
C Style Strings

Lecture 10
COP 3014 Spring 2022

March 21, 2022



Recap

I Recall that a C-style string is a character array that ends with
the null character

I Character literals in single quotes
I ‘a’, ‘\n’, ‘$’

I string literals in double quotes
I “Hello World\n”
I Remember that the null-character is implicitly a part of any

string literal

I The name of an array acts as a pointer to the first element of
an array (i.e. it stores the address of where the array starts)

I



The cctype library

This C library contains useful character testing functions, as well as
the two conversion functions
Conversion functions: These return the ascii value of a character

I int toupper(int c) - returns the uppercase version of c if
it’s a lowercase letter, otherwise returns c as is

I int tolower(int c) - returns the lowercase version of c if
it’s an uppercase letter, otherwise returns c as is

Query Functions: These all return true (non-zero) or false (0), in
answer to the question posed by the function’s name. They all
take in the ascii value of a character as a parameter.

I int isdigit(int c) - decides whether the parameter is a
digit (0-9)

I int isalpha(int c) - decides whether the character is a
letter (a-z, A-Z)

I int isalnum(int c) - digit or a letter?



More Query functions

I int islower(int c) - lowercase digit? (a-z)

I int isupper(int c) - uppercase digit? (A-Z)

I int isxdigit(int c) - hex digit character? (0-9, a-f)

I int isspace(int c) - white space character?

I int iscntrl(int c) - control character?

I int ispunct(int c) - printing character other than space,
letter, digit?

I int isprint(int c) - printing character (including ’ ’)?

I int isgraph(int c) - printing character other than ’ ’
(space)?



String I/O:

In the special case of arrays of type char, which are used to
implement c-style strings, we can use these special cases with the
insertion and extraction operators:
char greeting[20] = ‘‘Hello, World";

cout <<greeting; // prints ‘‘Hello, World"

char lastname[20];

cin >> lastname; // reads a string into ‘lastname’

// adds the null character automatically

I Using a char array with the insertion operator <<will print
the contents of the character array, up to the first null
character encountered

I The extraction operator >>used with a char array will read in
a string, and will stop at white space.

I These examples only apply to the special case of the character
array.



Reading strings: get and getline

I The above cin example is only good for reading one word at
a time. What if we want to read in a whole sentence into a
string?

I There are two more member functions in class istream (in
the iostream library), for reading and storing C-style strings
into arrays of type char. Here are the prototypes:

char* get(char str[], int length, char delimiter

= ‘\n’);

char* getline(char str[], int length, char

delimiter = ‘\n’);



Reading strings: get and getline

I The functions get and getline (with the three parameters)
will read and store a c-style string. The parameters:

I First parameter (str) is the char array where the data will be
stored. Note that this is an array passed into a function, so the
function has access to modify the original array

I Second parameter (length) should always be the size of the
array – i.e. how much storage available.

I Third parameter (delimiter) is an optional parameter, with the
newline as the default. This is the character at which to stop
reading

I Both of these functions will extract characters from the input
stream, but they don’t stop at any white space – they stop at
the specified delimiter. They also automatically append the
null character, which must (as always) fit into the size of the
array.



Sample Calls

char buffer[80];

cin >>buffer; // reads one word into buffer

cin.get(buffer, 80, ‘,’); // reads up to the first

//comma, stores in buffer

cin.getline(buffer, 80); // reads an entire line

// (up to newline)

So what is the difference between get and getline?

I get will leave the delimiter character on the input stream, and
it will be seen by the next input statement

I getline will extract and discard the delimiter character



Example

char greeting[15], name[10], other[20];

cin.getline(greeting,15); // gets input into greeting

cin.get(name,10,‘.’); // gets input into name

cin.getline(other,20); // gets input into other

Suppose that the data on the input stream (i.e. typed onto the
keyboard, for instance) is:
Hello, World

Joe Smith. He says hello.

At this point, the contents of each string are:
greeting: "‘Hello, World"

name: "Joe Smith"

other: ". He says hello."



The cstring library

I The standard string library in C is called cstring.

I To use it, we place the appropriate #include statement in a
code file:
#include <cstring>

I This string library contains many useful string manipulation
functions.

I These are all for use with C-style strings. A few of the more
commonly used ones are mentioned here.

I You can get more information on the online documentation
for the library on cplusplus.com



strlen

I Takes one string argument, returns its length (not counting
the null character)

I Prototype:
int strlen(const char str[]);

I Sample calls:
char phrase[30] = "Hello, World";

cout <<strlen("Greetings, Earthling!");

// prints 21

int length = strlen(phrase); // stores 12



strcpy

I Takes two string arguments, copies the contents of the second
string into the first string.

I The first parameter is non-constant, the second is constant

I Prototype:
char* strcpy(char str1[], const char str2[]);

// copies str2 into str 1

I Sample calls:
char buffer[80], firstname[30], lastname[30] =

"Smith";

strcpy(firstname, "Billy Joe Bob");

// copies name into firstname array

strcpy(buffer, lastname);

// copies "Smith" into buffer array

cout <<firstname; // prints "Billy Joe Bob"

cout <<buffer; // prints "Smith"



strcat

I Takes two string arguments (first non-constant, second is
const), and concatenates the second one onto the first

I Prototype:
char* strcat(char str1[], const char str2[]);

// concatenates str2 onto the end of str1

I Sample calls:
char buffer[80] = "Bat";

char word[] = "man";

strcat(buffer, word); // buffer is now "Batman"

strcat(buffer, " is awesome");

// buffer is now "Batman is awesome"



strcmp

I Takes two string arguments (both passed as const arrays), and
returns an integer that indicates their lexicographic order

I Prototype:
int strcmp(const char str1[], const char str2[]);

// returns:

// a negative number, if str1 comes before str2

// a positive number, if str2 comes before str1

// 0 , if they are equal

//

// Note: Lexicographic order is by ascii codes.

// It’s NOT the same

// as alphabetic order.



Sample calls:

char word1[30] = "apple";

char word2[30] = "apply";

if (strcmp(word1, word2) != 0)

cout <<"The words are different\n";

strcmp(word1, word2)

// returns a negative, means word1 comes first

strcmp(word1, "apple")

// returns a 0. strings are the same

strcmp("apple", "Zebra")

// returns a positive. "Zebra" comes first!

// (all uppercase before lowercase in ascii)



Memory Safe Calls

I Note that the above calls rely on the null character as the
terminator of C-style strings. Remember, there is no built-in
bounds checking in C++

I strncpy, strncat, strncmp - these do the same as the three
listed above, but they take one extra argument (an integer N),
and they go up to the null character or up to N characters,
whichever is first.

I These functions can be used to help do safer string operations.

I The extra parameter can be included to guarantee that array
boundaries are not exceeded, as seen in the following examples



Examples

char buffer[80];

char word[11] = "applesauce";

char bigword[] = "antidisestablishmentarianism";

strncpy(buffer, word, 5); // buffer is "apple"

strncat(buffer, " piecemeal", 4);

// buffer now stores "apple pie"

strncmp(buffer, "apple", 5);

// returns 0, as first 5 characters

// of the strings are equal

strncpy(word, bigword, 10);

// word is now "antidisest"

// word only had 11 slots!


