
More on Functions

Lecture 7
COP 3014 Fall 2021

October 6, 2021



Function Overloading

The term function overloading refers to the way C++ allows
more than one function in the same scope to share the same name
– as long as they have different parameter lists

I The rationale is that the compiler must be able to look at any
function call and decide exactly which function is being
invoked

I Overloading allows intuitive function names to be used in
multiple contexts

I The parameter list can differ in number of parameters, or
types of parameters, or both

I Example:
int Process(double num); // function 1

int Process(char letter); // function 2

int Process(double num, int position);

// function 3



Function Overloading

Sample calls, based on the above declarations

int x;

float y = 12.34;

x = Process(3.45, 12); // invokes function 3

x = Process(‘f’); // invokes function 2

x = Process(y); // invokes function 1

//(automatic type conversion applies)



Avoiding Ambiguity

I Even with legally overloaded functions, it’s possible to make
ambiguous function calls, largely due to automatic type
conversions.

I Consider these functions
int Compute(int x, int y, int z = 5);

// z has a default value

void RunAround(char x, int r=7, double f=0.5);

// r and f have default values

I Important Rule: Since the compiler processes a function call
by filling arguments into the parameter list left to right, any
default parameters MUST be at the end of the list

void Jump(int a, int b = 2, int c);

// This is illegal



Avoiding Ambiguity

Legal Calls

int a = 2, b = 4, c = 10, r;

cout << Compute(a, b, c); // all 3 parameters used

r = Compute(b, 3); // z takes its default value of 5

// (only 2 arguments passed in)

RunAround(’a’, 4, 6.5); // all 3 arguments sent

RunAround(’a’, 4); // 2 arguments sent

// f takes default value

RunAround(’a’); // 1 argument sent

// r and f take defaults



Default parameters and overloading

I A function that uses default parameters can count as a
function with different numbers of parameters. Recall the
three functions in the overloading example:
int Process(double num); // function 1

int Process(char letter); // function 2

int Process(double num, int position); //

function 3

I Now suppose we declare the following function:
int Process(double x, int y = 5); // function 4

I This function conflicts with function 3, obviously. It ALSO
conflicts with function 1. Consider these calls:
cout<<Process(1.3,10); //matches functions 3 & 4

cout << Process(13.5); // matches functions 1 & 4

I So, function 4 cannot exist along with function 1 or function 3

I BE CAREFUL to take default parameters into account when
using function overloading!



Reference Variables

I A reference variable is a nickname, or alias, for some other
variable

I To delare a reference variable, we use the unary operator &
int n = 5; // this declares a variable, n

int & r = n;//this declares r as a reference to n
I In this example, r is now a reference to n. (They are both

referring to the SAME storage location in memory).
I To declare a reference variable, add the & operator after the

type
I Note: The notation can become confusing when different

sources place the & differently. The following three
declarations are equivalent:
int &r = n;

int& r = n;

int & r = n;
I The spacing between the “int” and the “r” is irrelevant. All

three of these declare r as a reference variable that refers to n.



WHY???!

I While the above code example shows what a reference
variable is, you will not likely use it this way!

I In this example, the regular variable and the reference are in
the same scope, so it seems silly. (”Why do I need to call it r
when I can call it x ?”)

I So when are references useful? When the two variables are in
different scopes (this means functions!)



Pass By Value

I Recall that the variables in the formal parameter list are
always local variables of a function

I This is known as Pass By Value - function parameters receive
copies of the data sent in.
void Func1(int x, double y)

{
x=12; // these won’t affect the caller

y=20.5; // they change LOCAL variables x & y

}
I In the function above, any int and double r-values may be

sent in
int num = 5;

double avg = 10.7;

Func1(num, avg); // legal

Func1(4, 10.6); // legal

Func1(num + 6, avg - 10.6); // legal



Pass By Reference

I Consider the following function
void Twice(int& a, int& b)

{
a *= 2;

b *= 2;

}
I Note that when it is run, the variables passed into Twice from

the main() function DO get changed by the function

I The parameters a and b are still local to the function, but
they are reference variables (i.e. nicknames to the original
variables passed in (x and y))



Pass by Reference

I When reference variables are used as formal parameters, this
is known as Pass By Reference
void Func2(int& x, double& y)

{
x = 12; // these WILL affect

y = 20.5; //the original arguments

}
I When a function expects strict reference types in the

parameter list, an L-value (i.e. a variable, or storage location)
must be passed in
int num;

double avg;

Func2(num, avg); // legal

Func2(4, 10.6); // NOT legal

Func2(num + 6, avg - 10.6); // NOT legal



Pass by Reference

I Note: This also works the same for return types. A return by
value means a copy will be made. A reference return type
sends back a reference to the original.
int Task1(int x, double y);

// uses return by value

int& Task2(int x, double y);

// uses return by reference

I This is a trickier situation than reference parameters (which
we will not see in detail right now).



Comparing: Value vs. Reference

I Pass By Value
I The local parameters are copies of the original arguments

passed in
I Changes made in the function to these variables do not affect

originals

I Pass By Reference
I The local parameters are references to the storage locations of

the original arguments passed in.
I Changes to these variables in the function will affect the

originals
I No copy is made, so overhead of copying (time, storage) is

saved



const Reference Parameters

I The keyword const can be used on reference parameters.
void Func3(const int& x);

I This will prevent x from being changed in the function body

I General Format:
const typeName & variableName

I This establishes variableName as a reference to a location
that cannot be changed through the use of variableName.

I This would be used to avoid the overhead of making a copy,
but still prevent the data from being changed

I Since the compiler will guarantee that the parameter value
cannot change, it IS legal to pass in any R-value in this case:
int num = 5;

Func3(num); // legal

Func3(10); // legal

Func3(num + 50); // legal


