
Functions

Lecture 6
COP 3014 Spring 2022

February 21, 2022

Functions

A function is a reusable portion of a program, sometimes called a
procedure or subroutine.

I Like a mini-program (or subprogram) in its own right

I Can take in special inputs (arguments)

I Can produce an answer value (return value)

I Similar to the idea of a function in mathematics

With functions, there are 2 major points of view

I Builder of the function – responsible for creating the
declaration and the definition of the function (i.e. how it
works)

I Caller – somebody (i.e. some portion of code) that uses the
function to perform a task

Why write and use functions?

I Divide-and-conquer
I Can breaking up programs and algorithms into smaller, more

manageable pieces
I This makes for easier writing, testing, and debugging
I Also easier to break up the work for team development

I Reusability
I Functions can be called to do their tasks anywhere in a

program, as many times as needed
I Avoids repetition of code in a program
I Functions can be placed into libraries to be used by more than

one “program”

Using Functions

I The user of a function is the caller.

I Use a function by making calls to the function with real data,
and getting back real answers.

I Consider a typical function from mathematics:
f(x) = 2x + 5

I In mathematics, the symbol ’x’ is a placeholder, and when you
run the function for a value, you ”plug in” the value in place
of x. Consider the following equation, which we then simplify:

y = f(10) // must evaluate f(10)

y = 2 * 10 + 5 // plug in 10 for x

y = 20 + 5

y = 25 // so f(10) results in 25

I In programming, we would say that the call f(10) returns the
value 25.

Using Functions

I C++ functions work in largely the same way. General format
of a C++ function call:

functionName(argumentList)

I The argumentList is a comma-separated list of arguments
(data being sent into the method).

I Use the call anywhere that the returned answer would make
sense.

I In keeping with the “declare before use” policy, a function call
can be made ONLY if a declaration (or definition) of the
function has been seen by the compiler first.

I This can be done by placing a declaration above the call
I This is handled in libraries by including the header file for the

library with a #include directive

Using Functions

There is a pre-defined math function “sqrt”, which takes one input
value (of type double) and returns its square root. Sample calls:

double x = 9.0, y = 16.0, z;

z = sqrt(36.0); //returns 6.0 (stored in z)

z = sqrt(x); //returns 3.0 (stored in z)

z = sqrt(x + y); //returns 5.0(stored in z)

cout<<sqrt(100.0);// prints the returned 10.0

cout<<sqrt(49);
//due to automatic type conversion rules we

// can send an int where a double is

// expected. This call returns 7.0

cout<<sqrt(sqrt(625.0)); // function calls can

// be nested. Inner function returns first,

// and its return value is passed to the outer

// function. This line returns 5.0

Predefined Functions

I There are many predefined functions available for use in
various libraries.

I These typically include standard libraries from both C and
C++

I These may also include system-specific and compiler-specific
libraries depending on your compiler

I Typically, C libraries will have names that are prefixed with the
letter ’c’. (cmath, cstdlib, cstring)

I To make such functions available to a program, the library
must be included with the #include directive at the top of
your file. Examples:
#include <iostream> // common I/O routines

#include <cmath> // common math functions

#include <cstdlib> // common general C

// functions

Building Functions

I The builder of a function (a programmer) is responsible for
the declaration (also known as prototype) and the definition.

I A function declaration, or prototype, specifies three things:
I the function name – usual naming rules for user-created

identifiers
I the return type – the type of the value that the function will

return (i.e. the answer sent back)
I the parameter list – a comma separated list of parameters that

the function expects to receive (as arguments)
I every parameter slot must list a type (this is the type of data

to be sent in when the function is called)
I parameter names can be listed (but optional on a declaration)
I parameters are listed in the order they are expected

I Declaration Format:
return-type function-name(parameter-list);

Examples:

// GOOD function prototypes

int Sum(int x, int y, int z);

double Average (double a, double b, double c);

bool InOrder(int x, int y, int z);

int DoTask(double a, char letter, int num);

double Average (double, double, double);

// Note: no parameter names here

// okay on a declaration

Examples:

// BAD prototypes (i.e. illegal)

double Average(double x, y, z);

// Each parameter must list a type

PrintData(int x); // missing return type

int Calculate(int) // missing semicolon

int double Task(int x);

// only one return type allowed!

Defining a Function

I a function definition repeats the declaration as a header
(without the semi-colon), and then adds to it a function body
enclosed in a block

I The function body is actual code that is implemented when
the function is called.

I In a definition, the parameter list must include the parameter
names, since they will be used in the function body. These are
the formal parameters.

I Definition Format:
return-type function-name(parameter-list)

{
function-body (declarations and statements)

}
I To send the return value out, use the keyword return, followed

by an expression that matches the expected return type

return expression;

Definition Examples:

int Sum(int x, int y, int z)

// add the three parameters and return the sum

{
int answer;

answer = x + y + z;

return answer;

}

double Average (double a, double b, double c)

// add the parameters, divide by 3, return the result

{
return (a + b + c) / 3.0;

}

Definition Examples:

More than one return statement may appear in a function
definition, but the first one to execute will force immediate exit
from the function.

bool InOrder(int x, int y, int z)

/* answers yes/no to the question "are these

parameters in order, smallest to largest?"

Returns true for yes, false for no. */

{
if (x <= y && y <= z)

return true;

else

return false;

}

Scope of Identifiers

I The scope of an identifier (i.e. variable) is the portion of the
code where it is valid and usable

I A global variable is declared outside of any blocks, usually at
the top of a file, and is usable anywhere in the file from its
point of declaration.

I “When in doubt, make it global” == BAD PROGRAMMING
PRACTICE

I Best to avoid global variables (except for constants,
enumerations. Sometimes)

I Function names usually global. (prototypes placed at the top
of a file, outside any blocks)

Scope of Identifiers

I A variable declared within a block (i.e. a compound
statement) of normal executable code has scope only within
that block.

I Includes function bodies
I Includes other blocks nested inside functions (like loops,

if-statements, etc)
I Does not include some special uses of block notation to be

seen later (like the declaration of a class – which will have a
separate scope issue)

I Variables declared in the formal parameter list of a function
definition have scope only within that function.

I These are considered local variables to the function. Variables
declared completely inside the function body (i.e. the block)
are also local variables

void functions and empty parameter lists

I Parameter lists
I Mathematical functions must have 1 or more parameters
I C++ functions can have 0 or more parameters
I To define a function with no parameters, leave the parintheses

empty
I Same goes for the call. (But parintheses must be present, to

identify it as a function call)

I Return Types
I A mathematical function must return exactly 1 answer
I A C++ function can return 0 or 1 return value
I To declare a function that returns no answer, use void as the

return type
I A void function can still use the keyword return inside, but not

with an expression (only by itself). One might do this to force
early exit from a function.

I To CALL a void function, call it by itself – do NOT put it in
the middle of any other statement or expression

Functions and the compiler

I The reason for the declare-before-use rule is that the compiler
has to check all function CALLS to make sure they match the
expectations.

I the “expectations” are all listed in a function declaration
I function name must match
I arguments passed in a call must match expected types and

order
I returned value must not be used illegally

I Decisions about parameters and returns are based on
type-checking.

I legal automatic type conversions apply when passing
arguments into a funcion, and when checking what is returned
against the expected return type

