
LECTURE 3

Translation

PROCESS MEMORY

• There are four general areas of memory in a process.

• The text area contains the instructions for the application and is fixed in size.

• The static data area is also fixed in size and contains:

• Global variables

• Static local variables

• String and sometimes floating-point constants

• The run-time stack

• Contains activation records, each containing information associated with a function invocation.

• Saved values of callee-saved registers

• Local variables and arguments not allocated to registers.

• Space for the maximum words of arguments passed on stack to other functions.

• The heap contains dynamically allocated data (e.g. data allocated by the new operator in C++ or malloc function call in C).

ORGANIZATION OF PROCESS MEMORY

Reserved

Text

Static Data

Dynamic Data

Stack
$sp 

$gp 

pc 

Address 0 

Here is MIPS convention for

allocation of memory.

The stack starts at the higher-end of

memory and grows downward, while

the heap grows upward into the same

space.

The lower end of memory is

reserved. The text segment follows,

housing the MIPS machine code.

TRANSLATION PROCESS

• Preprocessing

• Compiling

• Assembling

• Linking

• Loading

PREPROCESSING

• Some preliminary processing is performed on a C or C++ file.

• Definitions and macros

• File inclusion

• Conditional compilation

• Try g++ with the -E option!

COMPILING

• Compiling is referred to as both the entire translation process from source file to

executable or the step that translates a source file in a high-level language

(sometimes already preprocessed) and produces an assembly file.

• Compilers are also responsible for checking for correct syntax, making semantic

checks, and performing optimizations to improve performance, code size, and

energy usage.

ASSEMBLING

ASSEMBLING

• Assemblers take an assembly language file as input and produce an object file as

output.

• Assembling is typically accomplished in two passes.

• First pass: stores all of the identifiers representing addresses or values in a table as

there can be forward references.

• Second pass: translates the instructions and data into bits for the object file.

THE OBJECT FILE

• For Unix systems, the object file contains:

• An object file header describing the size and position of the other portions of the object file.

• The text segment containing the machine instructions.

• The data segment containing the data values.

• Relocation information identifying the list of instructions and data words that depend on absolute

addresses.

• A symbol table containing global labels and associated addresses in object file and the list of

unresolved references.

• Debugging information to allow a symbolic debugger to associate machine instruction addresses

with source line statements and data addresses with variable names.

LINKING

• Linkers take object files and object libraries as input and produce an executable file

as output.

• Linkers also resolve external references by either finding the symbols in another

object file or in a library.

• The linker aborts if any external references cannot be resolved.

• The linker determines the addresses of absolute references using the relocation

information in the object files.

• The executable has a similar format as object files with no unresolved references

and no relocation information.

LINKING

LOADING

LOADING

The loader copies the executable file (or a portion of it) from disk into memory so it can

start executing.

• Reads the executable file's header to determine the size of the text and data segments.

• Allocates the address space for the process (text, static data, heap, and stack segments).

• Copies the instructions into the text segment and data into the static data segment.

• Copies arguments passed to the program onto the stack.

• Initializes the machine registers and stack pointer.

• Jumps to a start-up routine that will call the main function.

GCC EXAMPLE

$ ls

exp.c exp.h main.c

$ gcc -c exp.c

$ gcc -c main.c

$ ls

exp.c exp.h exp.o main.c main.o

$ gcc main.o exp.o -o exp_prog

exp.c exp.h exp.o exp_prog main.c main.o

Let’s say I have three files – a class declared in exp.h and defined

exp.c, as well as a main.c file which uses the class.

Preprocessing, Compiling, and

Assembling the source code individually.

Result is an object file.

Linking the object files together into an

executable file.

You can check out the pre-processed version of your code with the –E option. Prints to stdout.

You can check out the assembly version of your code with the –S option. Check the filename.s file.

STORED PROGRAM CONCEPT

• Memory can contain both instructions and

data and the computer is instructed to start

executing at a specific location.

• Different programs can be loaded in different

locations and the processor can switch

between

processes very quickly.

