
LECTURE 2
Review 1 – Binary Math and Assembly

BINARY MATH

In this section, we review

• Binary to decimal conversions and vice versa

• IEEE 754 Floating point representations

• Binary Arithmetic

Decimal representation of binary numbers

• Starting from the least significant bit, multiply the digits of
the binary number with increasing powers of 2.

• LSB’s multiplied with 20, the next bit by 21….
• Add the products.

Decimal representation of binary numbers

• 110010

= 25 + 24 + 21

= 32 + 16 + 2

=50

5 4 3 2 1 0

25 24 23 22 21 20

1 1 0 0 1 0

Decimal representation of binary numbers

• 101100

= 25 + 23 + 22

= 32 + 8 + 4

=44

5 4 3 2 1 0

25 24 23 22 21 20

1 0 1 1 0 0

Decimal representation of binary numbers

• 111101

= 25 + 24 + 23 + 22 + 20

= 32 + 16 + 8 + 4 + 1

=61

5 4 3 2 1 0

25 24 23 22 21 20

1 1 1 1 0 1

Binary representation of decimal integers

• Repeatedly divide the decimal number by 2,

until the quotient is 0.

• Collect the remainders as you go.

• Write down the remainder from right to the

left.

Binary representation of decimal integers

• 28

= 011100

Quotient Remainder

14 0

7 0

3 1

1 1

0 1

Binary representation of decimal integers

• 45

= 101101

Quotient Remainder

22 1

11 0

5 1

2 1

1 0

0 1

Binary representation of decimal integers

• 62

= 111110

Quotient Remainder

31 0

15 1

7 1

3 1

1 1

0 1

BINARY ADDITION

• 0 + 0 = 0

• 0 + 1 = 1

• 1 + 0 = 1

• 1 + 1 = 10 (sum is 0, carry 1)

• 1 + 1 + 1 = 11 (sum is 1, carry is 1)

BINARY ADDITION

• a=00111010, b=01100111

Carry

+

1 1 1 1 1 1

0 0 1 1 1 0 1 0

0 1 1 0 0 1 1 1

1 0 1 0 0 0 0 1

BINARY ADDITION

• a=01001111, b=00011001

Carry

+

1 1 1 1 1

0 1 0 0 1 1 1 1

0 0 0 1 1 0 0 1

0 1 1 0 1 0 0 0

BINARY ADDITION

• a=00101100, b=01000111

Carry

+

1 1

0 0 1 0 1 1 0 0

0 1 0 0 0 1 1 1

0 1 1 1 0 0 1 1

BINARY SUBTRACTION

• 0 - 0 = 0

• 1 - 0 = 1

• 1 - 1 = 0

• 10 – 1 = 1 (In case of 0 – 1, Borrow from the

closest bit that’s 1).

• A borrowed 1 becomes a 10 at the lower bit.

BINARY SUBTRACTION

• a=01110011, b=00011111

Borrow

First borrow

Second borrow

0 0 10 10 1 10

0 1 1 1 0 0 1 1

- 0 0 0 1 1 1 1 1

0 1 0 1 0 1 0 0

BINARY SUBTRACTION

• a=10111011, b=00111111

Borrow

0 10 1 0 10 0 10 0 10 10

1 0 1 1 1 0 1 1

- 0 0 1 1 1 1 1 1

0 1 1 1 1 1 0 0

BINARY SUBTRACTION

• a=11110110, b=11000011

Borrow

0 0 10 10

1 1 1 1 0 1 1 0

- 1 1 0 0 0 0 1 1

0 0 1 1 0 0 1 1

Binary representation of negative numbers

• Consider the number to be positive. Convert
it to binary. Fill out the required number

of bits by adding leading 0’s if
necessary.

• Convert the binary number to it’s 2’s
compliment. (Flip the bits and then add 1
to the result).

• Add the sign bit as the most significant bit.
Sign bit is 1 for a negative number.

Binary representation of negative numbers

• -89
Quotient Remainder

44 1

22 0

11 0

5 1

2 1

1 0

0 1

Sign 1 0 1 1 0 0 1

1 0 1 0 0 1 1 1

Binary representation of negative numbers

• -43
Quotient Remainder

21 1

10 1

5 0

2 1

1 0

0 1

Sign 0 1 0 1 0 1 1

1 1 0 1 0 1 0 1

Binary representation of negative numbers

• - 127

Quotient Remainder

63 1

31 1

15 1

7 1

3 1

1 1

0 1

Sign 1 1 1 1 1 1 1

1 0 0 0 0 0 0 1

Binary representation of numbers with fractions

• Convert the integer part into binary.

• For the fractional part, divide the fraction first by
0.5 (2-1), take the quotient as the first bit of the
binary fraction.

• Divide the remainder by 0.25 (2-2), and repeat the
repeat the process until the remainder’s 0.

• Some fractions may not terminate. In this case, find
out if the bits form a pattern. If no bit pattern is
formed, keep dividing until the required number of
bits is filled.

Binary representation of numbers with fractions

• 4.25

410=1002

4.2510 = 100.012

Divide 0.25 by Quotient, Remainder

2-1 (0.5) 0, 0.25

2-2 (0.25) 1, 0

Binary representation of numbers with fractions

• 12.375

1210=11002

12.37510 = 1100.0112

Divide 0.375 by Quotient, Remainder

2-1 (0.5) 0, 0.375

2-2 (0.25) 1, 0.125

2-3 (0.125) 1, 0

Binary representation of numbers with fractions

• 9.875

910=10012

9.87510 = 1001.1112

Divide 0.875 by Quotient, Remainder

2-1 (0.5) 1, 0.375

2-2 (0.25) 1, 0.125

2-3 (0.125) 1, 0

Floating point representations in Hex form

• First write the number in binary.

• Convert it to standard form (eg. 10110.001 = 1.0110001 x 24).

The power of 2’s the exponent. The fractional part’s
the mantissa

• Add the exponent to the bias (127 for 32 bit,

1023 for 64 bit) and convert the sum to binary.

• Write down the number as sign bit, exponent,

mantissa. Fill out the remaining bits with 0’s.
• Split the number is groups of 4. For each of the 4 bits, write

the hexadecimal equivalent.

Floating point representations in Hex form

• 4.25

4.2510 = 100.012 = 1.0001 x 22

Exponent - 127 + 2 = 12910 = 100000012

Mantissa – 0001

= 0x 40880000

0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 2 2 1 1 1 7 3

1 7 3 9 5 1

Floating point representations in Hex form

• 12.375

12.37510 = 1100.0112 = 1.100011 x 23

Exponent - 127 + 3 = 13010 = 100000102

Mantissa – 100011

= 0x 41460000

0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 2 2 1 1 1 7 3

1 7 3 9 5 1

Floating point representations in Hex form

• 9.875

9.87510 = 1001.1112 = 1.001111 x 23

Exponent - 127 + 3 = 13010 = 100000102

Mantissa – 001111

= 0x 411e0000

0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 2 2 1 1 1 7 3

1 7 3 9 5 1

Single Precision Floating Point IEEE- 754

• First write the number in binary.

• Convert it to standard form (eg. 10110.001 = 1.0110001 x

24). The power of 2’s the exponent. The fractional part’s

the mantissa.

• Add the exponent to the bias (127 for 32 bit, 1023 for 64

bit) and convert the sum to binary.

• Write down the number as sign bit, exponent, mantissa.

Fill out the remaining bits with 0’s.

• Split the number is groups of 4. For each of the 4 bits,

write the hexadecimal equivalent.

= 0x 3F900000

• 1.125

1.12510 = 1.0012 = 1.001 x 20

Exponent - 127 + 0 = 12710 = 011111112

Mantissa – 001

Single Precision Floating Point IEEE- 754

0 0 1 1 1 1 1 1 1 0 0 1 0

3 2 2 1 1 1 7 3

1 7 3 9 5 1

= 0x 40D10000

• 6.53125

6.5312510 = 110.100012 = 1.1010001 x 22

Exponent - 127 + 2 = 12910 = 100000012

Mantissa – 1010001

Single Precision Floating Point IEEE- 754

0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 2 2 1 1 1 7 3

1 7 3 9 5 1

= 0x COB1800

• -5.546875

5.54687510 = 101.1000112 = 1.01100011 x 22

Exponent - 127 + 2 = 12910 = 100000012

Mantissa – 01100011

Single Precision Floating Point IEEE- 754

1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 2 2 1 1 1 7 3

1 7 3 9 5 1

Range of Single Precision Float (Positive)

• Largest Number:
• (1 + 1 – 2-23) X (2254-127)

= 2128 – 2104

=340282346638528859811704183484516925440

 ≈ 3.4028235 X 1038

• Smallest Number:
• (1 + 0.0) X (21-127)

= 2-126

 ≈ 1.175494351 X 10-38

MACHINE LANGUAGE

• As humans, communicating with a machine is a tedious task. We can’t, for example,
just say “add this number and that number and store the result here”. Computers
have no way of even beginning to understand what this means.

MACHINE LANGUAGE

• As we stated before, the alphabet of the machine’s language is binary – it simply

contains the digits 0 and 1.

• Continuing with this analogy, instructions are the words of a machine’s language. That
is, they are meaningful constructions of the machine alphabet.

• The instruction set, then, constitutes the vocabulary of the machine. These are the

words understood by the machine itself.

MACHINE LANGUAGE

• To work with the machine, we need a translator.

Assembly languages serve as an intermediate form between the human-readable

programming language and the machine-understandable binary form.

• Generally speaking, compiling a program into an executable format involves the

following stages:

High-level Language Assembly Language Machine Language

EXAMPLE OF TRANSLATING A C PROGRAM

swap(int v[], int k){

 int temp;

 temp = v[k];

 v[k] = v[k+1];

 v[k+1] = temp;

}

High-Level Language Program

swap:

 multi $2, $5, 4

 add $2, $4, $2

 lw $15, 0($2)

 lw $16, 4($2)

 sw $16, 0($2)

 sw $15, 4($2)

 jr $31

Assembly Language Program

00000000101000100000000100011000

00000000100000100001000000100001

10001101111000100000000000000000

10001110000100100000000000000100

10101110000100100000000000000000

10101101111000100000000000000100

00000011111000000000000000001000

Binary Machine Language Program

Compiler

Assembler

MACHINE LANGUAGE

• A single human-readable high-level language instruction is generally translated into

multiple assembly instructions.

• A single assembly instruction is a symbolic representation of a single machine

language instruction.

• A single machine language instruction is a set of bits representing a basic operation

that can be performed by the machine.

• The instruction set is the set of possible instructions for a given machine.

ADVANTAGES OF HIGH-LEVEL LANGUAGES

• Requiring these translation steps may seem cumbersome but there are a couple of high-

level language advantages that make this scheme worthwhile.

• High-level languages allow the programmer to think in more natural, less tedious terms –

specifically in the case of application-specific languages.

• Improve programmer productivity.

• Improve program maintainability.

• Applications can be independent of the computer on which they were developed.

• Highly-optimizing compilers can produce very efficient machine code optimized for a

target machine.

WHY LEARN ASSEMBLY LANGUAGE?

• So, if high-level languages are so great…why bother learning assembly?

• Knowing assembly language illuminates concepts not only in computer organization,

but operating systems, compilers, parallel systems, etc.

• Understanding how high-level constructs are implemented leads to more effective

use of those structures.

• Control constructs (if, do-while, etc.)

• Pointers

• Parameter passing (pass-by-value, pass-by-reference, etc.)

• Helps to understand performance implications of programming language features.

MIPS

• We will start with a lightning review of MIPS.

• MIPS is a RISC (Reduced Instruction Set Computer) instruction set, meaning that it

has simple and few instructions.

• Originally introduced in the early 1980’s.

• An acronym for Microprocessor without Interlocked Pipeline Stages.

• MIPS architecture has been used in many computer products, especially in the late

80’s and early 90’s. N64, Playstation, and Playstation 2 all used MIPS

implementations.

• Many ISAs that have since been designed are very similar to MIPS.

• In the mid to late 90’s, approximately 1/3 of all RISC microprocessors were MIPS
implementations.

RISC ARCHITECTURE

• CISC (Complex Instruction Set Computer)

• Intel x86

• RISC (Reduced Instruction Set Computer)

• MIPS, Sun SPARC, IBM, PowerPC, ARM

• RISC Philosophy

• fixed instruction lengths

• load-store instruction sets

• limited number of addressing modes

• limited number of operations

THE FOUR ISA DESIGN PRINCIPLES

1. Simplicity favors regularity

• Consistent instruction size, instruction formats, data formats

• Eases implementation by simplifying hardware

2. Smaller is faster

• Fewer bits to access and modify

• Use the register file instead of slower memory

3. Make the common case fast

• e.g. Small constants are common, thus small immediate fields should be used.

4. Good design demands good compromises

• Compromise with special formats for important exceptions

• e.g. A long jump (beyond a small constant)

MIPS REVIEW

• Now we’ll jump right into our lightning review of MIPS.
The general classes of MIPS instructions are

• Arithmetic

• add, subtract, multiply, divide

• Logical

• and, or, nor, not, shift

• Data transfer

• load from or store to memory

• Transfers of control

• jumps, branches, calls, returns

QUICK EXAMPLE

• Here is an example of one of the simplest and most common MIPS instructions.

• This MIPS instruction symbolizes the machine instruction for adding the contents of

register t1 to the contents of register t2 and storing the result in t0.

add $t0, $t1, $t2

QUICK EXAMPLE

• Here is an example of one of the simplest and most common MIPS instructions.

add $t0, $t1, $t2

Operands Operation

QUICK EXAMPLE

• Here is an example of one of the simplest and most common MIPS instructions.

• The corresponding binary machine instruction is

add $t0, $t1, $t2

000000 01001 01010 01000 00000 100000

This portion tells the machine exactly which operation

we’re performing. In this case, 100000 refers to an
addition operation

QUICK EXAMPLE

• Here is an example of one of the simplest and most common MIPS instructions.

• The corresponding binary machine instruction is

add $t0, $t1, $t2

000000 01001 01010 01000 00000 100000

This portion is used for shift instructions, and is therefore

not used by the machine in this case.

QUICK EXAMPLE

• Here is an example of one of the simplest and most common MIPS instructions.

• The corresponding binary machine instruction is

add $t0, $t1, $t2

000000 01001 01010 01000 00000 100000

This portion indicates the destination register – this is

where the result will be stored. Because $t0 is the 8th

register, we use 01000 to represent it.

QUICK EXAMPLE

• Here is an example of one of the simplest and most common MIPS instructions.

• The corresponding binary machine instruction is

add $t0, $t1, $t2

000000 01001 01010 01000 00000 100000

This portion indicates the second source register.

Because $t2 is the 10th register, we use 01010 to

represent it.

QUICK EXAMPLE

• Here is an example of one of the simplest and most common MIPS instructions.

• The corresponding binary machine instruction is

add $t0, $t1, $t2

000000 01001 01010 01000 00000 100000

This portion indicates the first source register. Because

$t1 is the 9th register, we use 01001 to represent it.

QUICK EXAMPLE

• Here is an example of one of the simplest and most common MIPS instructions.

• The corresponding binary machine instruction is

add $t0, $t1, $t2

000000 01001 01010 01000 00000 100000

This last portion holds the operation code relevant for

other types of instructions. The add operation, and

others like it, always have a value of 0 here.

MIPS INSTRUCTION OPERANDS

• So now that we’ve seen an example MIPS instruction and how it directly corresponds
to its binary representation, we can talk about the components of an instruction. MIPS

instructions consist of operations on one or more operands. Operands in MIPS fit into

one of three categories.

• Integer constants

• Registers

• Memory

INTEGER CONSTANT OPERANDS

Integer constant operands are used frequently. For example, while looping over an

array, we might continually increment an index to access the next array element.

To avoid saving the constant elsewhere and having to retrieve it during every use, MIPS

allows for immediate instructions which can include a constant directly in the

instruction.

A simple example is add immediate:

addi $s3, $s3, 4 # adds 4 to the value in $s3 and stores in $s3

INTEGER CONSTANTS

• Generally represented with 16 bits, but they are extended to 32 bits before being

used in an operation.

• Most operations use signed constants, although a few support unsigned.

• Integer constants can be represented in MIPS assembly instructions using decimal,

hexadecimal, or octal values.

• A reflection of design principle 3, make the common case fast.

• Because constants are used frequently, it is faster and more energy efficient to support

instructions with built-in constants rather than fetching them from memory all the time.

REGISTERS

• We’ve already seen some simple register usage in our two example MIPS
instructions.

• In these instructions, $t0, $t1, $t2, and $s3 are all registers. Registers are special

locations built directly into the hardware of the machine. The size of a MIPS register is

32 bits. This size is also commonly known as a word in MIPS architecture.

add $t0, $t1, $t2

addi $s3, $s3, 4

REGISTERS

• There are only 32 (programmer visible) 32-bit registers residing in a MIPS processor.

• Reflects design principle 2, smaller is faster.

• Having a small number of registers ensures that accessing a desired register is fast since they

can be kept closer.

• Also means that fewer bits can be used to identify registers  decreases instruction size.

• Registers also use much less power than memory accesses.

• MIPS convention is to use two-character names following a dollar sign.

• Register 0: $zero – stores the constant value 0.

• Registers 16-23: $s0-$s7 – saved temporaries (variables in C code).

• Registers 8-15: $t0-$t7 – temporaries.

REGISTERS

Name Number Use

$zero 0 Constant value 0.

$at 1 Assembler temporary. For resolving

pseudoinstructions.

$v0-$v1 2-3 Function results and expression evaluation.

$a0-$a3 4-7 Arguments.

$t0-$t9 8-15, 24-25 Temporaries.

$s0-$s7 16-23 Saved temporaries.

$k0-$k1 26-27 Reserved for OS kernel.

$gp 28 Global pointer.

$sp 29 Stack pointer.

$fp 30 Frame pointer.

$ra 31 Return address.

MEMORY OPERANDS

• Before we talk about memory operands, we should talk generally about how data is

stored in memory.

• As we said before, memory contains both data and instructions.

• Memory can be viewed as a large array of bytes.

• The beginning of a variable or instruction is associated with a specific element of

this array.

• The address of a variable or instruction is its offset from the beginning of memory.

 … v … … i … Memory

Address of variable v Address of instruction i

MEMORY OPERANDS

• For a large, complex data structure, there are likely many more data elements than

there are registers available. However, arithmetic operations occur only on registers

in MIPS.

• To facilitate large structures, MIPS includes data transfer instructions for moving data

between memory and registers.

• As an example, assume we have the following C code, where A is an array of 100

words.

g = h + A[8]

MEMORY OPERANDS

• Let’s say g and h are associated with the registers $s1 and $s2 respectively. Let’s also
say that the base address of A is associated with register $s3.

• To compile this statement into MIPS, we’ll need to use the load word instruction to

transfer A[8] into a register.

• There is an equivalent store word instruction for storing data to memory as well.

g = h + A[8]

lw $t0,32($s3) # load the element at a 32 byte offset from $s3

add $s1,$s2,$t0

MIPS ASSEMBLY FILE

• Now, let’s turn our attention to the structure of a MIPS assembly file.

• MIPS assembly files contain a set of lines.

• Each line can be either a directive or an instruction.

• Each directive or instruction may start with a label, which provides a symbolic name

for a data or instruction location.

• Each line may also include a comment, which starts with # and continues until the

end of the line.

GENERAL FORMAT

 .data

 # allocation of memory

 .text

 .global main

main:

 # instructions here

 jr $ra # instruction indicating a return

MIPS DIRECTIVES

Directive Meaning

.align n Align next datum on 2^n boundary.

.asciiz str Place the null-terminated string str in memory.

.byte b1, …, bn Place the n byte values in memory.

.data Switch to the data segment.

.double d1, …, dn Place the n double-precision values in memory.

.float f1, …, fn Place the n single-precision values in memory.

.global sym The label sym can be referenced in other files.

.half h1, …, hn Place the n half-word values in memory.

.space n Allocates n bytes of space.

.text Switch to the text segment.

.word w1, …, wn Place the n word values in memory.

MIPS INSTRUCTION REVIEW: ADD

• add d, s1, s2

• Example: add $t0, $t1, $t2

Destination is $t0, Sources are $t1 and $t2

•Logic:
–Bitwise addition with carries

– 0 + 0 = 0

– 0 + 1 = 1

– 1 + 0 = 1

– 1 + 1 = 10. Sum is 0, carry 1

MIPS INSTRUCTION REVIEW: ADDI

• addi d, s, immediate

• Example: addi $t0, $t1, 10

Destination is $t0, Sources are $t1 and an immediate

signed short number (-32768 - +32767)

•Logic: same as ADD

MIPS INSTRUCTION REVIEW: SUB

• sub d, s1, s2

• Example: sub $t0, $t1, $t2

Destination is $t0, Sources are $t1 and $t2

•Logic: Bitwise subtraction with borrows

• 0 – 0 = 0

• 1 – 1 = 0

• 1 – 0 = 1

• 0 - 1 = 1 and remove 1 from the next digit

– Actually, its two's Complement is added.

MIPS Instruction Review: AND, ANDi
• and d, s1, s2

• Example: and $t0, $t1, $t2

Destination is $t0, Sources are $t1 and $t2

•Logic:
–Bitwise

–0 & 0 = 0

–0 & 1 = 0

–1 & 0 = 0

–1 & 1 = 1

• andi performs AND operation with an immediate signed

short operand. Syntax of ADDi, operation of AND

operand. Syntax of ADDi, operation of OR

MIPS Instruction Review: OR, ORi

• or d, s1, s2

• Example: or $t0, $t1, $t2

Destination is $t0, Sources are $t1 and $t2

•Logic:
–Bitwise

–0 | 0 = 0

–0 | 1 = 1

–1 | 0 = 1

–1 | 1 = 1

• ori performs OR operation with an immediate

operand. Syntax of ADDi, operation of XOR

MIPS Instruction Review: XOR, XORi

• xor d, s1, s2

• Example: xor $t0, $t1, $t2

Destination is $t0, Sources are $t1 and $t2

•Logic:
–Bitwise

–0 ⊕ 0 = 0

–0 ⊕ 1 = 1

–1 ⊕ 0 = 1

–1 ⊕ 1 = 0

• xori performs XOR operation with an immediate

MIPS Instruction Review: NOR

• nor d, s1, s2

• Example: nor $t0, $t1, $t2

Destination is $t0, Sources are $t1 and $t2

•Logic:
–Bitwise

– 0 ↓ 0 = 1

– 0↓ 1 = 0

– 1↓ 0 = 0

– 1 ↓ 1 = 0

MIPS INSTRUCTION REVIEW: LW

• lw d, immediate(pointer)

• Example: lw $t0, 12($t1)

Destination is $t0, Source Address is $t1 +
immediate signed short offset (a multiple of 4)

•Logic:
–Fetches value at an address in memory and loads it
into a register.

MIPS INSTRUCTION REVIEW: SW

• sw d, immediate(pointer)

• Example: sw $t0, 12($t1)

Source is $t0, Destination Address is $t1 +
immediate signed short offset (a multiple of 4)

•Logic:
–Fetches value within a register and stores it in a
memory address.

MIPS INSTRUCTION REVIEW: SLL

• sll d, s, immediate

• • sll $t0, $t1, 2

• Destination is $t0, Source is $t1, immediate is number of bits to shift (0 to 32)

• •Logic:

• Shifts the bits of number in source register left by the number of
bits specified. 0’s are shifted in. Result is stored in destination
register.

MIPS INSTRUCTION REVIEW: SRL

• srl d, s, immediate

• • srl $t0, $t1, 2

• Destination is $t0, Source is $t1, immediate is number of bits to shift (0 to 32)

• •Logic:

• Shifts the bits of number in source register right by the number of
bits specified. 0’s are shifted in. Result is stored in destination
register.

CONVERT C CODE TO MIPS

•$t0 = A[$t2];

•A[$t2] = $t0 & $t1;

•$t0 = (A[$t1] + $t2) / 2;

•The starting address of array A is in $s0, and if
$t2 = 4, A[$t2] represents the 4th element in A.
Array elements are numbered from 0.

•Don’t modify the contents of registers unless the C code

specifically states to.

$T0 = A[$T2];

•sll $t4, $t2, 2

•add $t4, $t4, $s0

•lw $t0, 0($t4)

•MIPS is word addressed. Memory is byte
addressed. So, we need to multiply MIPS
addresses by 4 to get to the memory address.
Hence sll.

A[$T2] = $T0 & $T1;

•and $t5, $t0, $t1

•sw $t5, 0($t4)

•We already have A[$t2] in $t4. So, we need not
recalculate the address.

$T0 = (A[$T1] + $T2) / 2;

•sll $t6, $t1, 2

•add $t6, $t6, $s0

•lw $t7, 0($t6)

•add $t7, $t7, $t2

•srl $t0, $t7, 1

•Right shifting by 1 bit is the same as dividing by 2. Left

shifting by 1 bit is the same as multiplying by 2.

MIPS INSTRUCTIONS

General format:

Example:

<optional label> <operation> <operands>

loop: addu $t2,$t3,$t4 # instruction with a label

 subu $t2,$t3,$t4 # instruction without a label

L2: # a label can appear on a line by itself

a comment can appear on a line by itself

MIPS INSTRUCTIONS

• What does this look like in memory?

 .data

nums:

 .word 10, 20, 30

 .text

 .globl main

main:

 la $t0, nums

 lw $t1, 4($t0)

MIPS INSTRUCTION FORMATS

• There are three different formats for MIPS instructions.

• R format

• Used for shifts and instructions that reference only registers.

• I format

• Used for loads, stores, branches, and immediate instructions.

• J format

• Used for jump and call instructions.

MIPS INSTRUCTION FORMATS

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R format op rs rt rd shamt funct

I format op rs rt immed

J format op targaddr

op – instruction opcode.

rs – first register source operand.

rt – second register source operand.

rd – register destination operand.

shamt – shift amount.

funct – additional opcodes.

immed – offsets/constants.

targaddr – jump/call target.

MIPS INSTRUCTION FORMATS

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R format op rs rt rd shamt funct

I format op rs rt immed

J format op targaddr

op – instruction opcode.

rs – first register source operand.

rt – second register source operand.

rd – register destination operand.

shamt – shift amount.

funct – additional opcodes.

immed – offsets/constants.

targaddr – jump/call target.

All MIPS instructions are 32 bits – Design principle 1: simplicity favors regularity!

MIPS INSTRUCTION FORMATS

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R format op rs rt rd shamt funct

I format op rs rt immed

J format op targaddr

op – instruction opcode.

rs – first register source operand.

rt – second register source operand.

rd – register destination operand.

shamt – shift amount.

funct – additional opcodes.

immed – offsets/constants.

targaddr – jump/call target.

Make simple instructions fast and accomplish other operations as a series of

simple instructions – Design principle 3: make the common case fast!

MIPS R FORMAT

• Used for shift operations and instructions that only reference registers.

• The op field has a value of 0 for all R format instructions.

• The funct field indicates the type of R format instruction to be performed.

• The shamt field is used only for the shift instructions (sll and srl, sra)

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R format op rs rt rd shamt funct

op – instruction opcode.

rs – first register source operand.

rt – second register source operand.

rd – register destination operand.

shamt – shift amount.

funct – additional opcodes.

R FORMAT INSTRUCTION ENCODING
EXAMPLE

• Consider the following R format instruction:

addu $t2, $t3, $t4

Fields op rs rt rd shamt funct

Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Decimal 0 11 12 10 0 33

Binary 000000 01011 01100 01010 00000 100001

Hexadecimal 0x016c5021

MIPS I FORMAT
• Used for arithmetic/logical immediate instructions, loads, stores, and

conditional branches.

• The op field is used to identify the type of instruction.

• The rs field is the source register.

• The rt field is either the source or destination register, depending on the

instruction.

• The immed field is zero-extended if it is a logical operation. Otherwise, it is

sign-extended.

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

I format op rs rt immed

I FORMAT INSTRUCTION ENCODING
EXAMPLES

Fields op rs rt immed

Size 6 bits 5 bits 5 bits 16 bits

Decimal 9 8 8 1

Binary 001001 01000 01000 0000000000000001

Hexadecimal 0x25080001

addiu $t0,$t0,1

Arithmetic example:

I FORMAT INSTRUCTION ENCODING
EXAMPLES

Fields op rs rt immed

Size 6 bits 5 bits 5 bits 16 bits

Decimal 35 18 17 100

Binary 100011 10010 10001 0000000001100100

Hexadecimal 0x8e510064

lw $s1,100($s2)

Memory access example:

I FORMAT INSTRUCTION ENCODING
EXAMPLES

Fields op rs rt immed

Size 6 bits 5 bits 5 bits 16 bits

Decimal 4 14 15 -3

Binary 000100 01110 01111 1111111111111101

Hexadecimal 0x11cffffd

L2:instruction

 instruction

 instruction

 beq $t6,$t7,L2

Conditional branch example:

Note: Branch displacement is a signed

value in instructions, not bytes, from the

current instruction. Branches use PC-

relative addressing.

ADDRESSING MODES

• Addressing mode – a method for evaluating an operand.

• MIPS Addressing Modes

• Immediate – operand contains signed or unsigned integer constant.

• Register – operand contains a register number that is used to access the register file.

• Base Displacement – operand represents a data memory value whose address is the sum of

some signed constant (in bytes) and the register value referenced by the register number.

• PC relative – operand represents an instruction address that is the sum of the PC and some

signed integer constant (in words).

• Pseudodirect – operand represents an instruction address (in words) that is the field

concatenated with the upper bits of the PC.

PC Relative and Pseudodirect addressing are actually relative to PC + 4, not PC. The reason for

this will become clearer when we look at the design for the processor, so we’ll ignore it for now.

MEMORY ALIGNMENT REQUIREMENTS

• MIPS requires alignment of memory references to be an integer multiple of the

size of the data being accessed.

• These alignments are enforced by the compiler.

• The processor checks this alignment requirement by inspecting the least

significant bits of the address.

Byte: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Half: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX0

Word: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX00

Double: XXXXXXXXXXXXXXXXXXXXXXXXXXXXX000

MIPS J FORMAT

• Used for unconditional jumps and function calls.

• The op field is used to identify the type of instruction.

• The targaddr field is used to indicate an absolute target address.

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

J format op targaddr

J FORMAT INSTRUCTION ENCODING
EXAMPLE

• Jump example:

• Assume L1 is at the address 4194340 in decimal, which is 400024 in hexadecimal. We

fill the target field as an address in instructions (0x100009) rather than bytes

(0x400024). Jump uses pseudo-direct addressing to create a 32-bit address.

j L1

Fields op target address

Size 6 bits 26 bits

Decimal 2 1048585

Binary 000010 00000100000000000000001001

Hexadecimal 0x08100009

ARITHMETIC/LOGICAL GENERAL FORM

• Most MIPS arithmetic/logical instructions require 3 operands.

• Design principle 1: Simplicity favors regularity.

• Form 1: <operation> <dstreg>, <src1reg>, <src2reg>

• Form 2: <operation> <dstreg>, <srcreg>, <constant>

Example Meaning Comment

addu $t0, $t1, $t2 $t0 = $t1 + $t2 Addition (without overflow)

subu $t1, $t2, $t3 $t1 = $t2 - $t3 Subtraction (without overflow)

Example Meaning Comment

addiu $t1,$t2,1 $t1 = $t2 + 1 Addition immediate (without overflow)

USING MIPS ARITHMETIC INSTRUCTIONS

• Consider the following C++ source code fragment.

• Assume the values of f, g, h, i, and j are associated with registers $t2, $t3, $t4, $t5, and

$t6 respectively. Write MIPS assembly code to perform this assignment assuming $t7

is available.

unsigned int f,g,h,i,j;

...

f = (g+h)-(i+j);

USING MIPS ARITHMETIC INSTRUCTIONS

• Solution (among others):

•

addu $t2,$t3,$t4 # $t2 = g + h

addu $t7,$t5,$t6 # $t7 = i + j

subu $t2,$t2,$t7 # $t2 = $t2 - $t7

MULTIPLY, DIVIDE, AND MODULUS
INSTRUCTIONS

• Integer multiplication, division, and modulus operations can also be performed.

• MIPS provides two extra registers, hi and lo, to support division and modulus

operations.

Example Meaning Comment

mult $t1,$t2 $lo = $t1 * $t2 Multiplication

divu $t2,$t3 $lo = $t2/$t3

$hi = $t2%$t3

Division and Modulus

mflo $t1 $t1 = $lo Move from $lo

mfhi $t1 $t1 = $hi Move from $hi

CALCULATING QUOTIENT AND REMAINDER

• Given the values $t1 and $t2, the following sequence of MIPS instructions assigns the

quotient ($t1/$t2) to $s0 and the remainder ($t1%$t2) to $s1 .

divu $t1,$t2 # perform both division and modulus operations

mflo $s0 # move quotient into $s0

mfhi $s1 # move remainder into $s1

LOGICAL OPERATIONS

• Consist of bitwise Boolean operations and shifting operations.

• Shifting operations can be used to extract or insert fields of bits within a word.

X Y Not X X and Y X or Y X nand Y X nor Y X xor Y

0 0 1 0 0 1 1 0

0 1 1 0 1 1 0 1

1 0 0 0 1 1 0 1

1 1 0 1 1 0 0 0

GENERAL FORM OF MIPS BITWISE
INSTRUCTIONS

• Bitwise instructions apply Boolean operations on each of the corresponding pairs of

bits of two values.

Example Meaning Comment

and $t2,$t3,$t4 $t2 = $t3 & $t4 Bitwise and

or $t3,$t4,$t5 $t3 = $t4 | $t5 Bitwise or

nor $t4,$t3,$t6 $t4 = ~($t3 | $t6) Bitwise nor

xor $t7,$t2,$t4 $t7 = $t2 ^ $t4 Bitwise xor

andi $t2,$t3,7 $t2 = $t3 & 7 Bitwise and with

immediate

ori $t3,$t4,5 $t3 = $t4 | 5 Bitwise or with

immediate

xori $t7,$t2,6 $t7 = $t2 ^ 6 Bitwise xor with

immediate

GENERAL FORM OF MIPS SHIFT INSTRUCTIONS
• Shift instructions move the bits in a word to the left or right by a specified

amount.

• Shifting left (right) by i is the same as multiplying (dividing) by 2𝑖.
• An arithmetic right shift replicates the most significant bit to fill in the vacant

bits.

• A logical right shift fills in the vacant bits with zero.

 Example Meaning Comment

sll $t2,$t3,2 $t2 = $t3 << 2 Shift left logical

sllv $t3,$t4,$t5 $t3 = $t4 << $t5 Shift left logical variable

sra $t4,$t3,1 $t4 = $t3 >> 1 Shift right arithmetic (signed)

srav $t7,$t2,$t4 $t7 = $t2 >> $t4 Shift right arithmetic variable

(signed)

srl $t2,$t3,7 $t2 = $t3 >> 7 Shift right logical (unsigned)

srlv $t3,$t4,$t6 $t3 = $t4 >> $t6 Shift right logical variable

(unsigned)

GLOBAL ADDRESSES AND LARGE
CONSTANTS

• The lui instruction can be used to construct large constants or addresses. It loads a 16-bit

value in the 16 most significant bits of a word and clears the 16 least significant bits.

• Example: load 131,071 (or 0x1ffff) into $t2.

• Having all instructions the same size and a reasonable length means having to construct

global addresses and some constants using two instructions.

• Design principle 4: Good design demands good compromise!

lui $t2,1 # put 1 in the upper half of $t2

ori $t2,$t2,0xffff # set all bits in the lower half

Form Example Meaning Comment

lui

<dreg>,<const>

lui $t1,12 $t1 = 12 << 16 Load upper immediate

DATA TRANSFER GENERAL FORM

• MIPS can only access memory with load and store instructions.

• Form: <operation> <reg1>, <constant>(<reg2>)

Example Meaning Comment

lw $t2,8($t3) $t2 = Mem[$t3 + 8] 32-bit load

lh $t3,0($t4) $t3 = Mem[$t4] Signed 16-bit load

lhu $t8,2($t3) $t8 = Mem[$t3 + 2] Unsigned 16-bit load

lb $t4,0($t5) $t4 = Mem[$t5] Signed 8-bit load

lbu $t6,1($t9) $t6 = Mem[$t9 + 1] Unsigned 8-bit load

sw $t5,-4($t2) Mem[$t2-4] = $t5 32-bit store

sh $t6,12($t3) Mem[$t3 + 12] = $t6 16-bit store

sb $t7,1($t3) Mem[$t3 + 1] = $t7 8-bit store

USING DATA TRANSFER INSTRUCTIONS

• Consider the following source code

fragment.

• Assume the addresses of a, b, c, and d

are in the registers $t2, $t3, $t4, and $t5,

respectively. The following MIPS

assembly code performs this

assignment assuming $t6 and $t7 are

available.

int a, b, c, d;

...

a = b + c - d;

lw $t6,0($t3) # load b into $t6

lw $t7,0($t4) # load c into $t7

add $t6,$t6,$t7 # $t6 = $t6 + $t7

lw $t7,0($t5) # load d into $t7

sub $t6,$t6,$t7 # $t6 = $t6 - $t7

sw $t6,0($t2) # store $t6 into a

INDEXING ARRAY ELEMENTS

• Assembly code can be written

to access array elements using

a variable index. Consider the

following source code

fragment.

• Assume the value of i is in $t0.

The following MIPS code

performs this assignment.

int a[100], i;

...

a[i] = a[i] + 1;

 .data

_a: .space 400 # declare space

 ...

 la $t1, _a # load address of _a

 sll $t2,$t0,2 # determine offset

 add $t2,$t2,$t1 # add offset and _a

 lw $t3,0($t2) # load the value

 addi $t3,$t3,1 # add 1 to the value

 sw $t3,0($t2) # store the value

TRANSFER OF CONTROL INSTRUCTIONS

• Transfer of control instructions can cause the next instruction to be executed to be

other than the next sequential instruction.

• Transfers of control are used to implement control statements in high-level

languages.

• Unconditional (goto, break, continue, call, return)

• Conditional (if-then, if-then-else, switch)

• Iterative (while, do, for)

GENERAL FORM OF JUMP AND BRANCH

• MIPS provides direct jumps to support unconditional transfers of control to a

specified location.

• MIPS provides indirect jumps to support returns and switch statements.

• MIPS provides conditional branch instructions to support decision making. MIPS

conditional branches test if the values of two registers are equal or not equal.

General Form Example Meaning Comment

j <label> j L1 goto L1; Direct jump (J)

jr <sreg> jr $ra goto $ra; Indirect jump (R)

beq <s1reg>,<s2reg>,<label> beq $t2, $t3, L1 if($t2 == $t3) goto L1; Branch equal (I)

bne <s1reg>,<s2reg>,<label> bne $t2, $t3, L1 if($t2 != $t3) goto L1; Branch not equal

(I)

IF STATEMENT EXAMPLE

• Consider the following source code:

• Translate into MIPS instructions assuming the values of i, j, and k are associated with

the registers $t2, $t3, and $t4, respectively.

if(i == j)

 k = k + i;

 bne $t2,$t3,L1 # if ($t2 != $t3) goto L1

 addu $t4,$t4,$t2 # k = k + i

L1:

GENERAL FORM OF COMPARISON
INSTRUCTIONS

• MIPS provides set less than instructions that set a register to 1 if the first source

register is less than the value of the second operand. Otherwise, it is set to 0.

• There are versions for performing unsigned comparisons as well.

General Form Example Meaning Comment

slt <dreg>,<s1reg>,<s2reg> slt $t2,$t3,$t4 if($t3<$t4) $t2 = 1;

else $t2 = 0;

Compare less

than (R)

sltu <dreg>,<s1reg>,<s2reg>

sltu $t2,$t3,$t4

if($t3<$t4) $t2 = 1;

else $t2 = 0;

Compare less

than unsigned (R)

slti <dreg>,<s1reg>,<const>

slti $t2,$t3,100

if($t3<100) $t2 = 1;

else $t2 = 0;

Compare less

than constant (I)

sltiu <dreg>,<s1reg>,<const>

sltiu $t2,$t3,100

if($t3<100) $t2 = 1;

else $t2 = 0;

Compare less than

constant unsigned

(I)

TRANSLATING AN IF STATEMENT

• Consider the following

source code:

• Translate into MIPS

instructions assuming the

values of a, b, and c are

associated with the registers

$t2, $t3, and $t4 respectively.

Assume $t5 is available.

if(a > b)

 c = a;

 slt $t5,$t3,$t2 # b < a

 beq $t5,$zero,L1 # if($t5==0)goto L1

 or $t4,$t2,$zero # c = a

L1:

TRANSLATING AN IF-THEN-ELSE
STATEMENT

• Consider the following source

code:

• Translate into MIPS instructions

assuming the values of a, b, and c

are associated with the registers

$t2, $t3, and $t4 respectively.

Assume $t5 is available.

if(a < b)

 c = a;

else

 c = b;

 slt $t5,$t2,$t3 # a < b

 beq $t5,$zero,L1 # if($t5==0)goto L1

 move $t4,$t2 # c = a

 j L2 # goto L2

L1: move $t4, $t3 # c = b

L2:

HIGH-LEVEL CONTROL STATEMENTS

• How do we translate other high-level control statements (while, do, for)?

• We can first express the C statement using C if and goto statements.

• After that, we can translate using MIPS unconditional jumps, comparisons, and

conditional branches.

TRANSLATING A FOR STATEMENT

• Consider the following source code:

• First, we replace the for statement using an if and goto statements.

sum = 0;

for(i=0; i<100; i++)

 sum += a[i];

 sum = 0;

 i = 0;

 goto test;

loop: sum += a[i];

 i++;

test: if (i < 100) goto loop;

TRANSLATING A FOR STATEMENT

• Now for the MIPS instructions. Assume sum, i and the starting address of a are

associated with $t2, $t3, and $t4 respectively and that $t5 is available.

 li $t2, 0 # sum = 0

 move $t3, $zero # i = 0

 j test

loop: sll $t5,$t3,2 # temp = i * 4

 addu $t5,$t5,$t4 # temp = temp + &a

 lw $t5,0($t5) # load a[i] into temp

 addu $t2,$t2,$t5 # sum += temp

 addiu $t3,$t3,1 # i++

test: slti $t5,$t3,100 # test i < 100

 bne $t5,$zero,loop # if true, goto loop

