
Pointer Basics

Lecture 12
COP 3014 Fall 2021

November 2, 2021

What is a Pointer?

I A pointer is a variable that stores a memory address.

I Pointers are used to store the addresses of other variables or
memory items.

I Pointers are very useful for another type of parameter passing,
usually referred to as Pass By Address.

I Pointers are essential for dynamic memory allocation.

Declaring pointers:

I Pointer declarations use the * operator. They follow this
format:
typeName * variableName;

int n; // declaration of a variable n

int * p; // declaration of a pointer, called p

I In the example above, p is a pointer, and its type will be
specifically be referred to as ”pointer to int”, because it stores
the address of an integer variable. We also can say its type is:
int*

I The type is important. While pointers are all the same size, as
they just store a memory address, we have to know what kind
of thing they are pointing TO.
double * dptr; // a pointer to a double

char * c1; // a pointer to a character

float * fptr; // a pointer to a float

Declaring Pointers

I Sometimes the notation is confusing, because different
textbooks place the * differently. The three following
declarations are equivalent:
int *p;

int* p;

int * p;

All three of these declare the variable p as a pointer to an int.

I Another tricky aspect of notation: Recall that we can declare
mulitple variables on one line under the same type, like this:
int x, y, z; // three variables of type int

I Since the type of a ”pointer-to-int” is (int *), we might ask,
does this create three pointers?
int* p, q, r; // what did we just create?

I NO! This is not three pointers. Instead, this is one pointer
and two integers. If you want to create mulitple pointers on
one declaration, you must repeat the * operator each time

Notation: Pointer dereferencing

I Once a pointer is declared, you can refer to the thing it points
to, known as the target of the pointer, by ”dereferencing the
pointer”. To do this, use the unary * operator:
int * ptr; // ptr is now a pointer-to-int

// Notation:

// ptr refers to the pointer itself

// *ptr the dereferenced pointer -- refers now to

the TARGET
I Suppose that ptr is the above pointer. Suppose it stores the

address 1234. Also suppose that the integer stored at address
1234 has the value 99.
cout << "The pointer is: " << ptr; // prints the

pointer

cout << "The target is: " << *ptr; // prints the

target

Note: the exact printout of an addres may vary based on the
system.

Notation: Pointer dereferencing

I The notation can be a little confusing.

I If you see the * in a declaration statement, with a type in
front of the *, a pointer is being declared for the first time.

I AFTER that, when you see the * on the pointer name, you
are dereferencing the pointer to get to the target.

I Pointers don’t always have valid targets.
I A pointer refers to some address in the program’s memory

space.
I A program’s memory space is divided up into segements
I Each memory segment has a different purpose. Some

segments are for data storage, but some segments are for other
things, and off limits for data storage

I If a pointer is pointing into an ”out-of-bounds” memory
segment, then it does NOT have a valid target (for your usage)

I f you try to dereference a pointer that doesn’t have a valid
target, your program will crash with a segmentation fault error.
This means you tried to go into an off-limits segment

Initializing Pointers

So, how do we initialize a pointer? i.e. what can we assign into it?
int * ptr;

ptr = ; // with what can we fill this blank?

I The null pointer

I Pointers of the same type

I The ”address of” operator

I Reinterpreted pointer of a different type

I Address to a dynamically allocated chunk of memory.

The null pointer

I here is a special pointer whose value is 0. It is called the null
pointer

I You can assign 0 into a pointer:
ptr = 0;

I The null pointer is the only integer literal that may be
assigned to a pointer. You may NOT assign arbitrary numbers
to pointers:
nt * p = 0; // OK assignment of null pointer to p

int * q;

q = 0; // okay. null pointer again.

int * z;

z = 900; // BAD! cannot assign other literals to

pointers!

double * dp;

dp = 1000; // BAD!

The null pointer

I The null pointer is never a valid target, however. If you try to
dereference the null pointer, you WILL get a segmentation
fault.

I So why use it? The null pointer is typically used as a
placeholder to initialize pointers until you are ready to use
them (i.e. with valid targets), so that their values are known.

I If a pointer’s value was completely unknown – random memory
garbage – you’d never know if it was safe to dereference

I If you make sure your pointer is ALWAYS set to either a valid
target, or to the null pointer, then you can test for it:
if (ptr != 0) // safe to dereference

cout << *ptr;

Assigning Pointers of the same type

I It is also legal to assign one pointer to another, provided that
they are the same type:
int * ptr1, * ptr2; // two pointers of type int

ptr1 = ptr2; // can assign one to the other

// now they both point to the same place

I Although all pointers are addresses (and therefore represented
similarly in data storage), we want the type of the pointer to
indicate what is being pointed to. Therefore, C treats pointers
to different types AS different types themselves.
int * ip; // pointer to int

char * cp; // pointer to char

double * dp; // poitner to double

Reinterpret Cast

I These three pointer variables (ip, dp, cp) are all considered to
have different types, so assignment between any of them is
illegal. The automatic type coercions that work on regular
numerical data types do not apply:
ip = dp; // ILLEGAL

dp = cp; // ILLEGAL

ip = cp; // ILLEGAL

I As with other data types, you can always force a coercion by
performing an explicit cast operation. With pointers, you
would usually use reinterpret cast. Be careful that you really
intend this, however!
ip = reinterpret cast<int* >(dp);

The ”address of” operator

I Recall, the & unary operator, applied to a variable, gives its
address:
int x;

// the notation &x means "address of x"

I This is the best way to attach a pointer to an existing variable:
int * ptr; // a pointer

int num; // an integer

ptr = # // assign the address of num to ptr

// now ptr points to "num"!

Pass By Address

I We’ve seen that regular function parameters are pass-by-value
I A formal parameter of a function is a local variable that will

contain a copy of the argument value passed in
I Changes made to the local parameter variable do not affect

the original argument passed in

I If a pointer type is used as a function parameter type, then an
actual address is being sent into the function instead

I In this case, you are not sending the function a data value –
instead, you are telling the function where to find a specific
piece of data

I Such a parameter would contain a copy of the address sent in
by the caller, but not a copy of the target data

I When addresses (pointers) are passed into functions, the
function could affect actual variables existing in the scope of
the caller

Example

void SquareByAddress(int * ptr)

// Note that this function doesn’t return anything.

{
*ptr=(*ptr) * (*ptr); // modifying target, *ptr

}

int main()

{
int num = 4;

cout << "num = " << num << ’\n’; // num = 4

SquareByAddress(&num); // address of num passed

cout << "num = " << num << ’\n’; // num = 16

}

Pointers and Arrays:

I With a regular array declaration, you get a pointer for free.
The name of the array acts as a pointer to the first element of
the array.
int list[10]; // the variable list is a pointer

// to the first integer in the array

int * p; // p is a pointer. same type as list.

p = list; // legal assignment. Both pointers to

ints.

I In the above code, the address stored in list has been assigned
to p. Now both pointers point to the first element of the
array. Now, we could actually use p as the name of the array!
list[3] = 10;

p[4] = 5;

cout << list[6];

cout << p[6];

Pointer Arithmetic

I Another useful feature of pointers is pointer arithmetic.

I In the above array example, we referred to an array item with
p[6]. We could also say *(p+6).

I When you add to a pointer, you do not add the literal
number. You add that number of units, where a unit is the
type being pointed to.

I For instance, p + 6 in the above example means to move the
pointer forward 6 integer addresses. Then we can dereference
it to get the data *(p + 6).

I Most often, pointer arithmetic is used with arrays.

I Suppose ptr is a pointer to an integer, and ptr stores the
address 1000. Then the expression (ptr + 5) does not give
1005 (1000+5).

I Instead, the pointer is moved 5 integers (ptr + (5 *
size-of-an-int)). So, if we have 4-byte integers, (ptr+5) is
1020 (1000 + 5*4).

Pointer Arithmetic

What pointer arithmetic operations are allowed?

I A pointer can be incremented (++) or decremented (–)

I An integer may be added to a pointer (+ or +=)

I An integer may be subtracted from a pointer (- or -=)

I One pointer may be subtracted from another

Pass By Address with arrays:

I The fact that an array’s name is a pointer allows easy passing
of arrays in and out of functions. When we pass the array in
by its name, we are passing the address of the first array
element. So, the expected parameter is a pointer. Example:
// This function receives two integer pointers,

// which can be names of integer arrays.

int Example1(int * p, int * q);
I When an array is passed into a function (by its name), any

changes made to the array elements do affect the original
array, since only the array address is copied (not the array
elements themselves).
void Swap(int * list, int a, int b)

{
int temp = list[a];

list[a] = list[b];

list[b] = temp;

}

Pass By Address with arrays:

I This Swap function allows an array to be passed in by its
name only. The pointer is copied but not the entire array. So,
when we swap the array elements, the changes are done on
the original array. Here is an example of the call from outside
the function:
int numList[5] = 2, 4, 6, 8, 10;

Swap(numList, 1, 4); // swaps items 1 and 4

I Note that the Swap function prototype could also be written
like this:
void Swap(int list[], int a, int b);

I The array notation in the prototype does not change
anything. An array passed into a function is always passed by
address, since the array’s name IS a variable that stores its
address (i.e. a pointer).

Pass By Address with arrays:

Pass-by-address can be done in returns as well – we can return the
address of an array.
int * ChooseList(int * list1, int * list2)

{
if (list1[0] < list2[0])

return list1;

else

return list2;

// returns a copy of the address of the array

}
And an example usage of this function:
int numbers[5] = 1,2,3,4,5;

int numList[3] = 3,5,7;

int * p;

p = ChooseList(numbers, numList);

Using const with pass-by-address

I The keyword const can be used on pointer parameters, like we
do with references.

I It is used for a similar situation – it allows parameter passing
without copying anything but an address, but protects against
changing the data (for functions that should not change the
original)

I The format:
const typeName * v

I This establishes v as a pointer to an object that cannot be
changed through the pointer v.

I Note: This does not make v a constant! The pointer v can be
changed. But, the target of v cannot be changed (through the
pointer v).

I Example:
int Function1(const int * list); // the target of

//list can’t be changed in the function

Using const with pass-by-address

The pointer can be made constant, too. Here are the different
combinations:

1. Non-constant pointer to non-constant data
int * ptr;

2. Non-constant pointer to constant data
const int * ptr;

3. Constant pointer to non-constant data
int x = 5;

int * const ptr = &x; // must be initialized here

An array name is this type of pointer - a constant pointer (to
non-constant data).

4. Constant pointer to constant data
int x = 5;

const int * const ptr = & x;

const pointers and C-style strings

I We’ve seen how to declare a character array and initialize with
a string:
char name[25] = "Spongebob Squarepants";

I Note that this declaration creates an array called name (of
size 25), which can be modified.

I Another way to create a varible name for a string is to use
just a pointer:
char* greeting = "Hello";

I However, this does NOT create an array in memory that can
be modified. Instead, this attaches a pointer to a fixed string,
which is typically stored in a ”read only” segment of memory
(cannot be changed).

I So it’s best to use const on this form of declaration:
const char* greeting = "Hello"; // better

