LECTURE 12

Out-of-order execution: Pentium Pro/I1/III

EXECUTING IA32/1A64 INSTRUCTIONS FAST

Problem: Complex instruction set

|I"'IStrUCtIOI"I

Up to four 1 or 2 byte 1 byte 1 byte Address Immediate
prefixes of opcode (if requnred} (if reqmre-d} displacement data of

1-byte each of 1,2 or4d 1,2, 0r4
{optional) / \ bytes or none bytes or none
65 32 7 65 32 0

7

0 2
Reg/
[IEART

Solution: Break instructions up into RISC-like micro operations
* Lengthens decode stage; simplifies execute

PENTIUM PRO/II/III PROCESS STAGES

» The first stage consists of the instruction fetch, decode, convert into
micro-ops, and reg rename

* The third stage retires the micro-operations in original program
order

* Completed micro-operations wait in the reorder buffer until all of the
preceding instructions have been retired

Pentium(r) Ill Processor Architectural Block Diagram

System Bus Instruction Cache 16 Kbyte. 4-way Dynamic Branch
| —i sl 32 entry TLB Praecictor: 512 entrie

Fetch/Decode
Control - Static Branch
x parallel Instruction Decoder Pradictor
Micro Code ROM /
Micro Instruction :
Sequencer Integer/FP Register
Rename & Allocator

Architectural
Reagister File

Reservation Station (20 Entries)

Store Data

I riit Address Address
it Linit

Memaory Order Buffer
12 entry store, 16 entry load

-- : Reorder Buffer

Data Cache 16 KByte. 4-way ' (40 entries)
72 entry TLB

Pentium Pro pipeline overview

AL @ Fetch (2 cycles)
IF | ID REN Alloc =@ > CT read instructions (16 bytes)
s lln-or B from memory from IP (PC)
v v @ Decode (3 cycles)
Rename Table H - Decode up to 3 instructions
- DX & 4 generating up to 6 pops

Decoder can handle 2
“simple” instructions and 1

“complex” instruction. (4-1-
— Indexed with regID 1)

— Returns (valid, robIDX)
— If valid, ROB does/will

Rename Table

@ Rename (1 cycle)

contain value of register Index table with source
_ Tfinvalid, ARF holds operand reglD to locate
value (no instruction in ROB/ARF entry

flight defines this register) @ Alloc
Allocate ROB entry at Tail

PENTIUM PRO PIPELINE OVERVIEW

* @ Execute (parallel)

Any order Walit for sources

IF ID REN Alloc \ @_I > CT (schedule)

l noder” EX€CUte instruction (ex)
- * Write back result to ROB

In-order

* @ Commit
Head Tail » Wait until inst @ Head is
done
e Reorder Buffer (ROB) e If fault, initiate handler
— Circular queue of spec state * Else, write results to ARF

— May contain multiple * Deallocate entry from ROB

definitions of same register

REGISTER RENAMING EXAMPLE

Logical Program

Yo e Ou
I 8 =t
el I R ¢
r 12 5= VeoasT

Logical Program

r6 = r5 +
I8N o
T 6OF Ca= SIS
2 =S

Tl
e
Tl
ro

r2
i)
i R
ro

oD o © N g wN =

O 00 N O O b LW N -~

[1]
[1]
[1]
| P52 x|
[1]
[1]
[1]
[1]
[1]
L[

SN | N
N — O

Physical Program

Physical Program

p52 = p45 + p42

REGISTER RENAMING EXAMPLE

Logical Program

Yo e Ou
r8 = r6 +
el I R ¢
r 12 5= VeoasT

Logical Program

oW o
I8N o
r6 = r9 +
2 =S

Tl
r3
Tl
ro

T
i)
rl0
ro

©O© 00 N o O b WD —~

IR
N - O

O 00 N o O b LW iN -~

el
N -~ O

Physical Program

p52 = p4d5 + p4?2
p53 = p52 + r3

Physical Program

P52 = p4d5 + p4d?
PRl .+ 3
p54 r9 + rilo0

REGISTER RENAMING EXAMPLE

Logical Program

6 i EacOEE
r 8 =
T 6he e S
rl2 = r8 +

T2
e
Tl
r6

© 0 N o O b WD —

10
1
12

[1]
[1]
[1]
[1]
[1]
[1]
[1]
| PSS x|

Physical Program

p52 = pd5 + p4?2
e RS2+ r3

=9 - + rl0
p55 = p53 + p54

CROSS-CUTTING ISSUE: MISPECULATION

* What are the impacts of mispeculation or exceptions?

When instructions are flushed from the pipeline, rename mappings must be restored
to point-of-restart

e Otherwise, new instructions will see stale definitions
« Two recovery approaches
 Simple/slow
1. Wait until the faulting/mispredicting instruction reaches retirement

2. Flush ALL speculative register definitions by clearing all rename table valid bits
e Complex/fast

1. Checkpoint ENTIRE rename table anywhere recovery may be needed
2. At soon as mispeculation detected, recover table associated with PC

DISCUSSION POINTS

 What are the trade-offs between rename table flush recovery
and checkpointing?

 What if another instruction (being renamed) needs to access
a physical storage entry after it has been overwritten?

* Can [rename memory?

REORDER BUFFER

* @ Alloc

Any order » Allocate result storage at Tail

In-order

ﬁ % * @ Execute
IF | ID | REN Jalloc T EX CT . Get inputs (ROB T-to-H then ARF)
lln-order » Wait until all inputs ready

- * Execute operation
- @WB

 Write results/fault to ROB

Head L * Indicate result is ready
- @CT
e Reorder Buffer (ROB) - Wait until inst @ Head is done
— Circular queue of spec state o If fault, initiate handler

- 4 * Else, write results to ARF
— May contain multiple

i . * Deallocate entry from ROB
definitions of same register

DYNAMIC INSTRUCTION SCHEDULING

Anyorder Any order @ Alloc

IF | ID REN alloc REG ™ Lﬁ» WB ” CT * Allocate ROB storage at Tail

e Allocate RS for instruction

In-orde,
@ REG
: * Get inputs from ROB/ARF

_ - entry specified by REN

* Write instruction with
available operands into

In-order

—
A

assigned RS
Reservation Stations (RS)
7 . @ WB
— Associative storage indexed y ;
by phyID of dest, returns * Write result into ROB entry
insts ready to execute * Broadcast result into RS

with phylD of dest register

— phyID is ROB index of inst that - Dellocate RS entry

will compute operand (used to (requires

match on broadcast) maintenance of an RS free
— Value contains actual operand map)

— Valid bits set when operand is
available (after broadcast)

WAKEUP-SELECT-EXECUTE LOOP

To EXIMEM

dstlD result

v
ke

Selection
Logic

WINDOW SIZE VS. CLOCK SPEED

* Increasing the number of RS [Brainiac]
* Longer broadcast paths
* Thus more capacitance, and slower signal propagation
* But, more ILP extracted

* Decreasing the number of RS [Speed Demon]
» Shorter broadcast paths
* Thus less capacitance, and faster signal propagation
e But, less ILP extracted

* Which approach is better and when?

CROSS-CUTTING ISSUE: MISPECULATION

 What are the impacts of mispeculation or exceptions?

« When instructions are flushed from the pipeline, their RS entries must be
reclaimed

 Otherwise, storage leaks in the microarchitecture

« This can happen, Alpha 21264 reportedly flushes the instruction window to reclaim all
RS resources every million or so cycles

» The PIII processor reportedly contains a livelock/deadlock detector that would
recover this failure scenario

« Typical recovery approach

 Checkpoint free map at potential fault/mispeculation points
* Recover the RS free map associated with recovery PC

OPTIMIZING THE SCHEDULER

* Optimizing Wakeup
* Value-less reservation stations
 Remove register values from latency-critical RS structures

* Pipelined schedulers
» Transform wakeup-select-execute loop to wakeup-execute loop

* Clustered instruction windows
« Allow some RS to be *“close” and other “far away”, for a clock boost
* Optimizing Selection
* Reservation station banking
« Associate RS groups with a FU, reduces the complexity of picking

VALUE-LESS RESERVATION STATIONS

Any order Any order

wes = £ " we (- c7

o]
- —

* Q:Do we need to know the value of a register to schedule
its dependent operations?

» A:No, we simply need dependencies and latencies

IF | ID REN alloc ™

In-order In-order

Value-less RS only contains required info
» Dependencies specified by physical register IDs
» Latency specified by opcode

Access register file in a later stage, after selection

Reduces size of RS, which improves broadcast speed

VALUE-LESS RESERVATION STATIONS

To EXIMEM

dstiD

v
ke

Selection
Logic

PIPELINED SCHEDULERS

IF

ID

REN

alloc

In-order

Any order Any order

WB CT

In-order

Q: Do we need to know the result of an instruction to schedule its
dependent operations?

* A:Once again, no, we need know only dependencies and latency

To decouple wakeup-select loop
* Broadcast dstID back into scheduler N-cycles after inst enters REG,
where N is the latency of the instruction
What if latency of operation is non-deterministic?
* E.g.,load instructions (2 cycle hit, 8 cycle miss)
» Wait until latency known before scheduling dependencies (SLOW)
* Predict latency, reschedule if incorrect

* Reschedule all vs. selective

PIPELINED SCHEDULERS

WB

dstiD

To EXIMEM

Selection
Logic

CLUSTERED INSTRUCTION WINDOWS

Single Cycle
Inter-Cluster
Broadcast

» Split instruction window into execution
clusters

« W/N RS per cluster, where W is the
window size, N is the # of clusters

» Faster broadcast into split windows
* Inter-cluster broadcasts take at
least an one more cycle
* Instruction steering
* Minimizes inter-cluster transfers
* Integer/Floating point split
* Integer/Address split
Dependence-based steering

RESERVATION STATION BANKING

* Split instruction window into banks

* Group of RS associated with FU

Selection
Logic Faster selection within bank

* Instruction steering

* Direct instructions to bank
associated with instruction opcode

* Trade-offs with banking

Seﬂg;}f” * Fewer selection candidates speeds
selection logic, which is O(log W)

* But, splits RS resources by FU,
increasing the risk of running out of
RS resources in ALLOC stage

Selection
Logic

DISCUSSION POINTS

» If we didn’t rename the registers, would the dynamic scheduler still work?

 We can deallocate RS entries out-of-order (which improves RS utilization), why not
allocate them out-of-order as well?

 What about memory dependencies?

MEMORY DEPENDENCE ISSUES IN AN OUT-
OF-ORDER PIPELINE

* Out-of-order memory scheduling

* Dependencies are known only after address calculation.

* This is handled in the Memory-order-buffer (IMOB)

« When can memory operations be performed out-of-order?
« What does the MOB have to do to insure that?

Pentium(r) lll Processor Architectural Block Diagram

Instruction Cache 16 Kbyte, 4-way Dynamic Branch
e 32 entry TLE Predictor: 512 entrie

em Bus

Fetch/Decode
e . .
Control Static Branch
¥ parallel Instruction Decoder Predictor
Micro Code ROM /

Micre Instruction P
Sequencer Integer/FP Register Architmchesl

Reagister File
Rename & Allocator g

Reservation Station {20 Entries)

Store Data
LInit Address Address
Linit Lnit

Memary Order Buffer
12 entry store, 16 entry load

-- : Reorder Buffer

Data Cache 16 KByte. 4-way ' (40 entries)
72 entry TLEB

EFFECTS OF SPECULATION IN AN OUT-OF-
ORDER PIPELINE

 What happens when a branch mis-predicts?

 When should this be recognized?

 What needs to be cleaned up?

ID | REN | alloc | REG JEj;(ﬂrw"WB > CT
In-order
D —

STRUCTURE THAT MUST BE UPDATED
AFTER A BRANCH MISPREDICTION.

e

* Set tail to head to delete everything Head Tail
* Rename table
* Mark all entries as invalid (correct Rename Table

values are in the ARF)

e Reservation stations
e Free all reservation station entries

 MOB
e Free all MOB entries

* Correctly handle any outstanding
memory operations.

reglD robIDX

