
Operators

Lecture 3
COP 3014 Spring 2022

January 21, 2022



Operators

I Special built-in symbols that have functionality, and work on
operands

I operand – an input to an operator
I Arity - how many operands an operator takes

I unary operator – has one operand
I binary operator – has two operands
I ternary operator – has three operands

I Examples:
int x, y = 5, z;

z = 10; // assignment operator (binary)

x = y + z; // addition (binary operator)

x = -y; //-y is a unary operation (negation)

x++; // unary (increment)



Operators

I cascading - linking of multiple operators, especially of related
categories, together in a single statement:
cascading arithmetic operators

x = a + b + c - d + e;

// cascading assignment operators

x = y = z = 3;

I Precedence - rules specifying which operators come first in a
statement containing multiple operators
x = a + b * c; // b * c happens first, since *

//has higher precedence than +

I Associativity - rules specifying which operators are evaluated
first when they have the same level of precedence.

I Most (but not all) operators associate from left to right.



Assignment Operator

I Value on the right side (R-value) is assigned to (i.e. stored in)
the location (variable) on the left side (L-value)

I R-value – any expression that evaluates to a single value
(name comes from ”right” side of assignment operator)

I L-value – A storage location! (not any old expression). A
variable or a reference to a location. (name comes from ”left”
side of assignment operator

I Typical Usage
variable name = expression

I The assignment operator returns a reference to the L-value

I Example:
x = 5;

y = 10.3;

z = x + y; // right side can be an expression

a + 3 = b; // ILLEGAL! Left side must be a

// storage location



Assignment Operator

I Associates right-to-left
x = y = z = 5; // z = 5 evaluated first, returns

z, which is stored in y and so on

I Use appropriate types when assigning values to variables:
int x, y;

x = 5843;

y = -1234; // assign integers to int variables

double a, b;

a = 12.98;

b = -345.8; //assign decimal numbers to floats

char letter, symb;

letter = ‘Z’;

symb = ‘$’; // character literals to char types

I Be careful to not confuse assignment = with comparison ==



Arithmetic Operators

Name Symbol Arity Usage
Add + binary x + y
Subtract - binary x - y
Multiply * binary x * y
Divide / binary x / y
Modulus % binary x % y
Minus - unary -x

I Division is a special case

I Modulus % not legal for floating point types. / gives floating
point result

double x = 19.0, y = 5.0, z;

z = x / y; // z is now 3.8



Arithmetic Operators

I For integer types, / gives the quotient, and % gives the
remainder (as in long division)

int x = 19, y = 5, q, r;

q = x / y; // q is 3

r = x % y; // r is 4

I An operation on two operands of the same type returns the
same type

I An operation on mixed types (if compatible) returns the
“larger” type

int x = 5;

float y = 3.6;

z = x + y; // what does z need to be?

// x + y returns a float.



Operator Precedence

I Arithmetic has usual precedence

1. parentheses
2. Unary minus
3. *, /, and %
4. + and -
5. operators on same level associate left to right

I Many different levels of operator precedence (about 18)

I When in doubt, can always use parentheses

I Example
z = a - b * -c + d / (e - f);

// 7 operators in this statement

What order are they evaluated in?



Some short-cut assignment operators (with arithmetic)

v += e; means v = v + e;
v -= e; means v = v - e;
v *= e; means v = v * e;
v /= e; means v = v / e;
v %= e; means v = v % e;

Please look at the Note on Operator Precedence on the course
website.



Increment and Decrement Operators

I These are shortcut operators for adding or subtracting 1 from
a variable.

I Shortcut for x=x+1
++x; // pre-increment (returns reference to new x)

x++; // post-increment (returns value of old x)

I Shortcut for x=x-1
--x; // pre-decrement

x--; // post-decrement

I Pre-increment: incrementing is done before the value of x is
used in the rest of the expression

I Post-increment: incrementing is done after the value of x is
used in the rest of the expression



Increment and Decrement Operators

I Note - this only matters if the variable is actually used in
another expression.

I The two statements (x++ and ++x)by themselves have the
same effect.

I Examples
int x = 5, count = 7;

result = x * ++count; // result = 40, count = 8

int x = 5, count = 7;

result = x * count++; // result = 35, count = 8



Automatic Type Conversions

I Typically, matching types are expected in expressions

I If types don’t match, ambiguity must be resolved

I There are some legal automatic conversions bewteen built-in
types.

I Rules can be created for doing automatic type conversions
between user-defined types, too

I For atomic data types, can go from “smaller” to “larger”
types when loading a value into a storage location.

I General rule of thumb: Allowed if no chance for partial data
loss.
char -> short -> int -> long -> float -> double

-> long double

I Should avoid mixing unsigned and signed types, if possible



Automatic Type Conversions: Examples

int i1, i2;

double d1, d2;

char c1;

unsigned int u1;

d1 = i1; // legal.

c1 = i1; // illegal. trying to stuff int into char

i1 = d1; // illegal. Might lose decimal point data.

i1 = c1; // legal

u1 = i1; // dangerous (possibly no warning)

d2 = d1 + i2; // result of double + int is a double

d2 = d1 / i2; // floating point division (at least

// one operand a float type)



Explicit type conversions (casting)

I Older C-style cast operations look like:
c1 = (char)i2; // cast a copy of the value of i2

as a char, and assign to c1

i1 = (int)d2; // cast a copy of the value of d2

as an int, and assign to i1

I Better to use newer C++ cast operators. For casting between
regular variables, use static cast
c1 = static cast<char>(i2);
i1 = static cast<int>(d2);

I Just for completeness, the newer C++ cast operators are:
I static cast
I dynamic cast
I const cast
I reinterpret cast


