
Lecture 1
Getting Started with Python

INSTRUCTOR

• Sharanya Jayaraman

• PhD Candidate in Computer Science

• Research Interests:

• High Performance Computing

• Numerical Methods

• Computer Architecture

• Other Interests:

• Movies

• Food

• SpongeBob

TEACHING ASSISTANT

• Timothy Barao

• Graduate Student, ACM VP

• Writes Contest Questions

• Interests:

• Machine learning

• Recreating Skynet to help Arthur in

World Domination, scaring Elon Musk

• Pugs

TEACHING ASSISTANT

• Rupak Roy

• Graduate Student

• Research Interests:

• Graph Thoery

• Parallel Programming

• Big Data

CIS 4930 – INSTRUCTOR’S EXPECTATIONS

Reading

• Please read through the entire write-up

a couple of times to understand the

requirements before asking questions.

• Most of the assignments/ problem

statements will be long. Jumping the

gun without reading the whole thing

could be detrimental.

CIS 4930 – INSTRUCTOR’S EXPECTATIONS

Basic Arithmetic

• You will not be allowed calculators for

the test.

• However, you will be expected to do

some very basic math operations on

your tests.

• You are being forewarned. Math is not

scary.

CIS 4930 – INSTRUCTOR’S EXPECTATIONS

Initiative

• Try a few different approaches before

asking for help.

• This is not an introductory class. You will

be expected to accomplish certain

things on your own.

• You will be given a week to 10 days for

homeworks. Please start early. You need

that amount of time to complete them.

CIS 4930 – INSTRUCTOR’S EXPECTATIONS

Attendance

• The class is very incremental. So,

skipping a few classes will get you into

trouble. You are expected to attend

class.

• While we understand that sometimes,

circumstances result in missing a couple

of classes, missing quite a few classes is

not condoned.

CIS 4930 – INSTRUCTOR’S EXPECTATIONS

Effort

• You need to devote time outside class to

practice. Practice is the only way to

better yourself as a programmer.

• The instructor and the TA’s are available
to help. Please do not hesitate to ask for

help.

CIS 4930 – STUDENTS’ EXPECTATIONS

• TBD

About Python

• Development started in the 1980’s by Guido van Rossum.
• Only became popular in the last decade or so.

• Python 2.x currently dominates, but Python 3.x is the future of Python.
• Interpreted, very-high-level programming language.
• Supports a multitude of programming paradigms.

• OOP, functional, procedural, logic, structured, etc.

• General purpose.
• Very comprehensive standard library includes numeric modules, crypto services, OS interfaces,
networking modules, GUI support, development tools, etc.

Philosophy
 From The Zen of Python (https://www.python.org/dev/peps/pep-0020/)
 Beautiful is better than ugly.
 Explicit is better than implicit.
 Simple is better than complex.
 Complex is better than complicated.
 Flat is better than nested.
 Sparse is better than dense.
 Readability counts.
 Special cases aren't special enough to break the rules.
 Although practicality beats purity.
 Errors should never pass silently.
 Unless explicitly silenced.
 In the face of ambiguity, refuse the temptation to guess.
 There should be one-- and preferably only one --obvious way to do it.
 Although that way may not be obvious at first unless you're Dutch.
 Now is better than never.
 Although never is often better than right now.
 If the implementation is hard to explain, it's a bad idea.
 If the implementation is easy to explain, it may be a good idea.
 Namespaces are one honking great idea -- let's do more of those!

Notable Features

• Easy to learn.
• Supports quick development.
• Cross-platform.
• Open Source.
• Extensible.
• Embeddable.
• Large standard library and active community.
• Useful for a wide variety of applications.

Getting Started

Before we can begin, we need to actually install Python!

The first thing you should do is download and install our custom guide to setting up a
virtual machine and write your first Python program.
We will be using an Ubuntu virtual machine in this course. All instructions and examples
will target this environment – this will make your life much easier.
Do not put this off until your first assignment is due!

Getting Started

• Choose and install an editor.
• For Linux, I prefer PyCharm (available for all platforms).
• Windows users will likely use Idle by default.
• Options include vim, emacs, Notepad++, SublimeText, Eclipse, etc.

Throughout this course, I will be using an Ubuntu environment for all of the demos.

The TA’s will be grading by running your program from the command line in a Ubuntu
environment. Please test using something similar if you’re using an IDE.

Interpreter

• The standard implementation of Python is interpreted.
• You can find info on various implementations here.

• The interpreter translates Python code into bytecode, and this bytecode is executed
by the Python VM (similar to Java).
• Two modes: normal and interactive.

• Normal mode: entire .py files are provided to the interpreter.
• Interactive mode: read-eval-print loop (REPL) executes statements piecewise.

Interpreter: Normal mode

 Let’s write our first Python program!
 In our favorite editor, let’s create helloworld.py with the following contents:

 From the terminal:

$ python3 helloworld.py

Hello, World!

Note: In Python 2.x, print is a statement. In
Python 3.x, it is a function. If you are using Python 2.x and
want to get into the 3.x habit, include at the beginning:
from __future__ import print_function

Now, you can write

print(“Hello, World!”)

print (“Hello, World!“)

Interpreter: Normal mode

 Let’s include a she-bang in the beginning of helloworld.py:

Now, from the terminal:

$./helloworld.py

Hello, World!

#!/usr/bin/env python

print ("Hello, World!“)

Interpreter: Interactive mode

 Let’s accomplish the same task
(and more) in interactive mode.

 Some options:
 -c : executes single command.
 -O: use basic optimizations.
 -d: debugging info.
 More can be found here.

$ python3

>>> print ("Hello, World!“)
Hello, World!

>>> hellostring = "Hello, World!"

>>> hellostring

'Hello, World!'

>>> 2*5

10

>>> 2*hellostring

'Hello, World!Hello, World!'

>>> for i in range(0,3):

... print ("Hello, World!“)

...

Hello, World!

Hello, World!

Hello, World!

>>> exit()

$

Some fundamentals

• Whitespace is significant in Python. Where other languages may use {} or (), Python
uses indentation to denote code blocks.

• Comments
• Single-line comments denoted by #.
• Multi-line comments begin and end with three “s.
• Typically, multi-line comments are meant for documentation.
• Comments should express information that cannot be expressed
• in code – do not restate code.

here’s a comment

for i in range(0,3):

 print (i)

def myfunc():

 """here’s a comment about

 the myfunc function"""

 print ("I'm in a

function!“)

Python typing

• Python is a strongly, dynamically typed language.
• Strong Typing

• Obviously, Python isn’t performing static type checking, but it does prevent mixing operations
between mismatched types.
• Explicit conversions are required in order to mix types.
• Example: 2 + ũfourŪ  not going to fly

• Dynamic Typing
• All type checking is done at runtime.
• No need to declare a variable or give it a type before use.

Let’s start by looking at Python’s built-in data types.

Numeric Types

 The subtypes are int, long, float and complex.
• Their respective constructors are int(), long(), float(), and complex().

• All numeric types, except complex, support the typical numeric operations you’d
expect to find (a list is available here).
• Mixed arithmetic is supported, with the “narrower” type widened to that of the
other. The same rule is used for mixed comparisons.

Numeric Types

• Numeric
• int: equivalent to C’s long int in 2.x but unlimited in
3.x.
• float: equivalent to C’s doubles.
• long: unlimited in 2.x and unavailable in 3.x.
• complex: complex numbers.

•Supported operations include constructors (i.e. int(3)),
arithmetic, negation, modulus, absolute value,
exponentiation, etc.
•

$ python

>>> 3 + 2

5

>>> 18 % 5

3

>>> abs(-7)

7

>>> float(9)

9.0

>>> int(5.3)

5

>>> complex(1,2)

(1+2j)

>>> 2 ** 8

256

Sequence data types

 There are seven sequence subtypes: strings, Unicode strings, lists, tuples, bytearrays,
buffers, and xrange objects.
 All data types support arrays of objects but with varying limitations.
 The most commonly used sequence data types are strings, lists, and tuples. The xrange
data type finds common use in the construction of enumeration-controlled loops. The
others are used less commonly.

Sequence types: Strings

 Created by simply enclosing characters in either single- or double-quotes.
 It’s enough to simply assign the string to a variable.
 Strings are immutable.
 There are a tremendous amount of built-in string methods (listed here).

mystring = "Hi, I'm a string!"

Sequence types: Strings

 Python supports a number of escape sequences such as ‘\t’, ‘\n’, etc.
 Placing ‘r’ before a string will yield its raw value.
 There is a string formatting operator ‘%’ similar to C. A list of string formatting
symbols is available here.
 Two string literals beside one another are automatically concatenated together.

print ("\tHello,\n“)

print (r"\tWorld!\n“)

print ("Python is “ + "so cool.“)

$ python ex.py

 Hello,

\tWorld!\n

Python is so cool.

Sequence Types: Unicode Strings

 Unicode strings can be used to store and
manipulate Unicode data.
 As simple as creating a normal string (just
put a ‘u’ on it!).
 Use Unicode-Escape encoding for special
characters.
 Also has a raw mode, use ‘ur’ as a prefix.
 To translate to a regular string, use the
.encode() method.
 To translate from a regular string to Unicode,
use the unicode() function.

myunicodestr1 = u"Hi Class!"

myunicodestr2 = u"Hi\u0020Class!"

print myunicodestr1, myunicodestr2

newunicode = u'\xe4\xf6\xfc'

print newunicode

newstr = newunicode.encode('utf-8')

print newstr

print unicode(newstr, 'utf-8')

Output:
Hi Class! Hi Class!
äöü
äöü
äöü

Sequence Types: Lists
 Lists are an incredibly useful
compound data type.
 Lists can be initialized by
the constructor, or with a
bracket structure containing
0 or more elements.

 Lists are mutable – it is
possible to change their
contents. They contain the
additional mutable
operations.

 Lists are nestable. Feel free
to create lists of lists of
lists…

mylist = [42, 'apple', u'unicode apple', 5234656]

print mylist

mylist[2] = 'banana'

print mylist

mylist[3] = [['item1', 'item2'], ['item3', 'item4']]

print mylist

mylist.sort()

print mylist

print mylist.pop()

mynewlist = [x*2 for x in range(0,5)]

print mynewlist

[42, 'apple', u'unicode apple', 5234656]
[42, 'apple', 'banana', 5234656]
[42, 'apple', 'banana', [['item1', 'item2'], ['item3', 'item4']]]
[42, [['item1', 'item2'], ['item3', 'item4']], 'apple', 'banana']
banana

[0, 2, 4, 6, 8]

Sequence data types
• Sequence

• str: string, represented as a
sequence of 8-bit characters in
Python 2.x.
•unicode: stores an abstract
sequence of code points.
• list: a compound, mutable data
type that can hold items of
varying types.
• tuple: a compound, immutable
data type that can hold items of
varying types. Comma separated
items surrounded by parentheses.
• a few more – we’ll cover them
later.

$ python

>>> mylist = ["spam", "eggs", "toast"] # List of strings!

>>> "eggs" in mylist

True

>>> len(mylist)

3

>>> mynewlist = ["coffee", "tea"]

>>> mylist + mynewlist

['spam', 'eggs', 'toast', 'coffee', 'tea']

>>> mytuple = tuple(mynewlist)

>>> mytuple

('coffee', 'tea')

>>> mytuple.index("tea")

1

>>> mylonglist = ['spam', 'eggs', 'toast', 'coffee', 'tea']

>>> mylonglist[2:4]

['toast', 'coffee']

Common sequence operations

 All sequence data
types support the
following operations.

Operation Result

x in s True if an item of s is equal to x, else False.

x not in s False if an item of s is equal to x, else True.

s + t The concatenation of s and t.

s * n, n * s n shallow copies of s concatenated.

s[i] ith item of s, origin 0.

s[i:j] Slice of s from i to j.

s[i:j:k] Slice of s from i to j with step k.

len(s) Length of s.

min(s) Smallest item of s.

max(s) Largest item of s.

s.index(x) Index of the first occurrence of x in s.

s.count(x) Total number of occurrences of x in s.

Common sequence operations

 Mutable sequence types further support the following operations.

Operation Result

s[i] = x Item i of s is replaced by x.

s[i:j] = t Slice of s from i to j is replaced by the contents of t.

del s[i:j] Same as s[i:j] = [].

s[i:j:k] = t The elements of s[i:j:k] are replaced by those of t.

del s[i:j:k] Removes the elements of s[i:j:k] from the list.

s.append(x) Add x to the end of s.

Common sequence operations

s.extend(x) Appends the contents of x to s.

s.count(x) Return number of i’s for which s[i] == x.

s.index(x[, i[, j]]) Return smallest k such that s[k] == x and i <= k < j.

s.insert(i, x) Insert x at position i.

s.pop([i]) Same as x = s[i]; del s[i]; return x.

s.remove(x) Same as del s[s.index(x)].

s.reverse() Reverses the items of s in place.

s.sort([cmp[, key[, reverse]]]) Sort the items of s in place.

 Mutable sequence types further support the following operations.

Basic built-in data types

• Set
• set: an unordered
collection of unique objects.
• frozenset: an immutable
version of set.

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange']

>>> fruit = set(basket)

>>> fruit

set(['orange', 'pear', 'apple'])

>>> 'orange' in fruit

True

>>> 'crabgrass' in fruit

False

>>> a = set('abracadabra')

>>> b = set('alacazam')

>>> a

set(['a', 'r', 'b', 'c', 'd'])

>>> a - b

set(['r', 'd', 'b'])

>>> a | b

set(['a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'])

Basic built-in data types
>>> gradebook = dict()

>>> gradebook['Susan Student'] = 87.0

>>> gradebook

{'Susan Student': 87.0}

>>> gradebook['Peter Pupil'] = 94.0

>>> gradebook.keys()

['Peter Pupil', 'Susan Student']

>>> gradebook.values()

[94.0, 87.0]

>>> gradebook.has_key('Tina Tenderfoot')

False

>>> gradebook['Tina Tenderfoot'] = 99.9

>>> gradebook

{'Peter Pupil': 94.0, 'Susan Student': 87.0, 'Tina Tenderfoot': 99.9}

>>> gradebook['Tina Tenderfoot'] = [99.9, 95.7]

>>> gradebook

{'Peter Pupil': 94.0, 'Susan Student': 87.0, 'Tina Tenderfoot': [99.9, 95.7]}

• Mapping
• dict: hash tables,
maps a set of keys to
arbitrary objects.

Python Data Types

 So now we’ve seen some interesting Python data types.
 Notably, we’re very familiar with numeric types, strings, and lists.

 That’s not enough to create a useful program, so let’s get some control flow tools
under our belt.

Control flow tools
 While loops have the following general
structure.

 Here, statements refers to one or more
lines of Python code. The conditional
expression may be any expression,
where any non-zero value is true. The
loop iterates while the expression is true.
 Note: All the statements indented by the
same amount after a programming
construct are considered to be part of a
single block of code.

while expression:

 statements

i = 1

while i < 4:

 print i

 i = i + 1

flag = True

while flag and i < 8:

 print flag, i

 i = i + 1

1

2

3

True 4

True 5

True 6

True 7

Control flow tools

 The if statement has the following
general form.

If the boolean expression evaluates to
True, the statements are executed.
Otherwise, they are skipped entirely.

if expression:

 statements

a = 1

b = 0

if a:

 print "a is true!“

if not b:

 print "b is false!“

if a and b:

 print "a and b are true!“

if a or b:

 print "a or b is true!"

a is true!
b is false!
a or b is true!

Control flow tools

 You can also pair an else with an
if statement.

The elif keyword can be used to
specify an else if statement.
 Furthermore, if statements may be
nested within each other.

if expression:

 statements

else:

 statements

a = 1

b = 0

c = 2

if a > b:

 if a > c:

 print "a is greatest"

 else:

 print "c is greatest"

elif b > c:

 print "b is greatest"

else:

 print "c is greatest"

c is greatest

Control flow tools
 The for loop has the following general form.

 If a sequence contains an expression list, it is
evaluated first. Then, the first item in the
sequence is assigned to the iterating variable
var. Next, the statements are executed. Each
item in the sequence is assigned to var, and
the statements are executed until the entire
sequence is exhausted.
 For loops may be nested with other control
flow tools such as while loops and if
statements.

for var in sequence:

 statements

for letter in "aeiou":

 print "vowel: ", letter

for i in [1,2,3]:

 print i

for i in range(0,3):

 print i

vowel: a

vowel: e

vowel: i
vowel: o

vowel: u

1

2

3

0

1

2

Control flow tools

 Python has two handy functions for creating a range
of integers, typically used in for loops. These functions
are range() and xrange().
 They both create a sequence of integers, but range()
creates a list while xrange() creates an xrange object.
 Essentially, range() creates the list statically while
xrange() will generate items in the list as they are
needed. We will explore this concept further in just a
week or two.
 For very large ranges – say one billion values – you
should use xrange() instead. For small ranges, it doesn’t
matter.

for i in xrange(0, 4):

 print i

for i in range(0,8,2):

 print i

for i in range(20,14,-2):

 print i

0

1

2

3

0

2

4

6

20

18

16

Control flow tools

 There are four statements provided for
manipulating loop structures. These are
break, continue, pass, and else.
• break: terminates the current loop.
• continue: immediately begin the next
iteration of the loop.
• pass: do nothing. Use when a statement
is required syntactically.
• else: represents a set of statements that
should execute when a loop terminates.

for num in range(10,20):

 if num%2 == 0:

 continue

 for i in range(3,num):

 if num%i == 0:

 break

 else:

 print num, 'is a prime number'

11 is a prime number
13 is a prime number
17 is a prime number
19 is a prime number

Our first real Python program

 Ok, so we got some basics out of the way. Now, we can try to create a real program.
 I pulled a problem off of Project Euler. Let’s have some fun.

 Each new term in the Fibonacci sequence is generated by adding the previous two
terms. By starting with 1 and 2, the first 10 terms will be:
 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
 By considering the terms in the Fibonacci sequence whose values do not exceed four
million, find the sum of the even-valued terms.

A Solution Using basic python

from __future__ import print_function

total = 0

f1, f2 = 1, 2

while f1 < 4000000:

 if f1 % 2 == 0:

 total = total + f1

 f1, f2 = f2, f1 + f2

print(total)

Python supports multiple
assignment at once.
Right hand side is fully evaluated

before setting the variables.

Output: 4613732

functions

 A function is created with the def keyword. The
statements in the block of the function must be
indented.

The def keyword is followed by the function
name with round brackets enclosing the
arguments and a colon. The indented statements
form a body of the function.
 The return keyword is used to specify a list of
values to be returned.

def function_name(args):

 statements

Defining the function

def print_greeting():

 print "Hello!"

 print "How are you today?"

print_greeting() # Calling the function

Hello!
How are you today?

functions

 All parameters in the Python language
are passed by reference.
 However, only mutable objects can be
changed in the called function.
 We will talk about this in more detail
 later.

Hello, Ben !

Ben [3, 2]
1 2

def hello_func(name, somelist):

 print "Hello,", name, "!\n“

 name = "Caitlin"

 somelist[0] = 3

 return 1, 2

myname = "Ben"

mylist = [1,2]

a,b = hello_func(myname, mylist)

print myname, mylist

print a, b

Functions

 What is the output of the following code?

def hello_func(names):

 for n in names:

 print "Hello,", n, "!"

 names[0] = 'Susie’

 names[1] = 'Pete’

 names[2] = 'Will’

names = ['Susan', 'Peter', 'William']

hello_func(names)

print "The names are now", names, "."

Hello, Susan !
Hello, Peter !
Hello, William !
The names are now [‘Susie’, ‘Pete’, ‘Will’] .

A solution with functions

def even_fib():

 total = 0

 f1, f2 = 1, 2

 while f1 < 4000000:

 if f1 % 2 == 0:

 total = total + f1

 f1, f2 = f2, f1 + f2

 return total

if __name__ == "__main__":

 print(even_fib())

The Python interpreter will set some special
environmental variables when it starts executing.

If the Python interpreter is running the module (the source
file) as the main program, it sets the special __name__
variable to have a value "__main__". This allows for
flexibility is writing your modules.

Note: __name__, as with other built-ins, has two underscores on
either side!

A solution with input

def even_fib(n):

 total = 0

 f1, f2 = 1, 2

 while f1 < n:

 if f1 % 2 == 0:

 total = total + f1

 f1, f2 = f2, f1 + f2

 return total

if __name__ == "__main__":

 limit = input(“Enter the max Fibonacci number: ")

 print(even_fib(int(limit)))

Enter the max Fibonacci number: 4000000

4613732

Input – python 2.x

• raw_input()
• Asks the user for a string of input, and
returns the string.
• If you provide an argument, it will be used
as a prompt.

• input()
• Uses raw_input() to grab a string of data,
but then tries to evaluate the string as if it
were a Python expression.
• Returns the value of the expression.
• Dangerous – don’t use it.

Note: In Python 3.x, input() is now just an alias for raw_input()

>>> print(raw_input('What is your name? '))

What is your name? Spongebob

Spongebob

>>> print(input('Do some math: '))

Do some math: 2+2*5

12

Coding style

 So now that we know how to write a Python program, let’s break for a bit to think
about our coding style. Python has a style guide that is useful to follow, you can read
about PEP 8 here.
 I encourage you all to check out pylint, a Python source code analyzer that helps you
maintain good coding standards.

