LECTURE 8

Pipelining:
Datapath and Control

BACK TO DOING LAUNDRY

PIPELINED DATAPATH

As with the single-cycle and multi-cycle implementations, we will start by looking at
the datapath for pipelining.

We already know that pipelining involves breaking up instructions into five stages:
e [F —Instruction Fetch

e ID - Instruction Decode

« EX - Execution

* MEM - Memory Access

« WB - Write Back

We will start by taking a look at the single-cycle datapath, divided into stages.

PIPELINED DATAPATH

IF: Instruction fetch ! 1D: Instruction decode/ EX: Execute/ MEM: Memory access ! WB: Write back

register file read address calculation

Read Read

Address register 1 data 1
Read

i register 2
Instruction Registers

Writa Read

Instruction register data 2
mamory Write

data

Sign
extend

PIPELINED DATAPATH

As we can see, each of the steps maps nicely in order onto the single-cycle datapath.

Instruction fields and data generally move from left-to-right as they progress through
each stage.

The two exceptions are:

The WB stage places the result back into the register file in the middle of the
datapath - leads to data hazards.

The selection of the next value of the PC — either the incremented PC or the branch
address = leads to control hazards.

PIPELINED DATAPATH

* One way to visualize Time (in clock cycles) —
pipelining is to consider the Program
execution of each instruction exc?cmion
. g oraer
independently, as if it has the (in instructions)

datapath all to itself.

lw $1, 100($0)

* We can place these datapaths
on a timeline to see their
relationShip. lw $2, 200($0)

* The stages are represented by
the datapath element being
used, shaded according to
use.

lw $3, 300($0)

PIPELINED DATAPATH

* In reality, these instructions Time (in clock cycles) —————
are not executing in their own Program
datapaths, they share a execution
dat th order
atapatn. (in instructions)

* The first instruction uses
instruction memory in its IF
stage in cycle 1. Then, in cycle
2, the second instruction uses lw $2, 200($0)
instruction memory for its own
IF stage. For this to work, we
need to add registers to store lw $3, 300($0)
data between cycles.

lw $1, 100($0)

PIPELINED DATAPATH

SAdd Add

Read

register 1 Read
data 1
Read Zero

register 2 > ALU
Registers ALU
Read result

Write
register data 2

J_Instruclk:un

Write
data

| axtend

PIPELINED DATAPATH

» The previous slide shows the addition of pipeline registers (in blue) which are used to
hold data between cycles.

Following our laundry analogy, these might be like baskets between the washer, dryer, etc
that hold a clothing load between steps.

* During each cycle, an instruction advances from one pipeline register to the next pipeline
register. Note that the registers are labeled by the stages that they separate.

* Pipeline registers are as wide as necessary to hold all of the data passed into them. For
instance, IF/ID is 64 bits wide because it must hold a 32-bit instruction and a 32-bit PC+4
result.

PIPELINED DATAPATH FOR LOAD WORD

* Let’s walk through the datapath using the load word instruction as an example.
Load word is a good instruction to start with because it is active in every stage
of the pipelined datapath.

* Note that in the following datapaths, the right half of registers or memory are
shaded when they are being read. The left half is shaded when they are being
written.

lw Srt, immed(Srs)

31-26 25-21 20-16 15-0

opcode rs rt immed

e The load word instruction adds immed to the contents of Srs to obtain the
address in memory whose contents are written to Srt.

PIPELINED DATAPATH FOR LOAD WORD

 Instruction Fetch (IF)

e The instruction is read from memory using the contents of PC and placed in the IF/ID
register.

 The PC address is incremented by 4 and written back to the PC register, as well as
placed in the IF/ID register in case the instruction needs it later.

Note: the datapath does not know that we are performing a load word at this point so it
forwards the PC+4 value just in case.

PIPELINED DATAPATH FOR LOAD WORD: IF

Address Read

register 1

Read
register 2
Registers

Instruction

Instruction
memory

|

Head
data2

Wiite
reqister

Write
data

16 Sign | 32
—-| gytend

PIPELINED DATAPATH FOR LOAD WORD

Instruction Decode and Register File Read (ID):

The registers $rs and $rt are read from the register file and stored in the ID/EX
pipeline register. Remember, we don’t know what the instruction is yet.

The 16-bit immediate field is sign-extended to 32-bits and stored in the ID/EX
pipeline register.

The PC+4 value is copied from the IF/ID register into the ID/EX register in case the
instruction needs it later.

PIPELINED DATAPATH FOR LOAD WORD: ID

Address

Instruction
memory

Instruction

Read
register 1 Read

data 1
Read
register 2

Registers

Wite e
X data 2

register

Write

data

PIPELINED DATAPATH FOR LOAD WORD

» Execute or Address Calculation (EX):

* From the ID/EX pipeline register, take the contents of $rs and the sign-extended
immediate field as inputs to the ALU, which performs an add operation. The sum is
placed in the EX/MEM pipeline register.

PIPELINED DATAPATH FOR LOAD WORD:

Read
register 1 Read

data 1
Read
register 2
Registers

llnsnucﬁon

Instruction
memory

Read
data 2

Write
register

Write
data

16 Sign | 32
—=| extend

PIPELINED DATAPATH FOR LOAD WORD

* Memory Access (MEM):

» Take the address stored in the EX/MEM pipeline register and use it to access data
memory. The data read from memory is stored in the MEM/WB pipeline register.

PIPELINED DATAPATH FOR LOAD WORD:
MEM

Address Read
register 1 Read
data 1
rogistor 2 Zero
Registers Read >ALU ALU Add
result ress

data 2

l Instruction

Instruction
memory Write

register
Write
data

16 Sign 32
A
| extend

PIPELINED DATAPATH FOR LOAD WORD

» Write Back (WB):

* Read the data from the MEM/WB register and write it back to the register file in the
middle of the datapath.

PIPELINED DATAPATH FOR LOAD WORD:
WB

Add Add
ﬂ

Instruction
memory

llnstruction

Read
register 1 \
Read Zero

register 2
Registers

Write

register

Writa
data

Read
data 2

1? | Sign

extend

ALU 41U

result

/

PIPELINED DATAPATH FOR LOAD WORD

» It’s important to note that any information we need will have to be passed from pipeline
register to pipeline register while instruction executes.

Because the instructions share the elements, we cannot assume anything from a previous
cycle is still there. We must carry the data with us as we move along the data path.

S0 by now you should be wondering about the last step. How does the WB stage know
which register to write to? The IF/ID pipeline register should no longer contain the
necessary instruction field — it’s already been overwritten by three other instructions at
this point.

We'll see the solution soon, but let’s look at store word first.

PIPELINED DATAPATH FOR STORE WORD

» The IF and ID stages are identical for all instructions.

At these stages of execution, we still do not know which instruction we are actually
executing so we perform general operations that either apply to all instructions or
may speculatively apply to a select few instructions.

PIPELINED DATAPATH FOR STORE WORD:
IF

Address Read

register 1

Read
register 2
Registers

Instruction

Instruction
memory

|

Head
data2

Wiite
reqister

Write
data

16 Sign | 32
—-| gytend

PIPELINED DATAPATH FOR STORE WORD:
ID

Read
register 1 Read

data 1
Read
Instruction fegister 2F{egisters
memory Write

register

Write
data

Address

Instruction

Head
data 2

PIPELINED DATAPATH FOR STORE WORD

» Execute or Address Calculation (EX):

* From the ID/EX pipeline register, take the contents of $rs and the sign-extended
immediate field as inputs to the ALU, which performs an add operation. The sum is
placed in the EX/MEM pipeline register.

* The contents of the $rt register are copied from the ID/EX pipeline register to the
EX/MEM pipeline register.

PIPELINED DATAPATH FOR STORE WORD:

Address Read
register 1 Read

data 1
Read
register 2
Registers

Instruction
mem .
b Write
register

Write
data

| Instruction

Read
data 2

16 [sign | 32
| extend g

.

PIPELINED DATAPATH FOR STORE WORD

* Memory Access (MEM):

» Take the address stored in the EX/MEM pipeline register and use it to access data

mMemory.

« Take the contents of $rt from the EX/MEM pipeline and write it to data memory at the
address specified.

Note that in order to use the $rt field in the MEM stage, we have to carry it with us from
the ID stage. This means copying it in every pipeline register until we use it.

PIPELINED DATAPATH FOR STORE WORD:
MEM

Read
register 1 Head

data 1
Read
register2
Wi Registers Read
e data 2
register

Write
data

Instruction

|

1? N S]gn 32
*| extend

PIPELINED DATAPATH FOR STORE WORD

» Write Back (WB):

 We’re already done with the store word instruction so we don’t have to do anything.

PIPELINED DATAPATH FOR STORE WORD:

Add Add

ﬂ
Head
register 1 Read
data 1
Read Zerc:

register 2 ALU
Registers ALU
Write ed Read result Address

y data 2 /
register

Write
data

Address

Instruction

Instruction
memory

]

PIPELINED DATAPATH

* In both the load and store word datapaths, we can notice another important point: every
datapath element is used in only one pipeline stage. If this wasn’t the case, we'd create a
structural hazard.

* Let’s say we used the ALU from the EX stage to both increment PC in the IF stage and
perform operations in the EX stage. This is fine for a single instruction, but what happens
if we’re executing multiple instructions and one is currently in the IF stage and another is
in the EX stage? Which one gets to use the ALU?

Clearly, we’'d have an issue. So, we add redundancy to our datapath in order to gain the
speed improvements from pipelining.

PIPELINED DATAPATH FOR LOAD WORD

* Ok, so let’s look back at load word’s WB stage.

Remember that we have a problem? We don’t know to which register we need to
write back. What’s the solution?

PIPELINED DATAPATH FOR LOAD WORD:
WB

Add Add
ﬂ

Instruction
memory

llnstruction

Read
register 1 \
Read Zero

register 2
Registers

Write

register

Writa
data

Read
data 2

1? | Sign

extend

ALU 41U

result

/

PIPELINED DATAPATH FOR LOAD WORD

* Ok, so let’s look back at load word’s WB stage.

Remember that we have a problem? We don’t know to which register we need to
write back. What’s the solution?

» That’s right! Carry the information through each stage using the pipeline reqgisters. To
do this, we’ll modify the datapath a little bit.

* Now, we’ll pass the write register number from the MEM/WB pipeline register along
with the data. This register number is initially discovered in the ID stage and must be
passed through the pipeline registers until we need it in the WB stage.

PIPELINED DATAPATH FOR LOAD WORD:
WB

Read

register 1 Read \
data 1

Read Zero

register 2 . ALU ALU

Registers
Read result

Wri‘te data 2
register /

Write
data

Instruction
memory

[instruction

16 Sign | 32
| extend

PIPELINED DATAPATH

* Consider the 5 instruction sequence below.

1w S 10, 220650
sub ST IS
add = S12, NS s
lw 513, 72 LRt
add - S14, iSRSt
» First, take note of the fact that we have no data hazards since no instruction depends on

data from a previous instruction. We also have no control hazards since we are not
branching or jumping. So, we can safely pipeline without stalls.

PIPELINED DATAPATH

Time (in clock cycles)

. G CC1 CC2 CC3
* We can start by diagramming

the individual datapaths Program

execution
order

used by every instruction. (i Instructiong
Iw $10, 20($1)
This allows us to see which
stage each instruction is sub $11, $2, $3
executing in a given clock
CYC].e. add $12, $3, $4

Iw $13, 24($1)

add $14, $5, $6

PIPELINED DATAPATH

 We can also chart the stages themselves rather than the elements being used in the

Time (in clock cycles)
CC 1 CC2 CC3 CC4 CCbh CC6 CC7 CC 8
Program
execution
order
(in instructions)

Instruction | Instruction . Data .

PIPELINED DATAPATH

* On the next slide, we show a single datapath as it is being used by the 5 instructions
at once.

The cycle depicted is cycle 5. In this cycle, the first load word is executing its WB
stage while the last add instruction is executing its IF stage.

PIPELINED DATAPATH

add $14, $5, $6 Iw $13, 24 ($1) add $12, $3, $4 sub $11, $2, $3 | Iw$10, 20($1) |
Instruction fetch Instruction decode Execution Memory | Write back |

Add Add
result|

Read
register 1
Read

register 2
Registers

Instruction
memory

| Instruction

Read
data 2

Write
register

Write
data

16 slgn 3z
| extend

PIPELINED DATAPATH

add $14, $5, $6 lw $13, 24 ($1) add $12, $3, $4 sub$11,$2,$3 | w10, 20($1) |

Instruction fetch Instruction decode Execution Memory | Write back |

Add Add
result|

Read
register 1
Read

register 2
Registers

[Instruction

Instruction
memory

Read
data 2

Write
register

Write
data

16 slgn 3z
| extend

PIPELINED DATAPATH

 In the following slides, we walk through all 9 cycles required to fully complete the 5
instructions in our sample sequence.

We will start with clock cycle 1 and highlight the relevant datapath lines according to
the instruction being executed in each particular stage.

PIPELINED DATAPATH

20 (51)

Read

register 1 Read
data 1

Read

register 2 .
Registers Read

Write data 2
register

Wiite
data

Instruction
memory

| Instruction

16 Sign
| extend

PIPELINED DATAPATH

sub’ SO 1w ST g %Al 50

‘
4 —_—le

Instruction
memory

Read

register 1 Read
data 1
Read

register 2 .
Registers Read

Write data 2
register

Wiite
data

Instruction
r ¥

16 Sign
¥ oxtend

PIPELINED DATAPATH

subiEsS 1S 78S S e ol < 20 (S1)

Read

register 1 Read
data 1

Read

register 2 .
Registers Read

Write data 2
register

Wiite
data

Instruction
memory

| 1nstruction

16 Sign
| extend

PIPELINED DATAPATH

EaRtesRE e S w510, 20(S$1)

Read

register 1 Read
data 1

Read

register 2 .
Registers Read

Write data 2
register

Wiite
data

Instruction
memory

| Instruction

== axtend

PIPELINED DATAPATH

BN A2 53 1w $10, 20(51)

Read

register 1 Read
data 1

Read

register 2 .
Registers Re

Instruction

Instruction
memory

ad
data 2

Write
register

Wiite
data

PIPELINED DATAPATH

S-S |, 52, 53

Read

register 1 Read
data 1

Read

register 2 .
Registers Read

Write data 2
register

Wiite
data

Instruction
memory

Instruction
1 3

PIPELINED DATAPATH

Read

register 1 Read
data 1

Read

register 2 .
Registers Read

Write data 2
register

Wiite
data

Instruction
memory

| Instruction

16 Sign
| extend

PIPELINED DATAPATH

Read

register 1 Read
data 1

Read

register 2 .
Registers Read

Write data 2
register

Wiite
data

Instruction
memory

= | Instruction

16 Sign
| extend

PIPELINED DATAPATH

Read

register 1 Read
data 1

Read

register 2 .
Registers Read

Write data 2
register

Wiite
data

Instruction
memory

= | Instruction

16 Sign
| extend

PIPELINED CONTROL

* Now, let’s add control to our pipelined datapath. We’ll start with a simple control
scheme and deal with pipeline hazards later.

* Alot of the control logic is borrowed from the single-cycle and multi-cycle
implementations.

PIPELINED CONTROL

RegWrite
|

Read
register 1 Read

1

dala 1
Read

register 2

Instruction

MemWrite
1

Registers
Write Read
regisier data 2

Wrile

data

Instruction
(150) 16 [gign.

h]

Instruction
(20-18)

32

Instruction
{15-11)

I
MemRead

PIPELINED CONTROL

 Let’s remind ourselves of the roles of these control lines.

Opcode ALUop | Operation Funct ALU action | ALU
Control
Input
lw 0[0) Load word N/A add 0010
SW 0[0) Store word N/A add 0010
beq 01 Branch equal N/A subtract | 0110
R-type 10 Add 100000 add 0010
R-type 10 Subtract 100010 subtract | 0110
R-type 10 AND 100100 AND 0[0]0]0
R-type 10 OR 100101 OR 0001
R-type 10 Set on less than | 101010 slt 0111

PIPELINED CONTROL

1-Bit Signal Effect When Deasserted Effect When Asserted

Name

RegDst The register file destination number The register file destination number for the

for the Write register comes from the Write register comes from the rd field.
rt field.

RegWrite None Write register is written with the value of the
Write data input.

ALUSrc The first ALU operand is Read Data 2. The first ALU operand is sign-ext immediate
field.

PCSrc PC is replaced by PC+4. PC is replaced by branch target.

MemRead None Content of memory at the location specified
by the Address input is put on the Memory
data output.

MemWrite None The Write Data input is written to the Address
input.

MemtoReg The value fed to the register file is The value fed to the register file input comes

from the ALU. from Memory.

PIPELINED CONTROL

 Let’s remind ourselves of the roles of these control lines. Notice now that we’re
grouping the control lines based on their relevant stage.

EX MEM WB
A A A
[1 | \

Instr | RegD | ALUO | ALUOp | ALUSr | Branc | MemRe | MemWri RegWrite MemToRe
st pl 2 c h ad te g
R 1 1 0 0 0 0 0 1 0]
Iw 0 0 0 1 0 1 0 1 1
SW X 0 0 1 0 0] 1 0 X
beqg (X 0 1 0 1 0 0 0 X

PIPELINED CONTROL

* Unlike the multi-cycle implementation, we assume that the PC is written on every
clock cycle so there is no explicit control signal for writing PC. We also assume that
the pipeline registers are written on every clock cycle.

* As we just saw in the previous slide, we can handle “controlling” 5 instructions at
once by dividing the control signals into 5 groups — one for each pipeline stage.

PIPELINED CONTROL: IF

The only relevant control
signals in this stage are the
control signals to read
instruction memory and write
to PC.

dg?dd
resu!t Branch
Read
register 1 d MemWrile

£
2
f=)
=
B
=

Read alad MemtoReg
o 5 register 2
These control signals are o Regiters,
register data 2
always asserted however so i

Instruction

we don’t need to worry about
them. (15-0)
MemRead

Inslruction
(20-18)

Inslruction
{15-11)

PIPELINED CONTROL: ID

As in the previous stage,

the same actions take place
during every cycle so we

do not have to be concerned
with any optional control lines.

Notice the RegWrite signal e
physically resides in this o
component of the datapath memory

but it is a control line of the
WB stage.

Instruction

Read

register 1

Read

reqgister 2

Wite

register

Write
dala

Instruction
{15-0)

Inslruction
(20-16)

Inslruction
{15-11)

@ .ﬁddﬁ'dd
result

ALUSre

L
[

control

g ALUOp

RegDst

MemWrile

Address

Data
memory

MemRead

MemtoReg

[

PIPELINE CONTROL: EX

The relevant control signals
in this stage are:

* RegDst)
« ALUOp
« ALUSrc

HF’E'ldt 1 MemWril
r emWrile
registe P!
Read MemtoReg
reguste':rl 2 g
sters.
4 ea

Instruction

Instruction

control MemRead

memory rite Read
register data 2
Write
dala
Instruction
{15-0) 16 sign- | 92 ALU
extend

Inslruction
(20-18)

Inslruction
{15-11)

PIPELINE CONTROL: MEM

The relevant control signals
in this stage are:

e Branch
* MemRead
e MemWrite Adaess

Instruction
memory

PCSrc is also computed in this
stage but it is a product of

two other control signals, so
we don’t worry about it when
designing our Control unit.

Instruction

Read
register 1

Read
reguste':rl 2 g

sters
Wite = Read

register data 2

Write
dala

Instruction

{15-0) 16 Sign- 32
extend

Inslruction

(20-18)

Inslruction
{15-11)

dala 1

@ .ﬁddﬁ'dd
result

control

g ALUOp

RegDst

MemtoReg

PIPELINE CONTROL: WB

The relevant control signals
in this stage are:

* MemtoReg
 RegWrite

Address "% rneséeilgter 1 MemWrile
Note that RegWrite is our one S 8 gg?gteégm:am MemioReg
exception. It actually appears e Woer asiaz
in ID’s phase of the pipeline doia
but it is a control signal for the oo .
WB stage. extend contrr MemRead

Inslruction

(20-15)

ALUOp
Inslruction
{15-11)

RegDst

PIPELINED CONTROL

* As before, we need to
preserve the context of
an instruction as it
moves through the
datapath.

We cannot reach back
in the datapath for
some information
about how to execute
the instruction — it will
have already been
overwritten.

EX'MEM

PIPELINED CONTROL

* We must pass along the
control line values for the
last 3 stages. Remember,
the first 2 stages are
universal.

* For example, the RegWrite
and MemtoReg values,
decoded after the second
stage, must be passed
through the EX and MEM
stages to the WB stage.

EX'MEM

PIPELINED CONTROL

* Our pipeline registers
have been extended to
handle the control
information as well.

EX'MEM

Insfruction

| MemRead

PIPELINED CONTROL

* Consider the following instructions.

1w S10, 2048
sub ' S 5SS
and = $S12%NS4TESaE
or S13, S 6N
add . ST 4% SSEE e

* Let’s examine, in all the gory detail, how these simple instructions are executed in a
pipelined datapath. Note again that we have no control or data hazards. Each slide
following will show the datapath state in a subsequent clock cycle.

| 1D: | EX: | MEM: IWE:
[F: Tw $10,20(%1) Ibefore-ﬂ::- | before<2- Ibefnre«:S:: Ibefore-:ai:-
| | I | '
| I |
E}Uﬁr’lEM

L

T

Add
result

Add

[]
e
e

Read
register 1 Read

Read data 1
register 2 Zero
Write P SALU ALU
register data 2 result

Address

MemtoR:

Instruction
memory

{

ngg—h

Instruction
R I

Writa Registers
data

Instruction /’
[15-0] .Sigb'
Instruction I®'
[20-16]
Instruction
[15—11]

3

Clock 1

IF:
sub $11,$2,4%3

1D:

Mw $10,20(%1)
1

|[EX:
:befcred >

IMEM:
:befnre{zz»

[Address

Instruction
memory

I
IF/1D

I
ID/EX

,.f/ _\TLF WE

nstruction

]

Read
data 1
| register 2

————kl e

data 2

| register

e | WAt o
= Wy e
e

| A
| LlcdicH

Registers

Instruction

[1 E_D] Sign- 20

Instruction o]

Read $

[20-16] 10
r.

' ol

Shift|

>Add

SALU ALU

1
EX/MEM

Add

result——*

-~

r

result

Instruction
[15-11] X

o

IWB:
Ibefore<3=

IF:
and $12,%4,%$5

Address

Instruction
memory

(1D:

Isub $11,%2,%3

(MEM:

|before<1>
I

I
IF/ID

/" '\ 00

| 000

L

I-I(:onl:u!—r-

1 Joooo_

E}Ul"ia'iEM

-

b

Clock 3

Instruction

Im

Read
register 1

Read
register 2
Write
register
Write
data

Read
data 1

Head
data 2

Registers

Instruction /= ™,
[15-0]

. |extend
Instruction \

[20-16] — X

| sign- \ X,

Instruction
[156—11]

-

|

'-,uIlJ

r
.

_/ LTALUSre

-

$1| |

>ALu ALU

|
T y""
L .

Address |
Data

memory
Write

AlLU
control

20

10

—- | aLuop

" | data

Jead

data

0
M
u
X
g

RegDst

|WE:
|before<2>

IF:or $13.,%6,%/

ID:and $12,%4,$5

:E}{: sub %11,
i

IMEM: Tw $10,

Address

Instruction
memory

Clock 4

I

ID/EX
ll{’-_h\\ 1G",_ WE; 10

[S}
' \9“3 000

I-—IG::ummll—h-r
!

\ /1100

M

i

I
EX/MEM

ExHU

{0

Instruction

= Write
data

Read
register 1

Read
register 2

Write
register

Read
data 1 e

Head
data 2

Registers

Instruction /™
[15-0] | SIgn- i I

'Extend
!ns’rmctmn /

[0-16] " X
=

Instruction

Add|

}Addmb‘ulii

s ALUSW

o

>ALI.I ALU
result

f\

' ALU |
'cnntrnlu

MemBRead

[15—11]

:WB: before<1=

| =
add $14,%8,%9

Address

Instruction
memory

Clock 5

(1D:
lor $13,%6,%7

|EX:
land $12,
|

| MEM:

Isub $11,

1

|WB:
1 Tw $10,

/ _q\\iﬁ—cr WB
! !

ID/EX

10

M

\ /1100

\

!
1 000
o Conttoli o=

= EX

&

nstruction
=] ICI'J

d

Read
register 1

Head
register 2

Write

Read
data 1

Read
data 2

register

Write

AN Registers

I |

Instruction ,
[15-0]

X—u

Instruction f
[20—16]

Instruction
[15—11]

.ﬁHl

'\Addru:‘,ulllu

-

~ALUSrc

>ALU ALU

EX;"FI;!'IEM

resui‘t

__\
[AL b |
\con tml [

ALUDp

MemtoReg

IF:
after<i>

HD:
:add $14,%8,%9

[EX:

lor $13,..

MEM:
:and $12,...

IWB:
:suh $11,.

I | |
ID/EX EX/MEM MEM/WB
||:|- 1 I

/N B I
[|]

|' 1000 10

-
l(‘:nntml.-—h- M We

| L —
1 | f—o
! /1100 30 '
\\J/H EXH: M|

000

-

1

L.

=

Shda "
" result
\. / L-"ALUSrc

o

RegWrite

F[es;d
register 1

Read
register 2
Write
register

Write
data

$6

Lé—e-| Addross

Read
data 1 >

Head
data 2

Zero
ALU ALU
result

nstruction
MemtoReg

|

Instruction
memory

RHead ||

o—| Address S
data

Data
memory
3 Write

data

Y v

Registers

Instruction /~ ™

x |115-0] _[sign-| X

, ar nd}_"?
Instruction \

[20-16]

Instruction
[15—11]

3 \\"| /f:Luop

Clock 6

RegDst

IF:
after<2=

(1D:

|after<i=

|EX:
ladd $14,.
|

| MEM:
lor $13..
|

Address

Instruction
memory

Clock 7

|WB:

land $12,.
|

|

ID{EX
110

EXfl"r"EEM

W

ay [.000

L

— 1

EX 10

]

.

nstruction

Lj

[15-01 [sign-|

Head
register 1

Read
register 2

Write
register

Write Registers
|data

Read

Read

Instruction /~ ™\

.. _\extend
Instruction \, /

[20-16 et

instruction
[15—11]

data 1

data 2 ™

Add

A Add result

L—ALUSTrc

ALU alL
result

1

i\
II lII
[ALU |
ilt:untml

Y
b

ALUCD

Address
Data
memory

o | Write

data

=+

data

IF:
after<3=

1D

}aﬂer{E}

jaﬁerﬂ >

| Address

Instruction
memory

Clock 8

L
I
I
I

nstruction

RegWrite

Read
register 1

Read
register 2
Write
register

Write Registers
data d

Instruction ™
[15-0]
o

. lextend|
Instruction \

[20-16] ~—

Instruction
[15-11]

ID/EX

™ il
/ALU ALU

L —
result =

(Sign- "'__h__}

Addr

2558

Data
memory

Write

data

Re:

= [0 B Ly

data

MemtoReg

".r-'

—

OxeEs—

| 7 [D: |EX: IMEM: IWE:

after<4s lafter<3> :aﬁer{E:: : after<i> : add $14, .
I |

ID/EX EXMEM

Head
register 1 Read|
Bead data 1|
Instruction _ | register 2 :
| P x Read L.
memory o | Write Jata 2|
I‘E-gister agdla e

Write Registers
data 9

Address

Inszruz;:icn
MemtoHeg

Instruction

foar (e
: 1\ E I -

Instruction '.stﬂndj,

[20-16] _

Instruction
[15—11]

Clock 9

