
Control Structures

Lecture 4
COP 3014 Spring 2022

January 26, 2022

Control Flow

Control flow refers to the specification of the order in which the
individual statements, instructions or function calls of an
imperative program are executed or evaluated

Types of Control Flow

Flow of control through any given function is implemented with
three basic types of control structures:

I Sequential: Default mode. Statements are executed line by
line.

I Selection: Used for decisions, branching – choosing between
2 or more alternative paths.

I if
I if - else
I switch
I conditional statements

I Repetition: Used for looping – repeating a piece of code
multiple times in a row.

I while
I do - while
I for

The function construct, itself, forms another way to affect flow of
control through a whole program. This will be discussed later in
the course.

True and False

I Selection and repetition statements typically involve decision
steps. These steps rely on conditions that are evaluated as
true or false

I C++ has a boolean data type (called bool) that has values
true and false. Improves readability.

I Most functions that answer a yes/no question (or a true/false
situation) will return a boolean answer (or in the case of
user-defined functions, they should be coded that way)

I Important: ANY C++ expression that evaluates to a value
(i.e. any R-value) can be interpreted as a true/false condition.
The rule is:

I If an expression evaluates to 0, its truth value is false
I If an expression evaluates to non-zero, its truth value is true

Relational Operators

Relational Operators are use for comparison.

The comparison operators in C++ work much like the symbols we
use in mathematics. Each of these operators returns a Boolean
value: a true or a false.

x == y // x is equal to y

x != y // x is not equal to y

x <y // x is less than y

x <= y // x is less than or equal to y

x >y // x is greater than y

x >= y // x is greater than or equal to y

Logical Operators

C++ has operators for combining expressions. Each of these
operators returns a boolean value: a true or a false.

!x // the NOT operator (negation)

//true if x is false

x && y // the AND operator

//true if both x and y are true

x || y // the OR operator

//true if either x or y or both are true

These operators will be commonly used as test expressions in
selection statements or repetition statements (loops).

Examples of Expressions

(x >0 && y >0 && z >0) // all three of (x, y, z)

are positive

(x <0 ||y <0 ||z <0) // at least one of the three

variables is negative

(numStudents >= 20 && !(classAvg <70)) // there are

at least 20 students and the class average

is at least 70

(numStudents >= 20 && classAvg >= 70) // means the

same thing as the previous expression

Short Circuit Evaluation

I The && and ||operators also have a feature known as
short-circuit evaluation.

I In the Boolean AND expression (X && Y), if X is false, there
is no need to evaluate Y (so the evaluation stops). Example:

(d != 0 && n / d >0)

I Notice that the short circuit is crucial in this one. If d is 0,
then evaluating (n / d) would result in division by 0 (illegal).
But the ”short-circuit” prevents it in this case. If d is 0, the
first operand (d != 0) is false. So the whole && is false.

I Similarly, for the Boolean OR operation (X ||Y), if the first
part is true, the whole thing is true, so there is no need to
continue the evaluation. The computer only evaluates as
much of the expression as it needs. This can allow the
programmer to write faster executing code.

The if/else Selection Statement

I The most common selection statement is the if/else
statement. Basic syntax:

if (expression)

{
statement(s)

}
else

{
statement(s)

}
I The else clause is optional, so this format is also legal:

if (expression)

{
statement(s)

}

The if/else Selection Statement

The expression part can be any expression that evaluates a value
(an R-value), and it must be enclosed in parentheses ().

I The best use is to make the expression a Boolean expression,
which is an operation that evaluates to true or false

I For other expressions (like (x + y), for instance):
I an expression that evaluates to 0 is considered false
I an expression that evaluates to anything else (non-zero) is

considered true

I The statement parts are the “bodies” of the if-clause and the
else-clause. The statement after the if or else clause must be
either:

I an empty statement
I a statement
I a block

I Appropriate indentation of the bodies of the if-clause and
else-clause is a very good idea (for human readability), but
irrelevant to the compiler

Examples

I if (grade >= 68)

cout <<"Passing";

If grade is below 68, we just move on.

I if (x == 0)

cout <<"Nothing here";

else

cout <<"There is a value";

This example contains an else clause. The bodies are single
statements.

Examples

I if (y != 4)

{
cout <<"Wrong number";

y = y * 2;

counter++;

}
else

{
cout <<"That’s it!";

success = true;

}

Multiple statements are to be executed as a result of the
condition being true or false. In this case, notice the
compound statement to delineate the bodies of the if and else
clauses.

Examples

I Be careful with ifs and elses. If you don’t use { }, you may
think that you’ve included more under an if condition than
you really have.

if (val <5)
cout <<"True";

else

cout <<"False";
cout <<"Too bad!";

I Indentation is only for people! It improves readability, but
means nothing to the compiler.

Some Common Errors

What’s wrong with these if-statements? Which ones are syntax
errors and which ones are logic errors?

I if (x == 1 ||2 ||3)
cout <<"x is in the range 1-3";

I if (x >5) && (y <10)
cout <<"Yahoo!";

I if (response != ‘Y’ ||response != ‘N’)

cout <<"You must type Y or N

(for yes or no)";

The switch Statement

A switch statement is often convenient for occasions in which
there are multiple cases to choose from. The syntax format is:

switch (expression)

{
case constant:

statements

case constant:

statements

...(as many case labels as needed)

default: // optional label

statements

}

The switch Statement

I The switch statement evaluates the expression, and then
compares it to the values in the case labels. If it finds a
match, execution of code jumps to that case label.

I The values in case labels must be constants, and may only be
integer types, which means that you

I This means only integer types, type char, or enumerations (not
yet discussed)

I This also means the case label must be a literal or a variable
declared to be const

I Note: You may not have case labels with regular variables,
strings, floating point literals, operations, or function calls

I If you want to execute code only in the case that you jump to,
end the case with a break statement, otherwise execution of
code will ”fall through” to the next case

The Conditional Operator

There is a special operator known as the conditional operator that
can be used to create short expressions that work like if/else
statements.

I Format:
test expr ? true expr : false expr

I How it works:

I The text expression is evaluated for true/false value. This is
like the test expression of an if-statement.

I If the expression is true, the operator returns the true
expression value.

I If the test expression is false, the operator returns the false
expression value.

I Note that this operator takes three operands. It is the one
ternary operator in the C++ language

Some Examples

cout <<(x >y) ? "x is greater than y" :

"x is less than or equal to y");

// Note that this expression gives the same result as

the following

if (x >y)
cout <<"x is greater than y";

else

cout <<"x is less than or equal to y");

Some Examples

(x <0 ? value = 10 : value = 20);

// this gives the same result as:

value = (x <0 ? 10 : 20);

// and also gives the same result as:

if (x <0)
value = 10;

else

value = 20;

