing

data. With SciPy an interactive Python session becomes

a data-processing and system-prototyping environment

rivaling sytems such as MATLAB, IDL, Octave, R-Lab, and

SciLab.

SCIPY

SciPy’s functionality is implemented in a number of specific sub-modules. These include:

Special mathematical functions (scipy.special) -- airy, elliptic, bessel, etc.

Integration (scipy.integrate)

Optimization (scipy.optimize)

Interpolation (scipy.interpolate)

Fourier Transforms (scipy.fftpack)

Signal Processing (scipy.signal)

Linear Algebra (scipy.linalg)

Compressed Sparse Graph Routines (scipy.sparse.csgraph)

Spatial data structures and algorithms (scipy.spatial)

Statistics (scipy.stats)

Multidimensional image processing (scipy.ndimage)

Data IO (scipy.io)

Weave (scipy.weave)

and more!

SCIPY

• We can’t possibly tour all of the SciPy library and, even if we did, it might be a little
boring. So let’s just look at some example modules with SciPy to see how it can be used in
a Python program.

Let’s start with a simple little integration example.
Say we wanted to compute the following:

• Obviously, the first place we should look is

scipy.integrate!

 sin 𝑥 𝑑𝑥𝑏
𝑎

SCIPY.INTEGRATE

• Methods for Integrating Functions given a function object:

• quad -- General purpose integration.

 dblquad -- General purpose double integration.

 tplquad -- General purpose triple integration.

 fixed_quad -- Integrate func(x) using Gaussian quadrature of order n.

 quadrature -- Integrate with given tolerance using Gaussian quadrature.

 romberg -- Integrate func using Romberg integration.

• Methods for Integrating Functions given a fixed set of samples:

• trapz -- Use trapezoidal rule to compute integral from samples.

 simps -- Use Simpson's rule to compute integral from samples.

 romb -- Use Romberg Integration to compute integral from (2**k + 1) evenly-spaced

 samples.

SCIPY.INTEGRATE

• >>> result = scipy.integrate.quad(np.sin, 0, np.pi)

>>> print (result)

(2.0, 2.220446049250313e-14) # 2 with a very small error margin!

>>> result = scipy.integrate.quad(np.sin, -np.inf, +np.inf)

>>> print (result)

(0.0, 0.0) # Integral does not converge

We have a function object – np.sin defines the sin function for us. We can compute the definite

integral from 𝑥 = 0 to 𝑥 = 𝜋 using the quad function.

SCIPY.INTEGRATE

>>> sample_x = np.linspace(0, np.pi, 1000)

>>> sample_y = np.sin(sample_x) # Creating 1,000 samples

>>> result = scipy.integrate.trapz(sample_y, sample_x)

>>> print (result)

1.99999835177

>>> sample_x = np.linspace(0, np.pi, 1000000)

>>> sample_y = np.sin(sample_x) # Creating 1,000,000 samples

>>> result = scipy.integrate.trapz(sample_y, sample_x)

>>> print (result)

2.0

Let’s say that we don’t have a function object, we only have some (x,y) samples that “define” our function.
We can estimate the integral using the trapezoidal rule.

MATPLOTLIB

• We’re going to continue our discussion of scientific computing with matplotlib.

Matplotlib is an incredibly powerful (and beautiful!) 2-D plotting library. It’s easy to
use and provides a huge number of examples for tackling unique problems.

PYPLOT

• At the center of most matplotlib

scripts is pyplot. The pyplot

module is stateful and tracks

changes to a figure. All pyplot

functions revolve around creating

or manipulating the state of a

figure.

import matplotlib.pyplot as plt

plt.plot([1,2,3,4,5])

plt.ylabel('some significant numbers')

plt.show()

When a single sequence object is passed to the

plot function, it will generate the x-values for you

starting with 0.

PYPLOT

• The plot function can actually take any number of arguments. Common usage of plot:

 plt.plot(x_values, y_values, format_string [, x, y, format,])

• The format string argument associated with a pair of sequence objects indicates the color

and line type of the plot (e.g. ‘bs’ indicates blue squares and ‘ro’ indicates red circles).

Generally speaking, the x_values and y_values will be numpy arrays and if not, they

will be converted to numpy arrays internally.

Line properties can be set via keyword arguments to the plot function. Examples include
label, linewidth, animated, color, etc…

PYPLOT

import numpy as np

import matplotlib.pyplot as plt

evenly sampled time at .2 intervals

t = np.arange(0., 5., 0.2)

red dashes, blue squares and green triangles

plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')

plt.axis([0, 6, 0, 150]) # x and y range of axis

plt.show()

BEHIND THE SCENES

• It’s important to note that a figure is a separate idea from how it is rendered. Pyplot

convenience methods are used for creating figures and immediately displaying them

in a pop up window. An alternative way to create this figure is shown below.

import numpy as np

import matplotlib.figure as figure

t = np.arange(0, 5, .2)

f = figure.Figure()

axes = f.add_subplot(111)

axes.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')

axes.axis([0, 6, 0, 150])

PYPLOT

import numpy as np

import matplotlib.pyplot as plt

def f(t):

 return np.exp(-t) * np.cos(2*np.pi*t)

t1 = np.arange(0.0, 5.0, 0.1)

t2 = np.arange(0.0, 5.0, 0.02)

plt.figure(1) # Called implicitly but can use

 # for multiple figures

plt.subplot(211) # 2 rows, 1 column, 1st plot

plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')

plt.subplot(212) # 2 rows, 1 column, 2nd plot

plt.plot(t2, np.cos(2*np.pi*t2), 'r--')

plt.show()

A script can generate multiple figures,

but

typically you’ll only have one.

To create multiple plots within a
figure, either use the subplot()

function which manages the layout of
the figure or use add_axes().

PYPLOT

PYPLOT

• The text() command can be used to add text in an arbitrary location

• xlabel() adds text to x-axis.

• ylabel() adds text to y-axis.

• title() adds title to plot.

• clear() removes all plots from the axes.

 All methods are available on pyplot and on the axes instance generally.

PYPLOT

import numpy as np

import matplotlib.pyplot as plt

mu, sigma = 100, 15

x = mu + sigma * np.random.randn(10000)

the histogram of the data

n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)

plt.xlabel('Smarts')

plt.ylabel('Probability')

plt.title('Histogram of IQ')

plt.text(60, .025, r'$\mu=100,\ \sigma=15$') #TeX equations

plt.axis([40, 160, 0, 0.03])

plt.grid(True)

plt.show()

PYPLOT

PYPLOT

• There are tons of specialized functions – check out the API here. Also check out the

examples list to get a feel for what matploblib is capable of (it’s a lot!).

You can also embed plots into GUI applications.

For PyQt4, use matplotlib.backends.backend_qt4agg.

• Let’s do a little demonstration.

http://matplotlib.org/api/index.html
http://matplotlib.org/examples/index.html

PLOT GUI

• The two most important classes from matplotlib.backends.backend_qt4agg:

• FigureCanvasQTAgg(fig): returns the canvas the figure fig renders into.

• NavigationToolbar2QT(canvas, prnt): creates a navigation toolbar for canvas

which has the parent prnt.

 Furthermore, a canvas object has the following method defined:

• canvas.draw(): redraws the updated figure on the canvas.

