Lecture |

Getting Started with Python

INSTRUCTOR

Sharanya Jayaraman

PhD Candidate in Computer Science

Research Interests:
* High Performance Computing
* Numerical Methods
e Computer Architecture

Other Interests:

e Movies
e Food
* SpongeBob

TEACHING ASSISTANT

Timothy Barao

Graduate Student, ACM VP

Writes Contest Questions

Interests:
* Machine learning

* Recreating Skynet to help Arthur in
World Domination, scaring Elon Musk

* Pugs

TEACHING ASSISTANT

* Rupak Roy
e Graduate Student

* Research Interests:
* Graph Thoery
* Parallel Programming

* Big Data

CIS 4930 - INSTRUCTOR’S EXPECTATIONS

Reading

* Please read through the entire write-up
a couple of times to understand the
requirements before asking questions.

* Most of the assignments/ problem
statements will be long. Jumping the
gun without reading the whole thing
could be detrimental.

CIS 4930 - INSTRUCTOR’S EXPECTATIONS

Basic Arithmetic

* You will not be allowed calculators for
the test.

* However, you will be expected to do
some very basic math operations on
your tests.

* You are being forewarned. Math is not
scary.

CIS 4930 - INSTRUCTOR’S EXPECTATIONS

Initiative

» Try a few different approaches before
asking for help.

* This is not an introductory class. You will
be expected to accomplish certain
things on your own.

* You will be given a week to 10 days for
homeworks. Please start early. You need
that amount of time to complete them.

CIS 4930 - INSTRUCTOR’S EXPECTATIONS

Attendance

» The class is very incremental. So,
skipping a few classes will get you into
trouble.You are expected to attend
class.

« While we understand that sometimes,
circumstances result in missing a couple
of classes, missing quite a few classes is
not condoned.

CIS 4930 - INSTRUCTOR’S EXPECTATIONS

Effort

* You need to devote time outside class to
practice. Practice is the only way to
better yourself as a programmer.

* The instructor and the TA’s are available
to help. Please do not hesitate to ask for
help.

CIS 4930 - STUDENTS’ EXPECTATIONS

 TBD

About Python

* Development started in the 1980’s by Guido van Rossum.
* Only became popular in the last decade or so.

* Python 2.x currently dominates, but Python 3.x is the future of Python.
* Interpreted, very-high-level programming language.
* Supports a multitude of programming paradigms.

* OOP, functional, procedural, logic, structured, etc.

* General purpose.
* Very comprehensive standard library includes numeric modules, crypto services, OS interfaces,
networking modules, GUI support, development tools, etc.

Philosophy

From The Zen of Python (

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than right now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Notable Features

* Easy to learn.

* Supports quick development.

* Cross-platform.

* Open Source.

* Extensible.

* Embeddable.

* Large standard library and active community.
* Useful for a wide variety of applications.

Getting Started

Before we can begin, we need to actually install Python!

The first thing you should do is download and install our custom guide to setting up a

virtual machine and write your first Python program.
We will be using an Ubuntu virtual machine in this course. All instructions and examples

will target this environment — this will make your life much easier.
Do not put this off until your first assignment is due!

Getting Started

* Choose and install an editor.
* For Linux, | prefer PyCharm (available for all platforms).
* Windows users will likely use Idle by default.
* Options include vim, emacs, Notepad++, SublimeText, Eclipse, etc.

Throughout this course, | will be using an Ubuntu environment for all of the demos.

The TA’s will be grading by running your program from the command line in a Ubuntu
environment. Please test using something similar if you’re using an IDE.

Interpreter

* The standard implementation of Python is interpreted.
* You can find info on various implementations

* The interpreter translates Python code into bytecode, and this bytecode is executed
by the Python VM (similar to Java).

* Two modes: normal and interactive.
* Normal mode: entire .py files are provided to the interpreter.
* Interactive mode: read-eval-print loop (REPL) executes statements piecewise.

Interpreter: Normal mode

Let’s write our first Python program!
In our favorite editor, let’s create helloworld.py with the following contents:

From the terminals: Note: In Pytho.n 205, prl.n’r is a stq'remen’r: In
Python 3.x, it is a function. If you are using Python 2.x and

want to get into the 3.x habit, include at the beginning:
print (“Hello, World!™) from future import print function

Now, you can write
$ python3 helloworld.py print (“Hello, World!”)

Hello, World!

Interpreter: Normal mode

Let’s include a she-bang in the beginning of helloworld.py:

#!/usr/bin/env python
("Hello, ko ielt=ag

Now, from the terminal:

$./helloworld.py
Hello, World!

Interpreter: Interactive mode

Let’s accomplish the same task
(and more) in interactive mode.

Some options:

-c : executes single command.
-O: use basic optimizations.
-d: debugging info.

More can be found

S python3
e rpErhnEe (NHello, World!"™)
Hello, World!
>>> hellostring = "Hello, World!"
>>> hellostring
'Hello, World!'
>>> 2*5
10
>>> 2*hellostring
'Hello, World!'Hello, World!'
>>> for i in range(0,3):
Pran e YHell o, World!™)

Hello, World!
Hello, World!
Hello, World!
>>> exit ()

S

Some fundamentals

* Whitespace is significant in Python. Where other languages may use {} or (), Python
uses indentation to denote code blocks.

St s o ccommen t
1 range (0, 3) :
(1)

* Comments
* Single-line comments denoted by #.
* Multi-line comments begin and end with three “s. e

* Typically, multi-line comments are meant for documentation.
YP Y """here’s a comment about

ERES s nec function"""
R k1 N a

* Comments should express information that cannot be expressed
* in code — do not restate code.

ik e GOt)

Python typing

* Python is a strongly, dynamically typed language.
* Strong Typing
* Obviously, Python isn’t performing static type checking, but it does prevent mixing operations
between mismatched types.
* Explicit conversions are required in order to mix types.
* Example: 2 + “four” < not going to fly
* Dynamic Typing
* All type checking is done at runtime.
* No need to declare a variable or give it a type before use.

Let’s start by looking at Python’s built-in data types.

Numeric Types

The subtypes are int, long, float and complex.
* Their respective constructors are int(), long(), float(), and complex().

* All numeric types, except complex, support the typical numeric operations you'd

expect to find (a list is available).
* Mixed arithmetic is supported, with the “narrower” type widened to that of the

other. The same rule is used for mixed comparisons.

Numeric Types

S oYl atels)
g 3)
* Numeric 2 :

* int: equivalent to C’s long int in 2.x but unlimited in >>> 18 % 5

3.x. 5

* float: equivalent to C’s doubles. >>> abs (-7)

* long: unlimited in 2.x and unavailable in 3.x. 7

* complex: complex numbers. >>> float (9)
gk ()

*Supported operations include constructors (i.e. int(3)), >>> int (5.3)

arithmetic, negation, modulus, absolute value, 5

exponentiation, etc.

e complex (1 ,2)
EIRRD 1)

S>>0 Tk *g

26

Sequence data types

There are seven sequence subtypes: strings, Unicode strings, lists, tuples, bytearrays,
buffers, and xrange objects.

All data types support arrays of objects but with varying limitations.

The most commonly used sequence data types are strings, lists, and tuples. The xrange
data type finds common use in the construction of enumeration-controlled loops. The
others are used less commonly.

Sequence types: Strings

Created by simply enclosing characters in either single- or double-quotes.
It's enough to simply assign the string to a variable.
Strings are immutable.

There are a tremendous amount of built-in string methods (listed).

mystring =i HiS, SeliTie clesssiiais 15 e s

Sequence types: Strings

Python supports a number of escape sequences such as ‘\t’, ‘\n’, etc.

Placing ‘r’ before a string will yield its raw value.

There is a string formatting operator ‘%’ similar to C. A list of string formatting
symbols is available

Two string literals beside one another are automatically concatenated together.

(" \tHel o N Enas $ python ex.py

(r"\ tio T L aNEES Hello,

("Python 1S .V FESic e ey
\tWorld!\n

Python is so cool.

Sequence Types: Unicode Strings

Unicode strings can be used to store and
manipulate Unicode data.

As simple as creating a normal string (just
put a ‘U’ on itl).

Use Unicode-Escape encoding for special
characters.

Also has a raw mode, use ‘ur’ as a prefix.
To translate to a regular string, use the
.encode() method.

To translate from a regular string to Unicode,
use the unicode() function.

myunicodestrl R e s s ! "
myunicodestr2 = u"Hi\u0020Class!"
myunicodestrl, myunicodestr?2
newunicode = u'\xed\xfo\xfc'
newunicode
newstr = newunicode.encode ('utf-8")
newstr
unicode (newstr, 'utf-8")

Output:

Hi Class! Hi Class!
aou

aou

aou

Sequence Types: Lists

Lists are an incredibly useful
compound data type.

Lists can be initialized by
the constructor, or with a
bracket structure containing
O or more elements.

Lists are mutable — it is
possible to change their
contents. They contain the
additional mutable
operations.

Lists are nestable. Feel free
to create lists of lists of
lists...

mylist = [42, 'apple', u'unicode apple',

print mylist
mylist[2] = 'banana'
print mylist

my L3 s sl v M teml 'y titem2 '],

print mylist
Y1 adsi VS O)
print mylist
print mylist.pop ()

ikt 37 ,

mynewlist = [x*2 for x in range(0,5)]

print mynewlist

[42, 'apple’, u'unicode apple’, 5234656]
[42, 'apple’, 'banana’, 5234656]

[42, 'apple’, 'banand’, [[item1’, "item2'], [item3’, 'item4]]
[42, [['item1’, 'item?2'], ['item3’, "item4']], 'apple’, 'banana']

banana

[0, 2, 4, 6, 8]

5234656]

'itemd']]

Sequence data types

* Sequence

; $ python
* str: string, represented as a >>> mylist ="["spam", "eggs", "toast"] # List of strings!
sequence of 8-bit characters in >>> "eggs" in mylist
Python 2.x. True
*unicode: stores an abstract >>> len(mylist)
sequence of P 3
* list: a compound, mutable data >>> mynewlist = ["coffee", "tea"]

>>> mylist + mynewlist

[FSpaltie A e e s MENOe S % coffee’', 'tea']
>>> mytuple = tuple(mynewlist)

>>> mytuple

type that can hold items of
varying types.
* tuple: a compound, immutable

data type that can hold items of ('coffee', 'tea')

varying types. Comma separated >>> mytuple.index ("tea")

items surrounded by parentheses. 1

* a few more — we’ll cover them S>> ait alone eSS PR s Yeggs !, 'toast', 'coffee', 'tea']
later. >>> mylonglist[2:4]

FEEE Oaiai? s A ORI e e |

Common sequence operations

Operation Result

X NS True if an item of s is equal to x, else False.
All sequence data XA NOL Saals False if an item of s is equal to x, else True.
types support the
following operations. Sy xS The concatenation of s and t.

S A e 0 n shallow copies of s concatenated.

s[i] ith item of s, origin O.

SRR Slice of s from i to j.

S Jrage Slice of s from i to | with step k.

len(s) Length of s.

min (s) Smallest item of s.

max (s) Largest item of s.

s.1lndex (x) Index of the first occurrence of x in s.

S’ ClOITEHSN) Total number of occurrences of x in s.

Common sequence operations

Mutable sequence types further support the following operations.

Operation
s[1i] = x
s [1 73 L SSaRs
del sihaza

S [1% e

de l sH iR
s.append (x)

Result
ltem i of s is replaced by x.

Slice of s from i to j is replaced by the contents of t.

Same as si:j] = [].

The elements of s[i:j:k] are replaced by those of t.

Removes the elements of s[i:j:k] from the list.

Add x to the end of s.

Common sequence operations

Mutable sequence types further support the following operations.

s.extend (x) Appends the contents of x to s.

S . COUnGNEs) Return number of i’s for which s[i] == x.

s.ilndex (X[, % 15N aEINE Return smallest k such that s[k] == x and i <=k <j.
S . 1N SerrMEL RSy Insert x at position i.

s.pop([i]) Same as x = si]; del s[i]; return x.

s.remove (x) Same as del s[s.index(x)].

s.reverse () Reverses the items of s in place.

s.sort([cmp[, key[, reverse]]]) Sortthe items of sin place.

Basic built-in data types

* Set
* set: an unordered
collection of unique objects.
* frozenset: an immutable
version of set.

>>> basket = ['apple', 'orange',

>>> fruit = set (basket)

>>> fruit

set(['orange', 'pear', 'apple'l])
>>> 'orange' in fruit

gl =

>>> 'crabgrass' in fruit

False

>>> a = set('abracadabra')

>>> b = set('alacazam')

>>> a

Set([‘a', 'rl, 'b" 'C', 'dl])
P Vel sale)

set([‘r', 'd', 'b'])

>S5 5 b

set(['a', va, vrv, 'd', 'b', m'

epple!s,

'pear',

'orange']

Basic built-in data types

>>> gradebook = dict ()

>>> gradebook['Susan Student'] = 87.0 * Mapping
>>> gradebook * dict: hash tables,
{ 'Susan StudenFSISEHEs IﬂGpS(]SeTofkeysto

>>> gradebook['Peter Pupil'] = 94.0

>>> gradebook. keys ()

['Peter Pupil', 'Susan Student']

>>> gradebook.values ()

[.94 0 i Cl S

>>> gradebook.has key('Tina Tenderfoot')
False

>>> gradebook['Tina Tenderfoot'] = 99.9
>>> gradebook

{'Peter Pupil': 94,0, ESusaniSEiclcchimmee- s s RBahider Toot " 99,9}
>>> gradebook['Tina TenderfOo LI e=Ru Eoiisiaeion i

>>> gradebook

{'Peter Pupil': 94 .0, "SusaniEsSiallccrisa-a s/ st ke Ticler foot': [99.9,

arbitrary objects.

oAl I8

Python Data Types

So now we’ve seen some interesting Python data types.
Notably, we're very familiar with numeric types, strings, and lists.

That’s not enough to create a useful program, so let’s get some control flow tools
under our belt.

Control flow tools

While loops have the following general
structure.

expression:
statements

Here, statements refers to one or more
lines of Python code. The conditional
expression may be any expression,
where any non-zero value is true. The
loop iterates while the expression is true.
Note: All the statements indented by the
same amount after a programming
construct are considered to be part of a
single block of code.

1
B /5,
i
1= 1 + 1
flag
o
i =1+ 1
1
2
3
True 4
True 5
True 6

True 7

Control flow tools

The if statement has the following
general form.

if expression:
st atemeries

If the boolean expression evaluates to
True, the statements are executed.
Otherwise, they are skipped entirely.

=N P
o 10
Bl ¢
print "a
if not b:
print "b
if a and b:

print "a
if a or b:
print "a

a is truel
b is falsel
a or b is truel

| W

st Prue

e R se L Y

Eci R adre true!™

GEReLEet] s truc!"

Control flow tools

You can also pair an else with an
if statement.

if expression:
ST atemeriEs

else:
SEalEelleRins

The elif keyword can be used to
specify an else if statement.
Furthermore, if statements may be
nested within each other.

GRS
b=20
Sh
" e e el
2 m i (e
praint "a 1s greatest”
else:

peint™''c.1s greatest”
R SRley > SeE
print "b 1s greatest”
else:
PEITRES G 'sr greatest”

c is greatest

Control flow tools

The for loop has the following general form.

var sequerees
statements

If a sequence contains an expression list, it is
evaluated first. Then, the first item in the
sequence is assigned to the iterating variable
var. Next, the statements are executed. Each
item in the sequence is assigned to var, and
the statements are executed until the entire
sequence is exhausted.

For loops may be nested with other control
flow tools such as while loops and if
statements.

vowel:
vowel:
vowel:
vowel:
vowel:

N — O wibhN —

letter "aeiou":
guowed s~ ", letter
i ElxzZ= 3]
i
i range (0, 3) :

A

Control flow tools

it xrange (0, 4):
1
18 range (0,8,2):
1
Python has two handy functions for creating a range i higc (20,14 ,-2) :

of integers, typically used in for loops. These functions
are range() and xrange().
They both create a sequence of integers, but range()

gk

creates a list while xrange() creates an xrange obiject. ?
Essentially, range() creates the list statically while 5
xrange() will generate items in the list as they are 3
needed. We will explore this concept further in just 0
week or two.)
For very large ranges — say one billion values — you 4
should use xrange() instead. For small ranges, it doesn’t é
matter. 20
18

o

Control flow tools

There are four statements provided for
manipulating loop structures. These are
break, continue, pass, and else.

* break: terminates the current loop.

* continue: immediately begin the next
iteration of the loop.

* pass: do nothing. Use when a statement
is required syntactically.

* else: represents a set of statements that
should execute when a loop terminates.

num range (10,20) :

nums 2

11 is a prime number
13 is a prime number
17 is a prime number
19 is a prime number

range (3 ,num) :
num%$li ==

num,

'is a prime number'

Our first real Python program

Ok, so we got some basics out of the way. Now, we can try to create a real program.
| pulled a problem off of . Let’s have some fun.

Each new term in the Fibonacci sequence is generated by adding the previous two
terms. By starting with 1 and 2, the first 10 terms will be:

1,2, 3,5, 8, 13,21,34 35057 85 =

By considering the terms in the Fibonacci sequence whose values do not exceed four
million, find the sum of the even-valued terms.

A Solution Using basic python

from future import print function
total = 0

1, T2

while f1 < 4000000:

if f1 & 2 == 0: Python supports multiple
total = total + f1 assignment at once.
£1, f2 = F290F G > e Right hand side is fully evaluated
print (total) before setting the variables.

Output: 4613732

functions

A function is created with the def keyword. The
statements in the block of the function must be
indented.

def (args) :
statements

The def keyword is followed by the function
name with round brackets enclosing the
arguments and a colon. The indented statements
form a body of the function.

The return keyword is used to specify a list of
values to be returned.

Defining the function
def)t
print "Hello!"
print "How are you today?"

BERRESNGE eSS TIg() # Calling the function

Hello!
How are you today?

functions

All parameters in the Python language
are passed by reference.

However, only mutable objects can be
changed in the called function.

We will talk about this in more detail
later.

def (name, somelist):
print "Hello,", name, "!\n“
name = "Caitlin"

somelist[0] = 3
return 1, 2

RsARETE = wben

eSS, 2]

a,b = hello func(myname, mylist)
print myname, mylist

print a, b
Hello, Ben !
Ben [3, 2]

12

Functions

What is the output of the following code?

def (names) :
for n in names:
print "Hel 1O A ariai it

names[0] = 'Susie’
names[1l] = 'Pete’
names[2] = '"Will’
names = ['Susan', "PeEer T Sl aie

hello funie(menisEn
print "The names are now", names, "."

Hello, Susan !

Hello, Peter |

Hello, William !

The names are now [‘Susie’, ‘Pete’, ‘Will'] .

A solution with functions

def () :
The Python interpreter will set some special total = 0
environmental variables when it starts executing. R A0 =1 2

while f1 < 4000000:

If the Python interpreter is running the module (the source if f1 & 2 ==
file) as the main program, it sets the special __name___ total = total + f1
variable to have a value "__main__". This allows for MRS =D £] + f2
flexibility is writing your modules. return total
Note: __name__, as with other built-ins, has two underscores on if name e "

either side! _printgven_fgb ())

A solution with input

Enter the max Fibonacci number: 4000000

4613732
def (n) :
total ="
fl, 2 /=1F%
while fl1 < n:
if f1 % 2 ==
total =L ot ol sl i
£1, £2 =5E2Z N
return total
if name SRS
limit = input(“Enter the max Fibonacci number: ")

print (even fib(int(limit)))

Input — python 2.x

* raw_input()
* Asks the user for a string of input, and

returns the string. >>> print(raw input('What is your name? '))
* If you provide an argument, it will be used What is your name? Spongebob
as a prompt. Spongebob
* input() >>> print (input ('Do some math: '))
* Uses raw_input() to grab a string of datq, B semetaakth: ""2+2*5
but then tries to evaluate the string as if it ¥

were a Python expression.
* Returns the value of the expression.
* Dangerous — don’t use it.

Note: In Python 3.x, input() is now just an alias for raw_input()

Coding style

So now that we know how to write a Python program, let’s break for a bit to think
about our coding style. Python has a style guide that is useful to follow, you can read
about PEP 8

| encourage you all to check out , a Python source code analyzer that helps you
maintain good coding standards.

