
Structures

Lecture 14
COP 3014 Spring 2022

April 11, 2022



Motivation

I We have plenty of simple types for storing single items like
numbers, characters. But is this really enough for storing
more complex things, like patient records, address books,
tables, etc.?

I It would be easier if we had mechanisms for building up more
complex storage items that could be accessed with single
variable names

I Compound Storage – there are some built-in ways to
encapsulate multiple pieces of data under one name

I Array – we already know about this one. Indexed collections,
and all items are the same type

I Structure – keyword struct gives us another way to
encapsulate multiple data items into one unit. In this case,
items do not have to be the same type

I Structures are good for building records – like database
records, or records in a file.



What is a Structure?

A structure is a collection of data elements, encapsulated into one
unit.

I A structure definition is like a blueprint for the structure. It
takes up no storage space itself – it just specifies what
variables of this structure type will look like

I An actual structure variable is like a box with multiple data
fields inside of it. Consider the idea of a student database.
One student record contains multiple items of information
(name, address, SSN, GPA, etc)

I Properties of a structure:
I internal elements may be of various data types
I order of elements is arbitrary (no indexing, like with arrays)
I Fixed size, based on the combined sizes of the internal

elements



Creating Structure definitions and variables

Structure Definitions The basic format of a structure definition
is:
struct structureName

{
// data elements in the structure

};
I struct is a keyword

I The data elements inside are declared as normal variables.
structureName becomes a new type.

I Note that the two examples below are both just blueprints
specifying what will be in corresponding structure variables if
and when we create them.

I By themselves, these definitions above are not variables and
do not take up storage

I Fraction and Student can now be used as new type names



Example

/* A structure representing the parts of a fraction

(a rational number) */

struct Fraction

{
int num; // the numerator of the fraction

int denom; // the denominator of the fraction

};
/* A structure representing a record in a student

database */

struct Student

{
char fName[20]; // first name

char lName[20]; // last name

int socSecNumber; // social security number

double gpa; // grade point average

};



Structure variables

I To create an actual structure variable, use the structure’s
name as a type, and declare a variable from it. Format:
structureName variableName;

I Variations on this format include the usual forms for creating
arrays and pointers, and the comma-separated list for multiple
variables

I Examples
Fraction f1; // f1 is now a ‘Fraction’

Fraction fList[10]; // an array of ‘Fraction’

//structures

Fraction * fptr; // a pointer to a ‘Fraction’

//structure

Student stu1; // a Student structure variable

Student mathclass[10]; // an array of 10 Students

Student s1, s2, s3; // three Student variables



Legal variations in declaration syntax

I The definition of a structure and the creation of variables can
be combined into a single declaration, as well.

I Just list the variables after the structure definition block (the
blueprint), and before the semi-colon:
struct structureName

{
// data elements in the structure

} variable1, variable2, ... , variableN;

I Example:
struct Fraction

{
int num; // the numerator of the fraction

int denom; // the denominator of the fraction

} f1, fList[10], *fptr; // variable, array, and

pointer created



Legal variations in declaration syntax

I In fact, if you only want structure variables, but don’t plan to
re-use the structure type (i.e. the blueprint), you don’t even
need a structure name:
struct

// note: no structure NAME given

{
int num;

int denom;

} f1, f2, f3;

// three variables representing fractions

I Of course, the advantage of giving a structure definition a
name is that it is reusable. It can be used to create structure
variables at any point later on in a program, separate from the
definition block.



Legal variations in declaration syntax

I You can even declare structures as variables inside of other
structure defintions (of different types):
struct Date // a structure to represent a date

{
int month;

int day;

int year;

};
struct Employee

// a structure to represent an employee of a

company

{
char firstName[20];

char lastName[20];

Date hireDate;

Date birthDate;

};



Using structures

I Once a structure variable is created, how do we use it? How
do we access its internal variables (often known as its
members)?

I To access the contents of a structure, we use the
dot-operator. Format:
structVariableName.dataVariableName

I Example, using the fraction structure:
Fraction f1, f2;

f1.num = 4; // set f1’s numerator to 4

f1.denom = 5; // set f1’s denominator to 5

f2.num = 3; // set f2’s numerator to 3

f2.denom = 10; // set f2’s denominator to 10

cout << f1.num << ‘/’ << f1.denom; // prints 4/5

cout << f2.num << ‘/’ << f2.denom; // prints 3/10



Example, using the student structure:

Student sList[10]; // array of 10 students

// set first student’s data: (John Smith, SSN:

123456789, GPA: 3.75)

strcpy(sList[0].fName, "John");

strcpy(sList[0].lName, "Smith");

sList[0].socSecNumber = 123456789;

sList[0].gpa = 3.75;

// assume there’s more code here that initializes

other students

// This loop prints all 10 students -- their names

and their GPA

cout << fixed << setprecision(2);

for (int i = 0; i < 10; i++)

{
cout << sList[i].fName << ‘ ’ << sList[i].lName

<< ‘ ’ << sList[i].gpa << ‘\n’;
}



A shortcut for initializing structs

I While we can certainly initialize each variable in a structure
separately, we can use an initializer list on the declaration line,
too

I This is similar to what we saw with arrays

I This is only usable on the declaration line (like with arrays)

I The initializer set should contain the struct contents in the
same order that they appear in the struct definition

I Example (using the fraction structure):
Fraction f1 = 3, 5; //initialize num=3, denom=5

// This would be the same as doing the following:

f1.num = 3;

f1.denom = 5;

I Example (using the student structure):
Student s1 = {"John", "Smith", 123456789, 3.75};
Student s2 = {"Alice", "Jones", 123123123, 2.66};



I If we have a pointer to a structure, things are a little trickier:
Fraction f1; // a fraction structure

Fraction *fPtr; // pointer to a fraction

fPtr = &f1; // fPtr now points to f1

f1.num = 3; // this is legal, of course

fPtr.num = 10; // how about this? NO! ILLEGAL

// cannot put a pointer on the left side

// of the dot-operator

I Remember that to get to the target of a pointer, we
dereference it. The target of fPtr is *fPtr. So how about this?
*fPtr.num = 10; // closer, but still NO (not

quite)

I The problem with this is that the dot-operator has higher
precedence, so this would be interpreted as:
*(fPtr.num) = 10; // cannot put a pointer on the

left of the dot



Accessing internal data using a pointer to a structure

I But if we use parentheses to force the dereference to happen
first, then it works:
(*fPtr).num = 10; // YES!

I Alternative operator for pointers: While the above example
works, it’s a little cumbersome to have to use the parentheses
and the dereference operator all the time.

I So there is a special operator for use with pointers to
structures. It is the arrow operator:
pointerToStruct -> dataVariable

I Example:
Fraction * fPtr; // pointer to a fraction

// assume this has been pointed at a valid target

fPtr->num = 10; // set fraction’s numerator to 10

fPtr->denom = 11; // denominator set to 11

cout << fPtr->num << ‘/’ << fPtr->denom; //

prints: 10/11



Accessing members of nested structures

I Earlier, we saw an example of a structure variable used within
another structure definition
struct Date // Date is now a type name

{
int month;

int day;

int year;

}; // so that "Date" is the type name

struct Employee

{
char firstName[20];

char lastName[20];

Date hireDate;

Date birthDate;

};



Accessing members of nested structures

Here’s an example of initializing all the data elements for one
employee variable: Employee emp; // emp is an employee

variable

// Set the name to "Alice Jones"

strcpy(emp.firstName, "Alice");

strcpy(emp.lastName, "Jones");

// set the hire date to March 14, 2001

emp.hireDate.month = 3;

emp.hireDate.day = 14;

emp.hireDate.year = 2001;

// sets the birth date to Sept 15, 1972

emp.birthDate.month = 9;

emp.birthDate.day = 15;

emp.birthDate.year = 1972;



Accessing members of nested structures

I Here’s an example of an employee initialization using our
shortcut initializer form:
Employee emp2 = { "John", "Smith", {6, 10, 2003},
{2, 19, 1981} };

// John Smith, whose birthday is Feb 19, 1981,

was hired on June 10, 2003



Structures and the assignment operator

I With regular primitive types we have a wide variety of
operations available, including assignment, comparisons,
arithmetic, etc.

I Most of these operations would NOT make sense on
structures. Arithmetic and comparisons, for example:
Student s1, s2;

s1 = s1 + s2; // ILLEGAL!

// How would we add two students, anyway?

if (s1 < s2) // ILLEGAL. What would this mean?

// yadda yadda
I Using the assignment operator on structures IS legal, as long

as they are the same type. Example (using previous struct
definitions):
Student s1, s2;

Fraction f1, f2;

s1 = s2; // LEGAL. Copies contents of s2 into s1

f1 = f2; // LEGAL. Copies f2 into f1



Structures and the assignment operator

I Note that in the above example, the two assignment
statements are equivalent to doing the following:
// these 4 lines are equivalent to s1 = s2;

strcpy(s1.fName, s2.fName);

strcpy(s1.lName, s2.lName);

s1.socSecNumber = s2.socSecNumber;

s1.gpa = s2.gpa;

//these 2 lines are equivalent to f1 = f2;

f1.num = f2.num;

f1.denom = f2.denom;

I Clearly, direct assignment between entire structures is easier,
if a full copy of the whole thing is the desired result!



Passing structures into and out of functions

I Just like a variable of a basic type, a structure can be passed
into functions, and a structure can be returned from a
function.

I To use structures in functions, use structname as the
parameter type, or as a return type, on a function declaration

I Examples (assuming struct definition examples from previous
page):
// function that passes a structure variable as a

//parameter

void PrintStudent(Student s);

// function that passes in structure variables

// and returns a struct

Fraction Add(Fraction f1, Fraction f2);



Pass by value, reference, address

I Just like with regular varaibles, structures can be passed by
value or by reference, or a pointer to a structure can be
passed (i.e. pass by address)

I If just a plain structure variable is passed, as in the above
examples, it’s pass by value. A copy of the structure is made

I To pass by reference, use the & on the structure type, just as
with regular data types

I To pass by address, use pointers to structures as the
parameters and/or return

I As with pointers to the built-in types, you can use const to
ensure a function cannot change the target of a pointer

I It’s often a GOOD idea to pass structures to and from
functions by address or by reference

I structures are compound data, usually larger than plain atomic
variables

I Pass-by-value means copying a structure. NOT copying is
desirable for efficiency, especially if the structure is very large



Example

// function that passes a pointer to student

//structure as a parameter

void GetStudentData(Student* s);

// function that passes in structures by const

// reference, and returns a struct by value

Fraction Add(const Fraction& f1, const Fraction& f2);

//function that uses const on a structure pointer

// parameter. This function could take in an array

// of Students, or the address of one student.

void PrintStudents(const Student* s);

// or, this prototype is equivalent to the one above

void PrintStudents(const Student s[]);


