
LECTURE 2 
Review 1 – Binary Math and Assembly 



BINARY MATH 

In this section, we review 

• Binary to decimal conversions and vice versa 

• IEEE 754 Floating point representations 

• Binary Arithmetic 



Decimal representation of binary numbers 

• Starting from the least significant bit, multiply the digits of 
the binary number with increasing powers of 2. 

• LSB’s multiplied with 20, the next bit by 21…. 
• Add the products. 



Decimal representation of binary numbers 

• 110010 

= 25 + 24 + 21 

= 32 + 16 + 2 

=50 

5 4 3 2 1 0 

25 24 23 22 21 20 

1 1 0 0 1 0 



Decimal representation of binary numbers 

• 101100 

= 25 + 23 + 22 

= 32 + 8 + 4 

=44 

5 4 3 2 1 0 

25 24 23 22 21 20 

1 0 1 1 0 0 



Decimal representation of binary numbers 

• 111101 

= 25 + 24 + 23 + 22 + 20 

= 32 + 16 + 8 + 4 + 1 

=61 

5 4 3 2 1 0 

25 24 23 22 21 20 

1 1 1 1 0 1 



Binary representation of decimal integers 

• Repeatedly divide the decimal number by 2, 

until the quotient is 0. 

• Collect the remainders as you go. 

• Write down the remainder from right to the 

left. 



Binary representation of decimal integers 

• 28 

= 011100 

Quotient Remainder 

14 0 

7 0 

3 1 

1 1 

0 1 



Binary representation of decimal integers 

• 45 

= 101101 

Quotient Remainder 

22 1 

11 0 

5 1 

2 1 

1 0 

0 1 



Binary representation of decimal integers 

• 62 

= 111110 

Quotient Remainder 

31 0 

15 1 

7 1 

3 1 

1 1 

0 1 



BINARY ADDITION 

• 0 + 0 = 0 

• 0 + 1 = 1 

• 1 + 0 = 1 

• 1 + 1 = 10 ( sum is 0, carry 1) 

• 1 + 1 + 1 = 11 (sum is 1, carry is 1) 



BINARY ADDITION 

• a=00111010, b=01100111 

 
Carry 

 
 

+ 

1 1 1 1 1 1 

0 0 1 1 1 0 1 0 

0 1 1 0 0 1 1 1 

1 0 1 0 0 0 0 1 



BINARY ADDITION 

• a=01001111, b=00011001 

 
Carry 

 
 

+ 

1 1 1 1 1 

0 1 0 0 1 1 1 1 

0 0 0 1 1 0 0 1 

0 1 1 0 1 0 0 0 



BINARY ADDITION 

• a=00101100, b=01000111 

 
Carry 

 
 

+ 

1 1 

0 0 1 0 1 1 0 0 

0 1 0 0 0 1 1 1 

0 1 1 1 0 0 1 1 



BINARY SUBTRACTION 

• 0 - 0 = 0 

• 1 - 0 = 1 

• 1 - 1 = 0 

• 10 – 1 = 1 (In case of 0 – 1, Borrow from the 

closest  bit that’s 1). 

• A borrowed 1 becomes a 10 at the lower bit. 



BINARY SUBTRACTION 

• a=01110011, b=00011111 

 
Borrow 

First borrow 

Second borrow 

0 0 10 10 1 10 

0 1 1 1 0 0 1 1 

- 0 0 0 1 1 1 1 1 

0 1 0 1 0 1 0 0 



BINARY SUBTRACTION 

• a=10111011, b=00111111 

 
Borrow 

0 10 1 0 10 0 10 0 10 10 

1 0 1 1 1 0 1 1 

- 0 0 1 1 1 1 1 1 

0 1 1 1 1 1 0 0 



BINARY SUBTRACTION 

• a=11110110, b=11000011 

 
Borrow 

0 0  10 10 

1 1 1 1 0 1 1 0 

- 1 1 0 0 0 0 1 1 

0 0 1 1 0 0 1 1 



Binary representation of negative numbers 

• Consider the number to be positive. Convert 
it to binary. Fill out the required number 

of bits by adding leading 0’s if 
necessary.  

• Convert the binary number to it’s 2’s 
compliment.  (Flip the bits and then add 1 
to the result). 

• Add the sign bit as the most significant bit. 
Sign bit is 1 for a negative number. 



Binary representation of negative numbers 

• -89 
Quotient Remainder 

44 1 

22 0 

11 0 

5 1 

2 1 

1 0 

0 1 

Sign 1 0 1 1 0 0 1 

1 0 1 0 0 1 1 1 



Binary representation of negative numbers 

• -43 
Quotient Remainder 

21 1 

10 1 

5 0 

2 1 

1 0 

0 1 

Sign 0 1 0 1 0 1 1 

1 1 0 1 0 1 0 1 



Binary representation of negative numbers 

• - 127 

Quotient Remainder 

63 1 

31 1 

15 1 

7 1 

3 1 

1 1 

0 1 

Sign 1 1 1 1 1 1 1 

1 0 0 0 0 0 0 1 



Binary representation of numbers with fractions 

• Convert the integer part into binary. 

• For the fractional part, divide the fraction first by 
0.5 (2-1), take the quotient as the first bit of the 
binary fraction. 

• Divide the remainder by 0.25 (2-2), and repeat the 
repeat the process until the remainder’s 0.  

• Some fractions may not terminate. In this case, find 
out if the bits form a pattern. If no bit  pattern is 
formed, keep dividing until the required number of 
bits is filled. 



Binary representation of numbers with fractions 

 
• 4.25 

410=1002 

4.2510 = 100.012 

Divide 0.25 by Quotient, Remainder 

2-1 (0.5) 0, 0.25 

2-2 (0.25) 1, 0 



Binary representation of numbers with fractions 

 
• 12.375 

1210=11002 

12.37510 = 1100.0112 

Divide 0.375 by Quotient, Remainder 

2-1 (0.5) 0, 0.375 

2-2 (0.25) 1, 0.125 

2-3 (0.125) 1, 0 



Binary representation of numbers with fractions 

 
• 9.875 

910=10012 

9.87510 = 1001.1112 

Divide 0.875 by Quotient, Remainder 

2-1 (0.5) 1,  0.375 

2-2 (0.25) 1,  0.125 

2-3 (0.125) 1, 0 



Floating point representations in Hex form 

• First write the number in binary. 

• Convert it to standard form (eg. 10110.001 = 1.0110001 x 24). 

The power of 2’s the exponent. The fractional part’s 
the mantissa  

• Add the exponent to the bias (127 for 32 bit, 

1023 for 64 bit) and convert the sum to binary. 

• Write down the number as sign bit, exponent, 

mantissa. Fill out the remaining bits with 0’s.  
• Split the number is groups of 4. For each of the 4 bits, write 

the hexadecimal equivalent. 



Floating point representations in Hex form 

• 4.25 

4.2510 = 100.012 = 1.0001 x 22 

Exponent - 127 + 2 = 12910 = 100000012 

Mantissa – 0001 

= 0x 40880000 

0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 2 2 1 1 1 7 3 

1 7 3 9 5 1 



Floating point representations in Hex form 

• 12.375 

12.37510 = 1100.0112 = 1.100011 x 23 

Exponent - 127 + 3 = 13010 = 100000102 

Mantissa – 100011 

= 0x 41460000 

0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 2 2 1 1 1 7 3 

1 7 3 9 5 1 



Floating point representations in Hex form 

• 9.875 

9.87510 = 1001.1112 = 1.001111 x 23 

Exponent - 127 + 3 = 13010 = 100000102 

Mantissa – 001111 

= 0x 411e0000 

0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 2 2 1 1 1 7 3 

1 7 3 9 5 1 



Single Precision Floating Point IEEE- 754 

• First write the number in binary. 

 
• Convert it to standard form (eg. 10110.001 = 1.0110001 x 

24).  The  power  of  2’s the  exponent.  The  fractional  part’s 

the mantissa. 

 
• Add the exponent to the bias (127 for 32 bit, 1023 for 64 

bit) and convert the sum to binary. 

 
• Write  down  the  number  as  sign  bit,  exponent,  mantissa. 

Fill out the remaining bits with 0’s. 

 
• Split  the  number  is  groups  of  4.  For  each  of  the  4  bits, 

write the hexadecimal equivalent. 



= 0x 3F900000 

• 1.125 

1.12510  = 1.0012  = 1.001 x 20 

Exponent - 127 + 0 = 12710  = 011111112 

Mantissa – 001 

Single Precision Floating Point IEEE- 754 

0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 2 2 1 1 1 7 3 

1 7 3 9 5 1 



= 0x 40D10000 

• 6.53125 

6.5312510  = 110.100012  = 1.1010001 x 22 

Exponent - 127 + 2 = 12910  = 100000012 

Mantissa – 1010001 

Single Precision Floating Point IEEE- 754 

0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 2 2 1 1 1 7 3 

1 7 3 9 5 1 



= 0x COB1800 

• -5.546875 

5.54687510  = 101.1000112  = 1.01100011 x 22 

Exponent - 127 + 2 = 12910  = 100000012 

Mantissa – 01100011 

Single Precision Floating Point IEEE- 754 

1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 2 2 1 1 1 7 3 

1 7 3 9 5 1 



Range of Single Precision Float (Positive) 

• Largest Number: 
• (1 + 1 – 2-23) X (2254-127) 

= 2128 – 2104 

=340282346638528859811704183484516925440 

 ≈ 3.4028235 X 1038 

• Smallest Number: 
• (1 + 0.0) X (21-127) 

= 2-126 

  ≈ 1.175494351 X 10-38 



MACHINE LANGUAGE 

• As humans, communicating with a machine is a tedious task. We can’t, for example, 
just say “add this number and that number and store the result here”. Computers 
have no way of even beginning to understand what this means. 

 



MACHINE LANGUAGE 

 

•  As we stated before, the alphabet of the machine’s language is binary – it simply 

contains the digits 0 and 1.  

•  Continuing with this analogy, instructions are the words of a machine’s language. That 
is, they are meaningful constructions of the machine alphabet.  

•  The instruction set, then, constitutes the vocabulary of the machine. These are the 

words understood by the machine itself.  



MACHINE LANGUAGE 

• To work with the machine, we need a translator.  

 

Assembly languages serve as an intermediate form between the human-readable 

programming language and the machine-understandable binary form.  

• Generally speaking, compiling a program into an executable format involves the 

following stages: 

High-level Language Assembly Language Machine Language 



EXAMPLE OF TRANSLATING A C PROGRAM 

swap(int v[], int k){ 

   int temp; 

   temp = v[k]; 

   v[k] = v[k+1]; 

   v[k+1] = temp; 

} 

High-Level Language Program 

swap: 

        multi  $2, $5,  4 

        add    $2, $4, $2 

        lw     $15, 0($2) 

        lw     $16, 4($2) 

        sw     $16, 0($2) 

        sw     $15, 4($2) 

        jr     $31  

Assembly Language Program  

00000000101000100000000100011000 

00000000100000100001000000100001 

10001101111000100000000000000000 

10001110000100100000000000000100 

10101110000100100000000000000000 

10101101111000100000000000000100 

00000011111000000000000000001000 

Binary Machine Language Program 

Compiler 

Assembler 



MACHINE LANGUAGE 

•  A single human-readable high-level language instruction is generally translated into 

multiple assembly instructions.  

•  A single assembly instruction is a symbolic representation of a single machine 

language instruction.   

•  A single machine language instruction is a set of bits representing a basic operation 

that can be performed by the machine.  

•  The instruction set is the set of possible instructions for a given machine. 



ADVANTAGES OF HIGH-LEVEL LANGUAGES 

• Requiring these translation steps may seem cumbersome but there are a couple of high-

level language advantages that make this scheme worthwhile. 

•  High-level languages allow the programmer to think in more natural, less tedious terms – 

specifically in the case of application-specific languages. 

•  Improve programmer productivity.  

•  Improve program maintainability.  

•  Applications can be independent of the computer on which they were developed.  

•  Highly-optimizing compilers can produce very efficient machine code optimized for a 

target machine.   



WHY LEARN ASSEMBLY LANGUAGE?  

• So, if high-level languages are so great…why bother learning assembly?  

•  Knowing assembly language illuminates concepts not only in computer organization, 

but operating systems, compilers, parallel systems, etc.  

•  Understanding how high-level constructs are implemented leads to more effective 

use of those structures.  

•  Control constructs (if, do-while, etc.) 

•  Pointers 

•  Parameter passing (pass-by-value, pass-by-reference, etc.) 

•  Helps to understand performance implications of programming language features. 



MIPS 

• We will start with a lightning review of MIPS.  

•  MIPS is a RISC (Reduced Instruction Set Computer) instruction set, meaning that it 

has simple and few instructions.  

•  Originally introduced in the early 1980’s.  

•  An acronym for Microprocessor without Interlocked Pipeline Stages.  

•  MIPS architecture has been used in many computer products, especially in the late 

80’s and early 90’s. N64, Playstation, and Playstation 2 all used MIPS 

implementations.  

•  Many ISAs that have since been designed are very similar to MIPS.  

•  In the mid to late 90’s, approximately 1/3 of all RISC microprocessors were MIPS 
implementations.  



RISC ARCHITECTURE 

•  CISC (Complex Instruction Set Computer) 

•  Intel x86 

•  RISC (Reduced Instruction Set Computer) 

•  MIPS, Sun SPARC, IBM, PowerPC, ARM 

•  RISC Philosophy 

•  fixed instruction lengths 

•  load-store instruction sets 

•  limited number of addressing modes 

•  limited number of operations 



THE FOUR ISA DESIGN PRINCIPLES 

1. Simplicity favors regularity  

• Consistent instruction size, instruction formats, data formats  

• Eases implementation by simplifying hardware  

2. Smaller is faster  

• Fewer bits to access and modify 

• Use the register file instead of slower memory  

3. Make the common case fast  

• e.g. Small constants are common, thus small immediate fields should be used.   

4. Good design demands good compromises  

• Compromise with special formats for important exceptions  

• e.g. A long jump (beyond a small constant)  

 



MIPS REVIEW 

• Now we’ll jump right into our lightning review of MIPS.  
The general classes of MIPS instructions are 

•  Arithmetic 

•  add, subtract, multiply, divide 

•  Logical 

•  and, or, nor, not, shift 

•  Data transfer 

•  load from or store to memory 

•  Transfers of control 

•  jumps, branches, calls, returns 



QUICK EXAMPLE 

• Here is an example of one of the simplest and most common MIPS instructions.  

 

 

• This MIPS instruction symbolizes the machine instruction for adding the contents of 

register t1 to the contents of register t2 and storing the result in t0.  

 

add $t0, $t1, $t2  



QUICK EXAMPLE 

• Here is an example of one of the simplest and most common MIPS instructions.  

 

 

 

 

add $t0, $t1, $t2  

Operands Operation 



QUICK EXAMPLE 

• Here is an example of one of the simplest and most common MIPS instructions. 

 

 

• The corresponding binary machine instruction is   

 

 

 

 

add $t0, $t1, $t2  

000000 01001 01010 01000 00000 100000 

This portion tells the machine exactly which operation 

we’re performing. In this case, 100000 refers to an 
addition operation 



QUICK EXAMPLE 

• Here is an example of one of the simplest and most common MIPS instructions. 

 

 

• The corresponding binary machine instruction is   

 

 

 

 

add $t0, $t1, $t2  

000000 01001 01010 01000 00000 100000 

This portion is used for shift instructions, and is therefore 

not used by the machine in this case. 



QUICK EXAMPLE 

• Here is an example of one of the simplest and most common MIPS instructions. 

 

 

• The corresponding binary machine instruction is   

 

 

 

 

add $t0, $t1, $t2  

000000 01001 01010 01000 00000 100000 

This portion indicates the destination register – this is 

where the result will be stored. Because $t0 is the 8th 

register, we use 01000 to represent it.  



QUICK EXAMPLE 

• Here is an example of one of the simplest and most common MIPS instructions. 

 

 

• The corresponding binary machine instruction is   

 

 

 

 

add $t0, $t1, $t2  

000000 01001 01010 01000 00000 100000 

This portion indicates the second source register. 

Because $t2 is the 10th register, we use 01010 to 

represent it.  



QUICK EXAMPLE 

• Here is an example of one of the simplest and most common MIPS instructions. 

 

 

• The corresponding binary machine instruction is   

 

 

 

 

add $t0, $t1, $t2  

000000 01001 01010 01000 00000 100000 

This portion indicates the first source register. Because 

$t1 is the 9th register, we use 01001 to represent it.  



QUICK EXAMPLE 

• Here is an example of one of the simplest and most common MIPS instructions. 

 

 

• The corresponding binary machine instruction is   

 

 

 

 

add $t0, $t1, $t2  

000000 01001 01010 01000 00000 100000 

This last portion holds the operation code relevant for 

other types of instructions. The add operation, and 

others like it, always have a value of 0 here.  



MIPS INSTRUCTION OPERANDS 

• So now that we’ve seen an example MIPS instruction and how it directly corresponds 
to its binary representation, we can talk about the components of an instruction. MIPS 

instructions consist of operations on one or more operands. Operands in MIPS fit into 

one of three categories.  

•  Integer constants 

•  Registers 

•  Memory 



INTEGER CONSTANT OPERANDS 

Integer constant operands are used frequently. For example, while looping over an 

array, we might continually increment an index to access the next array element. 

To avoid saving the constant elsewhere and having to retrieve it during every use, MIPS 

allows for immediate instructions which can include a constant directly in the 

instruction.  

A simple example is add immediate: 

addi $s3, $s3, 4  # adds 4 to the value in $s3 and stores in $s3 



INTEGER CONSTANTS 

•  Generally represented with 16 bits, but they are extended to 32 bits before being 

used in an operation.  

•  Most operations use signed constants, although a few support unsigned.  

•  Integer constants can be represented in MIPS assembly instructions using decimal, 

hexadecimal, or octal values. 

•  A reflection of design principle 3, make the common case fast.   

•  Because constants are used frequently, it is faster and more energy efficient to support 

instructions with built-in constants rather than fetching them from memory all the time.  



REGISTERS 

• We’ve already seen some simple register usage in our two example MIPS 
instructions. 

 

 

 

• In these instructions, $t0, $t1, $t2, and $s3 are all registers. Registers are special 

locations built directly into the hardware of the machine. The size of a MIPS register is 

32 bits. This size is also commonly known as a word in MIPS architecture.   

add $t0, $t1, $t2  

addi $s3, $s3, 4 



REGISTERS 

•  There are only 32 (programmer visible) 32-bit registers residing in a MIPS processor.  

•  Reflects design principle 2, smaller is faster. 

•  Having a small number of registers ensures that accessing a desired register is fast since they 

can be kept closer.  

•  Also means that fewer bits can be used to identify registers  decreases instruction size.   

•  Registers also use much less power than memory accesses.  

•  MIPS convention is to use two-character names following a dollar sign.  

•  Register 0: $zero – stores the constant value 0. 

•  Registers 16-23: $s0-$s7 – saved temporaries (variables in C code). 

•  Registers 8-15: $t0-$t7 – temporaries.  

 



REGISTERS 

Name Number Use 

$zero 0 Constant value 0. 

$at 1 Assembler temporary. For resolving 

pseudoinstructions. 

$v0-$v1 2-3 Function results and expression evaluation. 

$a0-$a3 4-7 Arguments. 

$t0-$t9 8-15, 24-25 Temporaries. 

$s0-$s7 16-23 Saved temporaries.  

$k0-$k1 26-27 Reserved for OS kernel. 

$gp 28 Global pointer. 

$sp 29 Stack pointer. 

$fp 30 Frame pointer. 

$ra 31 Return address. 



MEMORY OPERANDS 

• Before we talk about memory operands, we should talk generally about how data is 

stored in memory.  

•  As we said before, memory contains both data and instructions.  

•  Memory can be viewed as a large array of bytes.  

•  The beginning of a variable or instruction is associated with a specific element of 

this array.  

•  The address of a variable or instruction is its offset from the beginning of memory.  

   …     v    …     …      i   … Memory 

Address of variable v Address of instruction i 



MEMORY OPERANDS 

• For a large, complex data structure, there are likely many more data elements than 

there are registers available. However, arithmetic operations occur only on registers 

in MIPS.  

• To facilitate large structures, MIPS includes data transfer instructions for moving data 

between memory and registers.  

• As an example, assume we have the following C code, where A is an array of 100 

words.  

g = h + A[8]  



MEMORY OPERANDS 

• Let’s say g and h are associated with the registers $s1 and $s2 respectively. Let’s also 
say that the base address of A is associated with register $s3.  

 

• To compile this statement into MIPS, we’ll need to use the load word instruction to 

transfer A[8] into a register.  

 

 

• There is an equivalent store word instruction for storing data to memory as well.  

g = h + A[8]  

lw  $t0,32($s3) # load the element at a 32 byte offset from $s3 

add $s1,$s2,$t0  



MIPS ASSEMBLY FILE 

• Now, let’s turn our attention to the structure of a MIPS assembly file.  

•  MIPS assembly files contain a set of lines.  

•  Each line can be either a directive or an instruction. 

•  Each directive or instruction may start with a label, which provides a symbolic name 

for a data or instruction location.  

•  Each line may also include a comment, which starts with # and continues until the 

end of the line.  



GENERAL FORMAT 

 .data  

 # allocation of memory 

 .text  

 .global main  

main:  

 # instructions here  

 jr $ra # instruction indicating a return 



MIPS DIRECTIVES 

Directive Meaning 

.align n Align next datum on 2^n boundary. 

.asciiz str Place the null-terminated string str in memory. 

.byte b1, …, bn Place the n byte values in memory.  

.data Switch to the data segment. 

.double d1, …, dn Place the n double-precision values in memory.  

.float f1, …, fn Place the n single-precision values in memory.  

.global sym The label sym can be referenced in other files.  

.half h1, …, hn Place the n half-word values in memory.  

.space n Allocates n bytes of space.  

.text Switch to the text segment. 

.word w1, …, wn Place the n word values in memory.  



MIPS INSTRUCTION REVIEW: ADD 

• add d, s1, s2 

• Example: add $t0, $t1, $t2 

Destination is $t0, Sources are $t1 and $t2 

•Logic: 
–Bitwise addition with carries 

– 0 + 0 = 0 

– 0 + 1 = 1 

– 1 + 0 = 1 

– 1 + 1 = 10. Sum is 0, carry 1 



MIPS INSTRUCTION REVIEW: ADDI 

• addi d, s, immediate 

• Example: addi $t0, $t1, 10 

Destination is $t0, Sources are $t1 and an immediate 

signed short number (-32768 - +32767) 

•Logic: same as ADD 



MIPS INSTRUCTION REVIEW: SUB 

• sub d, s1, s2 

• Example: sub $t0, $t1, $t2 

Destination is $t0, Sources are $t1 and $t2 

•Logic: Bitwise subtraction with borrows 

• 0 – 0 = 0 

• 1 – 1 = 0 

• 1 – 0 = 1 

• 0 - 1 = 1 and remove 1 from the next digit 

– Actually, its two's Complement is added. 



MIPS Instruction Review: AND, ANDi 
• and d, s1, s2 

• Example: and $t0, $t1, $t2 

Destination is $t0, Sources are $t1 and $t2 

•Logic: 
–Bitwise 

–0 & 0 = 0 

–0 & 1 = 0 

–1 & 0 = 0 

–1 & 1 = 1 

• andi performs AND operation with an immediate signed 

short operand. Syntax of ADDi, operation of AND 



operand. Syntax of ADDi, operation of OR 

MIPS Instruction Review: OR, ORi 

• or d, s1, s2 

• Example: or $t0, $t1, $t2 

Destination is $t0, Sources are $t1 and $t2 

•Logic: 
–Bitwise 

–0 | 0 = 0 

–0 | 1 = 1 

–1 | 0 = 1 

–1 | 1 = 1 

• ori performs OR operation with an immediate 



operand. Syntax of ADDi, operation of XOR 

MIPS Instruction Review: XOR, XORi 

• xor d, s1, s2 

• Example: xor $t0, $t1, $t2 

Destination is $t0, Sources are $t1 and $t2 

•Logic: 
–Bitwise 

–0 ⊕ 0 = 0 

–0 ⊕ 1 = 1 

–1 ⊕ 0 = 1 

–1 ⊕ 1 = 0 

• xori performs XOR operation with an immediate 



MIPS Instruction Review: NOR 

• nor d, s1, s2 

• Example: nor $t0, $t1, $t2 

Destination is $t0, Sources are $t1 and $t2 

•Logic: 
–Bitwise 

– 0  ↓ 0 = 1 

– 0↓ 1 = 0 

– 1↓ 0   = 0 

– 1 ↓ 1 = 0 



MIPS INSTRUCTION REVIEW: LW 

• lw d, immediate(pointer) 

• Example: lw $t0, 12($t1) 

Destination is $t0, Source Address is $t1 + 
immediate signed short offset (a multiple of 4) 

•Logic: 
–Fetches value at an address in memory and loads it 
into a register. 



MIPS INSTRUCTION REVIEW: SW 

• sw d, immediate(pointer) 

• Example: sw $t0, 12($t1) 

Source is $t0, Destination Address is $t1 + 
immediate signed short offset (a multiple of 4) 

•Logic: 
–Fetches value within a register and stores it in a 
memory address. 



MIPS INSTRUCTION REVIEW: SLL 

• sll d, s, immediate 

• • sll $t0, $t1, 2 

• Destination is $t0, Source is $t1, immediate is number of bits to shift (0 to 32) 

• •Logic: 

• Shifts the bits of number in source register left by the  number  of  
bits  specified.  0’s  are  shifted  in. Result is stored in destination 
register. 



MIPS INSTRUCTION REVIEW: SRL 

• srl d, s, immediate 

• • srl $t0, $t1, 2 

• Destination is $t0, Source is $t1, immediate is number of bits to shift (0 to 32) 

• •Logic: 

• Shifts the bits of number in source register right by the  number  of  
bits  specified.  0’s  are  shifted  in. Result is stored in destination 
register. 



CONVERT C CODE TO MIPS 

•$t0 = A[$t2]; 

•A[$t2] = $t0 & $t1; 

•$t0 = (A[$t1] + $t2) / 2; 

•The starting address of array A is in $s0, and if 
$t2 = 4, A[$t2] represents the 4th element in A. 
Array elements are numbered from 0. 

 
•Don’t modify the contents of registers unless the C code 

specifically states to. 



$T0 = A[$T2]; 

•sll $t4, $t2, 2 

•add $t4, $t4, $s0 

•lw $t0, 0($t4) 

 
•MIPS is word addressed. Memory is byte 
addressed. So, we need to multiply MIPS 
addresses by 4 to get to the memory address. 
Hence sll. 



A[$T2] = $T0 & $T1; 

•and $t5, $t0, $t1 

•sw $t5, 0($t4) 

 
•We already have A[$t2] in $t4. So, we need not 
recalculate the address. 



$T0 = (A[$T1] + $T2) / 2; 

•sll $t6, $t1, 2 

•add $t6, $t6, $s0 

•lw $t7, 0($t6) 

•add $t7, $t7, $t2 

•srl $t0, $t7, 1 

 
•Right shifting by 1 bit is the same as dividing by 2. Left 

shifting by 1 bit is the same as multiplying by 2. 



MIPS INSTRUCTIONS 

General format: 

 

 

Example: 

<optional label> <operation> <operands> 

loop:  addu $t2,$t3,$t4 # instruction with a label  

     subu $t2,$t3,$t4 # instruction without a label  

L2:   # a label can appear on a line by itself 

# a comment can appear on a line by itself  



MIPS INSTRUCTIONS 

• What does this look like in memory? 

 .data  

nums:   

   .word  10, 20, 30  

 .text  

 .globl main  

main:  

 la $t0, nums 

   lw $t1, 4($t0) 



MIPS INSTRUCTION FORMATS 

• There are three different formats for MIPS instructions. 

•  R format 

•  Used for shifts and instructions that reference only registers. 

•  I format 

•  Used for loads, stores, branches, and immediate instructions. 

•  J format 

•  Used for jump and call instructions. 



MIPS INSTRUCTION FORMATS 

Name Fields 

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

R format op rs rt rd shamt funct 

I format op rs rt immed 

J format op targaddr 

op – instruction opcode. 

rs – first register source operand. 

rt – second register source operand. 

rd – register destination operand. 

shamt – shift amount. 

funct – additional opcodes.  

immed – offsets/constants. 

targaddr – jump/call target. 



MIPS INSTRUCTION FORMATS 

Name Fields 

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

R format op rs rt rd shamt funct 

I format op rs rt immed 

J format op targaddr 

op – instruction opcode. 

rs – first register source operand. 

rt – second register source operand. 

rd – register destination operand. 

shamt – shift amount. 

funct – additional opcodes.  

immed – offsets/constants. 

targaddr – jump/call target. 

All MIPS instructions are 32 bits – Design principle 1: simplicity favors regularity! 
 



MIPS INSTRUCTION FORMATS 

Name Fields 

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

R format op rs rt rd shamt funct 

I format op rs rt immed 

J format op targaddr 

op – instruction opcode. 

rs – first register source operand. 

rt – second register source operand. 

rd – register destination operand. 

shamt – shift amount. 

funct – additional opcodes.  

immed – offsets/constants. 

targaddr – jump/call target. 

Make simple instructions fast and accomplish other operations as a series of  

simple instructions – Design principle 3: make the common case fast! 
 



MIPS R FORMAT 

•  Used for shift operations and instructions that only reference registers. 

•  The op field has a value of 0 for all R format instructions.  

•  The funct field indicates the type of R format instruction to be performed.  

•  The shamt field is used only for the shift instructions (sll and srl, sra) 

 
Name Fields 

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

R format op rs rt rd shamt funct 

op – instruction opcode. 

rs – first register source operand. 

rt – second register source operand. 

rd – register destination operand. 

shamt – shift amount. 

funct – additional opcodes.  

 



R FORMAT INSTRUCTION ENCODING 
EXAMPLE 

• Consider the following R format instruction: 

 

 

 

 

addu $t2, $t3, $t4  

Fields op rs rt rd shamt funct 

Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits  

Decimal 0 11 12 10 0 33 

Binary 000000 01011 01100 01010 00000 100001 

Hexadecimal 0x016c5021 



MIPS I FORMAT 
•  Used for arithmetic/logical immediate instructions, loads, stores, and 

conditional branches.  

•  The op field is used to identify the type of instruction.  

•  The rs field is the source register.  

•  The rt field is either the source or destination register, depending on the 

instruction. 

•  The immed field is zero-extended if it is a logical operation. Otherwise, it is 

sign-extended.  

Name Fields 

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

I format op rs rt immed 



I FORMAT INSTRUCTION ENCODING 
EXAMPLES 

Fields op rs rt immed 

Size 6 bits 5 bits 5 bits 16 bits 

Decimal 9 8 8 1 

Binary 001001 01000 01000 0000000000000001 

Hexadecimal 0x25080001 

addiu $t0,$t0,1  

Arithmetic example: 



I FORMAT INSTRUCTION ENCODING 
EXAMPLES 

Fields op rs rt immed 

Size 6 bits 5 bits 5 bits 16 bits 

Decimal 35 18 17 100 

Binary 100011 10010 10001 0000000001100100 

Hexadecimal 0x8e510064 

lw $s1,100($s2)  

Memory access example: 



I FORMAT INSTRUCTION ENCODING 
EXAMPLES 

Fields op rs rt immed 

Size 6 bits 5 bits 5 bits 16 bits 

Decimal 4 14 15 -3 

Binary 000100 01110 01111 1111111111111101 

Hexadecimal 0x11cffffd 

L2:instruction 

 instruction 

 instruction 

 beq $t6,$t7,L2  

Conditional branch example: 

Note: Branch displacement is a signed 

value in instructions, not bytes, from the 

current instruction. Branches use PC-

relative addressing. 



ADDRESSING MODES 

•  Addressing mode – a method for evaluating an operand. 

•  MIPS Addressing Modes 

•  Immediate – operand contains signed or unsigned integer constant. 

•  Register – operand contains a register number that is used to access the register file. 

•  Base Displacement – operand represents a data memory value whose address is the sum of 

some signed constant (in bytes) and the register value referenced by the register number. 

•  PC relative – operand represents an instruction address that is the sum of the PC and some 

signed integer constant (in words). 

•  Pseudodirect – operand represents an instruction address (in words) that is the field 

concatenated with the upper bits of the PC. 

PC Relative and Pseudodirect addressing are actually relative to PC + 4, not PC. The reason for 

this will become clearer when we look at the design for the processor, so we’ll ignore it for now.  



MEMORY ALIGNMENT REQUIREMENTS 

•  MIPS requires alignment of memory references to be an integer multiple of the 

size of the data being accessed.  

•  These alignments are enforced by the compiler.  

•  The processor checks this alignment requirement by inspecting the least 

significant bits of the address.  

 

Byte:     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Half:     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX0 

Word:   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX00 

Double:  XXXXXXXXXXXXXXXXXXXXXXXXXXXXX000 

 



MIPS J FORMAT 

•  Used for unconditional jumps and function calls.  

•  The op field is used to identify the type of instruction.  

•  The targaddr field is used to indicate an absolute target address.  

 

Name Fields 

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

J format op targaddr 



J FORMAT INSTRUCTION ENCODING 
EXAMPLE 

• Jump example: 

• Assume L1 is at the address 4194340 in decimal, which is 400024 in hexadecimal. We 

fill the target field as an address in instructions (0x100009) rather than bytes 

(0x400024). Jump uses pseudo-direct addressing to create a 32-bit address. 

j L1  

Fields op target address 

Size 6 bits 26 bits 

Decimal 2 1048585 

Binary 000010 00000100000000000000001001 

Hexadecimal 0x08100009 



ARITHMETIC/LOGICAL GENERAL FORM  

•  Most MIPS arithmetic/logical instructions require 3 operands.  

•  Design principle 1: Simplicity favors regularity.  

•  Form 1:      <operation>   <dstreg>, <src1reg>, <src2reg> 

 

 

 

 

•  Form 2:      <operation>   <dstreg>, <srcreg>, <constant> 

 

 

Example Meaning Comment 

addu $t0, $t1, $t2 $t0 = $t1 + $t2 Addition (without overflow) 

subu $t1, $t2, $t3 $t1 = $t2 - $t3 Subtraction (without overflow) 

Example Meaning Comment 

addiu $t1,$t2,1 $t1 = $t2 + 1 Addition immediate (without overflow) 



USING MIPS ARITHMETIC INSTRUCTIONS 

•  Consider the following C++ source code fragment. 

 

 

 

•  Assume the values of f, g, h, i, and j are associated with registers $t2, $t3, $t4, $t5, and 

$t6 respectively. Write MIPS assembly code to perform this assignment assuming $t7 

is available.  

unsigned int f,g,h,i,j;  

... 

f = (g+h)-(i+j); 



USING MIPS ARITHMETIC INSTRUCTIONS 

• Solution (among others): 

•   

addu $t2,$t3,$t4 # $t2 = g + h  

addu $t7,$t5,$t6 # $t7 = i + j  

subu $t2,$t2,$t7 # $t2 = $t2 - $t7  



MULTIPLY, DIVIDE, AND MODULUS 
INSTRUCTIONS 

•  Integer multiplication, division, and modulus operations can also be performed.  

•  MIPS provides two extra registers, hi and lo, to support division and modulus 

operations.  

Example Meaning Comment 

mult $t1,$t2 $lo = $t1 * $t2 Multiplication 

divu $t2,$t3 $lo = $t2/$t3 

$hi = $t2%$t3 

Division and Modulus 

mflo $t1 $t1 = $lo Move from $lo 

mfhi $t1 $t1 = $hi Move from $hi 



CALCULATING QUOTIENT AND REMAINDER 

•  Given the values $t1 and $t2, the following sequence of MIPS instructions assigns the 

quotient ($t1/$t2) to $s0 and the remainder ($t1%$t2) to $s1 . 

divu $t1,$t2 # perform both division and modulus operations  

mflo $s0     # move quotient into $s0  

mfhi $s1     # move remainder into $s1  



LOGICAL OPERATIONS 

•  Consist of bitwise Boolean operations and shifting operations.  

•  Shifting operations can be used to extract or insert fields of bits within a word.  

X Y Not X X and Y X or Y X nand Y X nor Y X xor Y 

0 0 1 0 0 1 1 0 

0 1 1 0 1 1 0 1 

1 0 0 0 1 1 0 1 

1 1 0 1 1 0 0 0 



GENERAL FORM OF MIPS BITWISE 
INSTRUCTIONS 

•  Bitwise instructions apply Boolean operations on each of the corresponding pairs of 

bits of two values.  

Example Meaning Comment 

and $t2,$t3,$t4 $t2 = $t3 & $t4 Bitwise and 

or $t3,$t4,$t5 $t3 = $t4 | $t5 Bitwise or 

nor $t4,$t3,$t6 $t4 = ~($t3 | $t6) Bitwise nor 

xor $t7,$t2,$t4 $t7 = $t2 ^ $t4 Bitwise xor 

andi $t2,$t3,7 $t2 = $t3 & 7 Bitwise and with 

immediate 

ori $t3,$t4,5 $t3 = $t4 | 5 Bitwise or with 

immediate 

xori $t7,$t2,6 $t7 = $t2 ^ 6 Bitwise xor with 

immediate 



GENERAL FORM OF MIPS SHIFT INSTRUCTIONS 
•  Shift instructions move the bits in a word to the left or right by a specified 

amount. 

•  Shifting left (right) by i is the same as multiplying (dividing) by 2𝑖. 
•  An arithmetic right shift replicates the most significant bit to fill in the vacant 

bits. 

•  A logical right shift fills in the vacant bits with zero. 

 Example Meaning Comment 

sll $t2,$t3,2 $t2 = $t3 << 2 Shift left logical 

sllv $t3,$t4,$t5 $t3 = $t4 << $t5 Shift left logical variable 

sra $t4,$t3,1 $t4 = $t3 >> 1 Shift right arithmetic (signed) 

srav $t7,$t2,$t4 $t7 = $t2 >> $t4 Shift right arithmetic variable 

(signed) 

srl $t2,$t3,7 $t2 = $t3 >> 7 Shift right logical (unsigned) 

srlv $t3,$t4,$t6 $t3 = $t4 >> $t6 Shift right logical variable 

(unsigned) 



GLOBAL ADDRESSES AND LARGE 
CONSTANTS 

•  The lui instruction can be used to construct large constants or addresses. It loads a 16-bit 

value in the 16 most significant bits of a word and clears the 16 least significant bits.  

 

 

 

 

•  Example: load 131,071 (or 0x1ffff) into $t2.  

 

 

•  Having all instructions the same size and a reasonable length means having to construct 

global addresses and some constants using two instructions.  

•  Design principle 4: Good design demands good compromise! 

lui $t2,1           # put 1 in the upper half of $t2 

ori $t2,$t2,0xffff  # set all bits in the lower half 

Form Example Meaning Comment 

lui 

<dreg>,<const> 

lui $t1,12 $t1 = 12 << 16 Load upper immediate 



DATA TRANSFER GENERAL FORM 

•  MIPS can only access memory with load and store instructions.  

•  Form:   <operation>  <reg1>, <constant>(<reg2>) 

 
Example Meaning  Comment 

lw $t2,8($t3) $t2 = Mem[$t3 + 8] 32-bit load 

lh $t3,0($t4) $t3 = Mem[$t4] Signed 16-bit load 

lhu $t8,2($t3) $t8 = Mem[$t3 + 2] Unsigned 16-bit load 

lb $t4,0($t5) $t4 = Mem[$t5] Signed 8-bit load 

lbu $t6,1($t9) $t6 = Mem[$t9 + 1] Unsigned 8-bit load 

sw $t5,-4($t2) Mem[$t2-4] = $t5 32-bit store 

sh $t6,12($t3) Mem[$t3 + 12] = $t6 16-bit store 

sb $t7,1($t3) Mem[$t3 + 1] = $t7 8-bit store 



USING DATA TRANSFER INSTRUCTIONS 

•  Consider the following source code 

fragment. 

 

 

 

•  Assume the addresses of a, b, c, and d 

are in the registers $t2, $t3, $t4, and $t5, 

respectively. The following MIPS 

assembly code performs this 

assignment assuming $t6 and $t7 are 

available.   

int a, b, c, d;  

...  

a = b + c - d; 

lw $t6,0($t3)     # load b into $t6  

lw $t7,0($t4)     # load c into $t7 

add $t6,$t6,$t7  # $t6 = $t6 + $t7  

lw $t7,0($t5)     # load d into $t7  

sub $t6,$t6,$t7  # $t6 = $t6 - $t7 

sw $t6,0($t2)     # store $t6 into a  



INDEXING ARRAY ELEMENTS 

•  Assembly code can be written 

to access array elements using 

a variable index. Consider the 

following source code 

fragment.  

 

 

 

•  Assume the value of i is in $t0. 

The following MIPS code 

performs this assignment.  

int a[100], i; 

...  

a[i] = a[i] + 1; 

 .data  

_a: .space 400    # declare space 

  ...  

 la $t1, _a     # load address of _a  

 sll $t2,$t0,2   # determine offset  

 add $t2,$t2,$t1  # add offset and _a  

 lw $t3,0($t2)   # load the value  

 addi $t3,$t3,1  # add 1 to the value  

 sw $t3,0($t2)   # store the value 



TRANSFER OF CONTROL INSTRUCTIONS 

•  Transfer of control instructions can cause the next instruction to be executed to be 

other than the next sequential instruction.  

•  Transfers of control are used to implement control statements in high-level 

languages. 

•  Unconditional (goto, break, continue, call, return) 

•  Conditional (if-then, if-then-else, switch) 

•  Iterative (while, do, for) 



GENERAL FORM OF JUMP AND BRANCH 

•  MIPS provides direct jumps to support unconditional transfers of control to a 

specified location.  

•  MIPS provides indirect jumps to support returns and switch statements.  

•  MIPS provides conditional branch instructions to support decision making. MIPS 

conditional branches test if the values of two registers are equal or not equal.  

General Form Example Meaning Comment 

j <label> j L1 goto L1; Direct jump (J) 

jr <sreg> jr $ra goto $ra; Indirect jump (R) 

beq <s1reg>,<s2reg>,<label> beq $t2, $t3, L1 if($t2 == $t3) goto L1; Branch equal (I) 

bne <s1reg>,<s2reg>,<label> bne $t2, $t3, L1 if($t2 != $t3) goto L1; Branch not equal 

(I) 



IF STATEMENT EXAMPLE 

•  Consider the following source code: 

 

 

•  Translate into MIPS instructions assuming the values of i, j, and k are associated with 

the registers $t2, $t3, and $t4, respectively.   

if(i == j) 

   k = k + i; 

 bne  $t2,$t3,L1  # if ($t2 != $t3) goto L1  

 addu $t4,$t4,$t2 # k = k + i  

L1: 



GENERAL FORM OF COMPARISON 
INSTRUCTIONS 

•  MIPS provides set less than instructions that set a register to 1 if the first source 

register is less than the value of the second operand. Otherwise, it is set to 0.  

•  There are versions for performing unsigned comparisons as well.  

General Form Example Meaning Comment 

slt <dreg>,<s1reg>,<s2reg> slt $t2,$t3,$t4 if($t3<$t4) $t2 = 1;  

else $t2 = 0; 

Compare less  

than (R) 

sltu <dreg>,<s1reg>,<s2reg> 
 

sltu $t2,$t3,$t4 
 

if($t3<$t4) $t2 = 1;  

else $t2 = 0; 

Compare less 

than unsigned (R) 

slti <dreg>,<s1reg>,<const> 
 

slti $t2,$t3,100 
 

if($t3<100) $t2 = 1;  

else $t2 = 0; 

Compare less  

than constant (I) 

sltiu <dreg>,<s1reg>,<const> 
 

sltiu $t2,$t3,100 
 

if($t3<100) $t2 = 1;  

else $t2 = 0; 

Compare less than 

constant unsigned 

(I) 



TRANSLATING AN IF STATEMENT 

•  Consider the following 

source code: 

 

 

•  Translate into MIPS 

instructions assuming the 

values of a, b, and c are 

associated with the registers 

$t2, $t3, and $t4 respectively. 

Assume $t5 is available.  

if(a > b)  

    c = a;  

 

  slt  $t5,$t3,$t2   # b < a  

  beq  $t5,$zero,L1  # if($t5==0)goto L1  

  or  $t4,$t2,$zero # c = a 

L1:   



TRANSLATING AN IF-THEN-ELSE 
STATEMENT 

•  Consider the following source 

code: 

 

 

 

 

•  Translate into MIPS instructions 

assuming the values of a, b, and c 

are associated with the registers 

$t2, $t3, and $t4 respectively. 

Assume $t5 is available.  

if(a < b)  

    c = a;  

else  

    c = b; 

  slt  $t5,$t2,$t3   # a < b  

  beq  $t5,$zero,L1  # if($t5==0)goto L1  

  move  $t4,$t2     # c = a  

  j   L2      # goto L2  

L1:  move  $t4, $t3    # c = b  

L2: 



HIGH-LEVEL CONTROL STATEMENTS 

•  How do we translate other high-level control statements (while, do, for)? 

•  We can first express the C statement using C if and goto statements.  

•  After that, we can translate using MIPS unconditional jumps, comparisons, and 

conditional branches.  



TRANSLATING A FOR STATEMENT 

•  Consider the following source code: 

 

 

•  First, we replace the for statement using an if and goto statements.   

sum = 0;  

for(i=0; i<100; i++)  

    sum += a[i]; 

  sum = 0; 

  i = 0;  

  goto test;  

loop: sum += a[i];  

  i++;  

test: if (i < 100) goto loop;  



TRANSLATING A FOR STATEMENT 

•  Now for the MIPS instructions. Assume sum, i and the starting address of a are 

associated with $t2, $t3, and $t4 respectively and that $t5 is available.  

  li  $t2, 0     # sum = 0  

  move  $t3, $zero    # i = 0  

  j   test  

loop: sll  $t5,$t3,2    # temp = i * 4  

  addu  $t5,$t5,$t4   # temp = temp + &a  

  lw  $t5,0($t5)    # load a[i] into temp  

  addu  $t2,$t2,$t5   # sum += temp  

  addiu $t3,$t3,1    # i++  

test: slti  $t5,$t3,100   # test i < 100  

  bne  $t5,$zero,loop  # if true, goto loop 


