
File Operations

Lecture 15
COP 3014 Spring 2022

April 18, 2022

Input/Ouput to and from files

I File input and file output is an essential in programming.
I Most software involves more than keyboard input and screen

user interfaces.
I Data needs to be stored somewhere when a program is not

running, and that means writing data to disk.
I For this, we need file input and file output techniques.

I Fortunately, this is EASY in C++!
I If you know how to do screen output with cout, and keyboard

input with cin, then you already know most of it!
I File I/O with streams works the same way. The primary

difference is that objects other than cout and cin will be used

Kinds of Files

I Formatted Text vs. Binary files
I A text file is simply made of readable text characters.
I It looks like the output that is typically printed to the screen

through the cout object
I A binary file contains unformatted data, saved in its raw

memory format. (For example, the integer 123456789 is saved
as a 4-byte chunk of data, the same as it’s stored in memory -
NOT as the 9 digits in this sentence).

I Sequential vs. Random Access files
I A sequential file is one that is typically written or read from

start to finish
I A random access file is one that stores records, all of the same

size, and can read or write single records in place, without
affecting the rest of the file

I For now, we’ll deal with sequential text files

Creating file stream objects, and attaching to files

I cout and cin are objects
I cout is the standard output stream, usually representing the

monitor. It is of type ostream
I cin is the standard input stream, usually representing the

keyboard. It is of type istream ostream and istream are classes
I If you were to have declared them, you might have written:

ostream cout;

istream cin;

I To create file stream objects, we need to include the
<fstream>library:
#include <fstream> using namespace std;

I This library has classes ofstream (”output file stream”) and
ifstream (”input file stream”). Use these to declare file stream
objects:
// create file output streams out1 and bob

ofstream out1, bob;

// create file input streams, called in1 and joe

ifstream in1, joe;

Creating file stream objects, and attaching to files

I File stream objects need to be attached to files before they
can be used. Do this with a member function called open,
which takes in the filename as an argument:
// For ofstreams, these calls create brand new

// files for output. For ifstreams, these calls

// try to open existings files for input

out1.open("outfile1.txt");

bob.open("clients.dat");

in1.open("infile1.txt");

joe.open("clients.dat");

I Will open() always work?
I For an input file, what if the file doesn’t exist? doesn’t have

read permission?
I For an output file, what if the directory is not writable? What

if it’s an illegal file name?

Creating file stream objects, and attaching to files

I Since it’s possible for open() to fail, one should always check
to make sure there’s a valid file attached

I One way is to test the value of the stream object. A stream
that is not attached to a valid file will evaluate to ”false”
//if in1 not attached to a valid source, abort

if (!in1)

{
cout << "Sorry, bad file.";

exit(0); // system call to abort program

// may require <cstdlib> to be included

}
I When finished with a file, it can be detached from the stream

object with the member function close():
in1.close();

I The close function simply closes the file. It does not get rid of
the stream object. The stream object can now be used to
attach to another file, if desired

Using file streams

I Once a file stream object is attached to a file, it can be used
with the same syntax as cin and cout (for input and output
streams, respectively)

I Input file stream usage is like cin:
int x, y, z;

double a, b, c;

in1 >> x >> y >> z; //read 3 ints from the file

in1 >> a >> b >> c; // read 3 doubles from file

I Output file stream usage is like cout:
out1 << "Hello, World\n"; // print "Hello, World"

// to the file

out1 << "x + y = " << x + y; // print a math

//result to the file

Opening a file in ’append mode’

I The default way for opening an output file is to create a brand
new file and begin writing from the beginning

I If another file with the same name already exists, it will be
overwritten!

I Existing files can be opened for output, so that the new
output is tacked on to the end. This is called appending.

I To open a file in append mode, we use an extra parameter in
the open() function:
ofstream fout; // create file stream

fout.open("file.txt", ios::app);

// open file in append mode

I There are a number of special constants like this one
(ios::app). This one will cause a file to be opened for
appending

User-entered file names

I File names don’t have to be hard-coded as literal strings. We
can get file names from other places (like user input, other
files, etc), but we need to store them as cstrings.
char filename[20];

I Filenames are usually in the form of a single word (C++ hates
filenamrs with spaces). So we can just use the extraction
operator to read it in.
cin >> filename;

I We can use this variable in the open() function when
attaching a file to a stream:
ofstream fout;

fout.open(filename);

I When error-checking to ensure that a valid file was attached,
pick a technique that’s appropriate to the situation. If the
user just types a filename wrong, we might want to allow
them to try again (instead of aborting the program).

Reading Strings

I So far, we have used cin as the input stream for reading
strings.

I If we’re reading strings from a file, we can use the input file
stream instead.

I Assuming the input stream is called in1 and it is attached to
a valid input file,
//reading in a cstring

char value[100];

in1.getline(value, 100, ‘\n’);

//reading in a string object

string text;

getline(in1, text, ‘\n’);

eof() member function

I A useful member function of the input stream classes is eof()
I Stands for end of file
I Returns a bool value, answering the question “Are we at the

end of the file?” (or is the “end-of-file” character the next one
on the stream?)

I Can be used to indicate whether the end of an input file has
been reached, when reading sequentially

I Very useful when reading files where the size of the file or the
amount of data to be read is not known in advance
while (!in1.eof()) // while not at end of file

{
// read and process input from the file

}
I Can also be used with cin, where the user types a key

combination representing the “end-of-file” character
I On Unix and Mac systems, type ctrl-d to enter the end-of-file

character
I On Windows, type ctrl-z to enter the end-of-file character

Character I/O - Output

I We’ve already used the insertion operator to print characters:
char letter = ‘A’;

cout << letter;

I There is also a member function (of output stream classes)
called put(), which can be used to print a character. It’s
prototype is:
ostream& put(char c);

I Sample calls:
char ch1 = ‘A’, ch2 = ‘B’, ch3 = ‘C’;

cout.put(ch1); // equivalent to: cout << ch1;

cout.put(ch2); // equivalent to: cout << ch2;

I It can be cascaded, like the insertion operator:
cout.put(ch1).put(ch2).put(ch3);

I The put() function doesn’t really do anything more special
than the insertion operator does. It’s just listed here for
completeness

Character I/O- Input

I There are many versions of the extraction operator >>, for
reading data from an input stream. This includes a version
that reads characters:
char letter;

cin >> letter;

I However, if we, for example, tried to copy a file into another
by reading one character at a time, the output file wouldn’t
have any whitespace.

I All built-in versions of the extraction operator for input
streams will ignore leading white space by default

Character I/O- Input

Here are some other useful member functions (of input stream
classes) for working with the input of characters:

I peek() – this function returns the ascii value of the next
character on the input stream, but does not extract it

I get() – the two get functions both extract the next single
character on the input stream, and they do not skip any white
space.

I The version with no parameters returns the ascii value of the
extracted character

I The version with the single parameter stores the character in
the parameter, passed by reference. Returns a reference to the
stream object (or 0, for end-of-file)

I ignore() member function - skips either a designated number
of characters, or skips up to a specified delimiter.

I putback() member function - puts a character back into the
input stream

Examples

char ch1, ch2, ch3;

cin >> ch1 >> ch2 >> ch3; // reads three characters,

skipping white space

//get(): no parameters, no white space skipped

ch1 = cin.get();

ch2 = cin.get();

ch3 = cin.get();

//get(): one parameter, can be cascaded

cin.get(ch1).get(ch2).get(ch3);

//peek(): trying to read a digit, as a char

char temp = cin.peek(); // look at next character

if (temp < ’0’ || temp > ’9’)

cout << "Not a digit";

else ch1 = cin.get(); // read the digit

Passing Stream Objects into Functions

I In a function prototype, any type can be used as a formal
parameter type or as a return type.

I This includes classes, which are programmer-defined types

I Streams can be passed into functions as parameters (and/or
returned).

I Because of how the stream classes were set up, they can only
be passed by reference, however

I So, for instance, the following can be return types or
parameter types in a function:
ostream &

istream &

ofstream &

ifstream &

I Why? – functions that do output can be written that are more
versatile, by allowing the output to go to a variety of places

Passing Stream Objects into Functions

I Example of a more limited function:
void Show()

{
cout << "Hello, World\n";

}
I A call to this function always prints to standard output (cout).

I Same function, more versatile:
void Show(ostream& output)

{
output << "Hello, World\n";

}
I We can do the printing to different output destinations now:

Show(cout); // prints to standard output stream

Show(cerr); // prints to standard error stream

Passing Stream Objects into Functions

I This works with file stream types, too:
void PrintRecord(ofstream& fout, int acctID,

double balance)

{
fout << acctID << balance << ’\n’;

}
I Now, we can call this function to print the same data format

to different files:
ofstream out1, out2;

out1.open("file1.txt");

out2.open("file2.txt");

PrintRecord(out1, 12, 45.6); //print to file1

PrintRecord(out1, 124, 67.89); // print to file1

PrintRecord(out2, 100, 123.09); // print to file2

PrintRecord(out2, 11, 287.64); // print to file2

