FILE HANDLING AND
EXCEPTIONS



INPUT

« We’ve already seen how to use the input >>> (input ('What is your name? '))
function for grabbing input from a user:  What 1S your name? Spongebob
Spongebob
* input() >>>

» Asks the user for a string of input, and
returns the string.

» If you provide an argument, it will be
used as a prompt.
* raw_input() — Python 2

* in Python 2, input() is available, but it
will evaluate the expression.

* Considered dangerous - try and avoid it.

Note: reading an EOF will raise an EOFError.



FILES

Python includes a file object that we can use to manipulate files. There are two ways to
create file objects.

* Use the file() constructor — Python 2

* The second argument accepts a few special characters: ‘r’ for reading (default), ‘w’ for
writing, ‘a’ for appending, ‘r+’ for reading and writing, ‘b’ for binary mode.

>>> = file( sl Heme st e " f 1 ")

e Use the open() method- Python 3

* The first argument is the filename, the second is the mode.

>>> { = openu( e iSiic i Ghie Seea i T D)

Note: when a file operation fails,an IOError exception is raised.



FILE INPUT

e =igpen ("somefile.txt",'r'")
>>> f.read()
"Here's a line.\nHere's another line.\n"
>>> f.close()
>>> f = open("somefile.txt",'r")
There are a few ways to grab input from a file. >>> f.readline ()
f.read() "Here's a line.\n"
>>> f.readline ()

* Returns the entire contents of a file as a string. :
g S e e okther 1ine. \n"

* Provide an argument to limit the number of >>> f.readline ()
characters you pick up. e
f.readline() >>> f.close()

« One by one, returns each line of a file as a e mopen(tsomefile. txt", 'r')

string (ends with a newline). >>> for line in f:

» End-of-file reached when return string is print (line)

empty.
Here®s a line.
Loop over the file object.

* Most common, just use a for loop! Here's another line.



FILE INPUT
e Close the file with f.close()

* Close it up and free up resources.

>>> £ = open("somefile.txt", 'r')
>>> f.readline()

"Here’s line in the file! \n"
>>> f.close()

* Another way to open and read:

No need to close, file objects automatically close when they go out of scope.

with open("text.txt", "r") as txt:
for 71 snefS 1T gt

print (line)



STANDARD FILE OBJECTS

* Just as C++ has cin, cout, and cerr, Python has standard file objects for input, output,
and error in the sys module.
* Treat them like a regular file object.

SYyS
line sys.stdin:
(line)

* You can also receive command line arguments from sys.argv] ].

ehiac] SyS.argv: $ python program.py here are some arguments
(arqg) program.py
here
are
some

arguments



OUTPUT

e print()
* Use the print() function to print to the user.
+ Use comma-separated arguments (separates with space) or concatenate strings.
* Each argument will be evaluated and converted to a string for output.
* print() has two optional keyword args, end and sep.
>>> print ("Hell o, S SN cTEsEars ZliseEe)
Hello, World 2018

>>> print ("Hellofr<is sl e psameaety o amise o
Hello, World 2018

>>> for 1 in range(10) :
print (i, end = ‘') # Do not include trailing
newline

07 17 288 ¥4 86 SScan T s SR



PRINT FUNCTION

(*objects, sep=' ', end='\n', file=sys.stdout)

Specify the separation string using the sep argument. This is the string printed
between comma-separated objects.

Specify the last string printed with the end argument.

Specify the file object to which to print with the file argument.



PRINT FUNCTION

>>> print (555, 867, 930S e
555=867=5309
>>> print ("Winter!l , " LSHE ENEE SIS TR ame fio="a L\ ")

Winter is coOmITic s
>>>



FILE OUTPUT

« f.write(str)
« Writes the string argument str to the file object and returns None.
» Make sure to pass strings, using the str() constructor if necessary.

>>> £ = open("filename.txt", 'w')
>>> f.write("Heres a string that ends with " + str(2018))

 print >>f

* Print to objects that implement write() (i.e. file objects).
f = open("filename.txt","w")
for 1 in range(l, 11):
print >> £ Gt
f.close()



MORE ON FILES

File objects have additional built-in methods. Say I have the file object {:

f.tell () gives current position in the file.

f.seek (offset[, from]) offsetsthe position by offset bytes from from position.

f.flush () flushes the internal buffer.

Python looks for files in the current directory by default. You can also either provide the
absolute path of the file or use the os.chdir() function to change the current working
directory.



MODIFYING FILES AND DIRECTORIES

Use the os module to perform some file-processing operations.

os.rename (current name, new name) renames the file current name to
new_name.
os.remove (filename) deletes an existing file named filename.

oS

oS

OS.

OoS.

.mkdir (newdirname) creates a directory called newdirname.

.chdir (newcwd) changes the cwd to newcwd.

getcwd () returnsthe current working directory.

rmdir (dirname) deletesthe empty directory dirname.



EXCEPTIONS

* Errors that are encountered during the execution of a Python program are exceptions.

>>> print (spam)

Traceback (most recent call last):
File "<stdin>" el e '3

NameError: name 'spam' 1s not defined

>>> VNI
Traceback (most recent call last):
File "<stdin>G =il oo s ie e
TypeError: canhoieoncasciacc et adRdM 1 Nt objects

There are a number of built-in exceptions, which are listed here.


https://docs.python.org/2.7/library/exceptions.html#bltin-exceptions

HANDLING EXCEPTIONS

» Explicitly handling exceptions allows us to control otherwise undefined behavior in
our program, as well as alert users to errors. Use try/except blocks to catch and
recover from exceptions.

>>> while True:

try:
x = int(raw input ("Enter a number: "))
except ValueError:
print ("Oocops ! ! That was not a valid number. Try again.")

Enter a number: two
Coops !! That was +noeE ‘el viehlnis S EHisT S NEE e G 1.
Enter a number: 100



HANDLING EXCEPTIONS

» First, the try block is executed. If there are no errors, except is skipped.

» Ifthere are errors, the rest of the try block is skipped.

- Proceeds to except block with the matching exception type.

» Execution proceeds as normal.

>>> while True:

try:
x = int(input ("Enter a number: "))
except ValueError:
print ("Ocops i NEEThe S S Taaee bya L umber. Try again.")

Enter a number: two
OCoops '! That was ‘WeES ez e rbiims Nest I el s
Enter a number: 100



HANDLING EXCEPTIONS

* The try/except clause options are as follows:

Clause form Interpretation

except: Catch all (or all other) exception types
except name: Catch a specific exception only

except name as value: Catch the listed exception and its instance
except (namel, name?2) : Catch any of the listed exceptions

except (namel, name2) as value: Catch any of the listed exceptions and its

instance
else: Run if no exception is raised

finally: Always perform this block



HANDLING EXCEPTIONS

* There are a number of ways to form a try/except block.

>>> while True:

try:
x = int(input ("Enter a number: "))
except ValueError:
print ("Oocops !! That was not a valid number. Try again.")
except (TypeError, IOError) as e:
print (e)
else:

print ("No errors encountered!")
finally:
print ("We may or may not have encountered errors..")



RAISING AN EXCEPTION

* Use the raise statement to force an exception to occur. Useful for diverting a program
or for raising custom exceptions.

try:

raise IndexError("Index out of range")
except IndexError as 1e:

print("Index Error occurred: ", 1ie)

Output:
Index Error occurred: Index out of range



CREATING AN EXCEPTION

* Make your own exception by creating a new exception class derived from the
Exception class (we will be covering classes soon).

>>> class MyError (Exception) :

def (self, wvalue):
self.value = value
def (self) :

return repr(self.value)
>>> try:
raise MyError (2*2)

except MyError as e:
print ('My exception occurred, value:', e)

My exception occurred, value: 4



ASSERTIONS

 Use the assert statement to test a condition and raise an error if the condition is false.

>>> assert a == 2

1s equivalent to

>>> 1f not a == 2:
raise AssertionError ()



