
COP 3014: Fall 2021

Stream Formatting - with Flags and Manipulators

November 29, 2021

1 Member functions and flags

Output streams (class ostream and related classes) have some useful member functions for control-
ling output formatting. Note that these can be used not only with cout, but with other types of
output streams. (We’ll learn about file output streams soon).

• setf() – the “set flags” function. Takes as a parameter the flag to be turned “on”. Some of
the flags that can be turned on or off are:

– ios::fixed – to specify that floating-point numbers will be printed in fixed notation.

– ios::scientific – to specify that floating-point numbers will be printed in scientific
(exponential) notation.

– ios::showpoint – specifies that the decimal point will always be printed for floating
point types (even if the value is a whole number, like 4.0

– ios::right – right-justifies an output item in a field, if a field width is specified

– ios::left – left-justifies an output item in a field, if a field width is specified

– See the table below for more formatting flags

• unsetf() – the “unset flags” function. Call this to turn off one of the flags

• precision() – sets the precision for floating-point values to a specific number of significant
digits after the decimal point. Takes that number as a parameter

• width() – used to specify the “field width” for the next item that is output. Number of
character positions is specified as a parameter. Left and right justify flags will apply when
this function is used to specify field widths. Extra “space” in the field will be filled with a fill
character, which is set to a space by default:

int x = 1234;

cout.setf(ios::right);

cout.width(10);

cout << "Hello";

cout.width(15);

cout << x;

// output of the above is:

// Hello 1234

• fill() – used to specify the fill character to be used to pad out extra space in a field (when
using width()). Takes the character as a parameter.

int x = 1234;

cout.setf(ios::right);

cout.fill(’.’); // change the fill character

1



cout.width(10); // set field width to 10

cout << x; // print x

// output of the above is:

// ......1234

2 Stream Manipulators

• A stream manipulator is a symbol or function that is used by placing it on the right side of
the insertion operator <<.

– A plain manipulator is just a symbol, like a variable:
cout << endl; // endl is a stream manipulator

• A parameterized stream manipulator looks like a function call – it has one or more parameters:
cout << setw(10); // setw() is a parameterized manipulator

• To use parameterized stream manipulators, you need to include the <iomanip>library
#include <iomanip>

• Many of the stream manipulators are just alternate ways of doing tasks performed by member
functions. A nice benefit is that cascading can be used, intermixing manipulators and other
output statements that use the insertion operator
cout << setw(10) << "Hello" << endl;

• setprecision() is a parameterized stream manipulator that performs the same task as the
member function precision()
cout.precision(2); // sets decimal precision to 2 significant digits

cout << setprecision(2); // does the same thing!

• setw() is a parameterized stream manipulator that performs the same task as the member
function width()
cout.width(10); // sets field width to 10 for next output

cout << setw(10); // does the same thing!

• setfill() is a parameterized stream manipulator that performs the same task as the member
function fill()
cout.fill(’*’); // sets fill character to ’*’

cout << setfill(’*’); // does the same thing!

• setiosflags() is a parameterized stream manipulator that performs the same task as the
member function setf()
cout.setf(ios::left); // sets left justification flag

cout << setiosflags(ios::left); // does the same thing!

• There are also some newer stream manipulators that correspond to some of the formatting
flags. For example:
cout.setf(ios::left); // sets left justification for cout

cout << left; // also sets left justification for cout

• Caution: Some of these manipulators that correspond to formatting flags were introduced in
a newer version of the <iomanip>library, just a few years ago. Some older compilers (still in
use) may not recognize them!

• More stream manipulators will be given in a table below, along with the corresponding member
functions and/or formatting flags

2



3 Common Stream Flags and Manipulators

Here is a chart of common stream flags and corresponding stream manipulators (non-parameterized,
and all from namespace std).

Flag Name Corresponding Description
Stream Manipulator

ios::fixed fixed if this is set, floating point numbers are printed in fixed
point notation. When this flag is set, ios::scientific is
automatically unset

ios::scientific scientific if this is set, floating point numbers are printed in scientific
(exponential) notation. When this flag is set, ios::fixed is
automatically unset

ios::showpoint showpoint if this is set, the decimal point is always shown, even if
there is no precision after the decimal. Can be unset with
the manipulator noshowpoint

ios::showpos showpos if set, positive values will be preceded by a plus sign + .
Can be unset with the manipulator noshowpos.

ios::right right if this is set, output items will be right-justified within the
field (when using width() or setw()), and the unused spaces
filled with the fill character (the space, by default).

ios::left left if this is set, output items will be left-justified within the
field (when using width() or setw()), and the unused spaces
filled with the fill character (the space, by default).

ios::showbase showbase Specifies that the base of an integer be indicated on the
output. Decimal numbers have no prefix. Octal numbers
(base 8) are prefixed with a leading 0. Hexadecimal numbers
(base 16) are prefixed with a leading 0x. This setting can be
reset with the manipulator noshowbase.

ios::uppercase uppercase specifies that the letters in hex outputs (a-f) and the letter ’e’
in scientific notation will be output in uppercase. This can be
reset with the manipulator nouppercase.

Here is a table of other common stream manipulators, all from namespace std

Manipulator Description
flush causes the output buffer to be flushed to the output device before processing proceeds
endl prints a newline and flushes the output buffer
dec causes integers to be printed in decimal (base 10)
oct causes integers from this point to be printed in octal (base 8)
hex causes integers from this point to be printed in hexadecimal (base 16)
setbase() a parameterized manipulator that takes either 10, 8, or 16 as a parameter, and causes

integers to be printed in that base. setbase(16) would do the same thing as hex,
for example

internal if this is set, a number’s sign will be left-justified and the number’s magnitude will be
right-justified in a field (and the fill character pads the space in between). Only one of
right, left, and internal can be set at a time.

boolalpha causes values of type bool to be displayed as words (true or false)
noboolalpha causes values of type bool to be displayed as the integer values 0 (for false) or 1 (for true)

3


	Member functions and flags
	Stream Manipulators
	Common Stream Flags and Manipulators

