
Arrays

Lecture 8
COP 3014 Spring 2022

March 3, 2022

Array Definition

An array is an indexed collection of data elements of the same
type.

I Indexed means that the array elements are numbered (starting
at 0).

I The restriction of the same type is an important one, because
arrays are stored in consecutive memory cells. Every cell must
be the same type (and therefore, the same size).

Declaring Arrays

An array declaration is similar to the form of a normal declaration
(typeName variableName), but we add on a size:

typeName variableName[size];

This declares an array with the specified size, named variableName,
of type typeName. The array is indexed from 0 to size-1. The size
(in brackets) must be an integer literal or a constant variable. The
compiler uses the size to determine how much space to allocate
(i.e. how many bytes).

Examples:
int list[30]; // an array of 30 integers

char name[20]; // an array of 20 characters

double nums[50]; // an array of 50 decimals

int table[5][10]; //two dimensional array of integers

Initializing Arrays

I With normal variables, we could declare on one line, then
initialize on the next:
int x;

x = 0;

I Or, we could simply initialize the variable in the declaration
statement itself:
int x = 0;

I Can we do the same for arrays? Yes, for the built-in types.
Simply list the array values (literals) in set notation { } after
the declaration. Here are some examples:
int list[4] = {2, 4, 6, 8};
char letters[5] = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’};
double numbers[3] = {3.45, 2.39, 9.1};
int table[3][2] = {{2, 5} , {3,1} , {4,9}};

C-style strings

Arrays of type char are special cases.

I We use strings frequently, but there is no built-in string type
in the language

I A C-style string is implemented as an array of type char that
ends with a special character, called the “null character”.

I The null character has ASCII value 0
I The null character can be written as a literal in code as ‘\0’

I Every string literal (something in double-quotes) implicitly
contains the null character at the end

I Since character arrays are used to store C-style strings, you
can initialize a character array with a string literal (i.e. a
string in double quotes), as long as you leave room for the
null character in the allocated space.
char name[7] = ‘‘Johnny";

I Notice that this would be equivalent to:
char name[7] = {‘J’, ‘o’, ‘h’, ‘n’, ‘n’, ‘y’,

‘\0’};

Variations in initializing

I Array declarations must contain the information about the
size of the array.

I It is possible to leave the size out of the [] in the declaration
as long as you initialize the array inline, in which case the
array is made just large enough to capture the initialized data.
Examples:
char name[] = ‘‘Johnny"; // size is 7

int list[] = {1, 3, 5, 7, 9}; // size is 5

I Another shortcut with initializer sets is to use fewer elements
than the size specifies.

I Remaining elements will default to 0. It is illegal to use a set
containing more elements than the allocated size.
int list[5] = {1, 2}; // array is {1, 2, 0, 0, 0}
int nums[3] = {1, 2, 3, 4}; // illegal

Variations in initializing

I Using initializers on the declaration, as in the examples above,
is probably not going to be as desirable with very large arrays.

I Another common way to initialize an array – with a for loop:

I This example initializes the array numList to {0, 2, 4, 6, 8, 10,
12, 14, 16, 18}.

int numList[10];

int i;

for (i = 0; i <10; i++)

numList[i] = i * 2;

Using Arrays

I Once your arrays are declared, you access the elements in an
array with the array name, and the index number inside
brackets [].

I If an array is declared as: typeName varName[size], then
the element with index n is referred to as varName[n].
Examples:
int x, list[5]; // declaration

double nums[10]; // declaration

list[3] = 6; // assign value 6 to item on index 3

cout <<nums[2]; //output array item with index 2

list[x] = list[x+1];

I It would not be appropriate, however, to use an array index
that is outside the bounds of the valid array indices:
list[5]=10; //bad statement, 5 is invalid index

I The statement above is syntactically legal, however. It is the
programmer’s job to make sure that out of bounds indices are
not used.

Copying arrays

I If we have these two arrays, how do we copy the contents of
list2 to list1?

int list1[5];

int list2[5] = {3, 5, 7, 9, 11};
I With variables, we use the assignment statement, so this

would be the natural tendency – but it is wrong!

list1 = list2; // does NOT copy array contents

I We must copy between arrays element by element. A for loop
makes this easy, however:

for (int i = 0; i <5; i++)

list1[i] = list2[i];

Simple I/O with strings

I In the special case of strings (null-terminated character
arrays), they can be used like normal arrays.

I Accessing a single array element means accessing one
character.
char greeting[] = ‘‘Hello";

char word1[20];

cout <<greeting[1]; // prints the letter ‘e’

cout <<greeting[4]; // prints the letter ‘o’

I Strings can also be output and input in their entirety, with the
standard input and output objects (cin and cout)

I The following line outputs the word “Hello”:
cout <<greeting;

Simple I/O with strings

I Be careful to only use this on char arrays that are being used
as C-style strings. (This means, only if the null character is
present as a terminator).

I The following line allows the entry of a word (up to 19
characters and a terminating null character) from the
keyboard, which is stored in the array word1:

cin >>word1;

I Characters are read from the keyboard until the first “white
space” (space, tab, newline, etc) character is encountered.

I The input is stored in the character array and the null
character is automatically appended.

