LECTURE 12

Out-of-order execution: Pentium Pro/I1/III



EXECUTING IA32/1A64 INSTRUCTIONS FAST

Problem: Complex instruction set
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Solution: Break instructions up into RISC-like micro operations
* Lengthens decode stage; simplifies execute



PENTIUM PRO/II/III PROCESS STAGES

» The first stage consists of the instruction fetch, decode, convert into
micro-ops, and reg rename

* The third stage retires the micro-operations in original program
order

* Completed micro-operations wait in the reorder buffer until all of the
preceding instructions have been retired
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Pentium Pro pipeline overview

AL @ Fetch (2 cycles)
IF | ID REN Alloc =@ > CT read instructions (16 bytes)
s lln-or B from memory from IP (PC)
v v @ Decode (3 cycles)
Rename Table H - Decode up to 3 instructions
- DX & 4 generating up to 6 pops

Decoder can handle 2
“simple” instructions and 1

“complex” instruction. (4-1-
— Indexed with regID 1)

— Returns (valid, robIDX)
— If valid, ROB does/will

Rename Table

@ Rename (1 cycle)

contain value of register Index table with source
_ Tfinvalid, ARF holds operand reglD to locate
value (no instruction in ROB/ARF entry

flight defines this register) @ Alloc
Allocate ROB entry at Tail



PENTIUM PRO PIPELINE OVERVIEW

* @ Execute (parallel)

Any order  Walit for sources

IF  ID REN Alloc \ @_I > CT (schedule)

l noder” EX€CUte instruction (ex)
- * Write back result to ROB

In-order

* @ Commit
Head Tail » Wait until inst @ Head is
done
e Reorder Buffer (ROB) e If fault, initiate handler
— Circular queue of spec state * Else, write results to ARF

— May contain multiple * Deallocate entry from ROB

definitions of same register



REGISTER RENAMING EXAMPLE
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REGISTER RENAMING EXAMPLE

Logical Program
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REGISTER RENAMING EXAMPLE
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CROSS-CUTTING ISSUE: MISPECULATION

* What are the impacts of mispeculation or exceptions?

When instructions are flushed from the pipeline, rename mappings must be restored
to point-of-restart

e Otherwise, new instructions will see stale definitions
«  Two recovery approaches
 Simple/slow
1. Wait until the faulting/mispredicting instruction reaches retirement

2. Flush ALL speculative register definitions by clearing all rename table valid bits
e Complex/fast

1. Checkpoint ENTIRE rename table anywhere recovery may be needed
2. At soon as mispeculation detected, recover table associated with PC



DISCUSSION POINTS

 What are the trade-offs between rename table flush recovery
and checkpointing?

 What if another instruction (being renamed) needs to access
a physical storage entry after it has been overwritten?

* Can [ rename memory?



REORDER BUFFER

* @ Alloc

Any order » Allocate result storage at Tail

In-order

ﬁ % * @ Execute
IF | ID | REN Jalloc T EX CT . Get inputs (ROB T-to-H then ARF)
lln-order » Wait until all inputs ready

- * Execute operation
- @WB

 Write results/fault to ROB

Head L * Indicate result is ready
- @CT
e Reorder Buffer (ROB) - Wait until inst @ Head is done
— Circular queue of spec state o If fault, initiate handler

- 4 * Else, write results to ARF
— May contain multiple

i . * Deallocate entry from ROB
definitions of same register



DYNAMIC INSTRUCTION SCHEDULING

Anyorder  Any order @ Alloc

IF | ID REN alloc REG ™ Lﬁ» WB ” CT * Allocate ROB storage at Tail

e Allocate RS for instruction

In-orde,
@ REG
: * Get inputs from ROB/ARF

_ - entry specified by REN

* Write instruction with
available operands into

In-order

—
A

assigned RS
Reservation Stations (RS)
7 . @ WB
— Associative storage indexed y ;
by phyID of dest, returns * Write result into ROB entry
insts ready to execute * Broadcast result into RS

with phylD of dest register

— phyID is ROB index of inst that - Dellocate RS entry

will compute operand (used to (requires

match on broadcast) maintenance of an RS free
— Value contains actual operand map)

— Valid bits set when operand is
available (after broadcast)



WAKEUP-SELECT-EXECUTE LOOP

To EXIMEM

dstlD result

v
ke

Selection
Logic




WINDOW SIZE VS. CLOCK SPEED

* Increasing the number of RS [Brainiac]
* Longer broadcast paths
* Thus more capacitance, and slower signal propagation
* But, more ILP extracted

* Decreasing the number of RS [Speed Demon]
» Shorter broadcast paths
* Thus less capacitance, and faster signal propagation
e But, less ILP extracted

* Which approach is better and when?



CROSS-CUTTING ISSUE: MISPECULATION

 What are the impacts of mispeculation or exceptions?

« When instructions are flushed from the pipeline, their RS entries must be
reclaimed

 Otherwise, storage leaks in the microarchitecture

« This can happen, Alpha 21264 reportedly flushes the instruction window to reclaim all
RS resources every million or so cycles

» The PIII processor reportedly contains a livelock/deadlock detector that would
recover this failure scenario

« Typical recovery approach

 Checkpoint free map at potential fault/mispeculation points
* Recover the RS free map associated with recovery PC



OPTIMIZING THE SCHEDULER

* Optimizing Wakeup
* Value-less reservation stations
 Remove register values from latency-critical RS structures

* Pipelined schedulers
» Transform wakeup-select-execute loop to wakeup-execute loop

* Clustered instruction windows
« Allow some RS to be *“close” and other “far away”, for a clock boost
* Optimizing Selection
* Reservation station banking
« Associate RS groups with a FU, reduces the complexity of picking



VALUE-LESS RESERVATION STATIONS

Any order Any order
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* Q:Do we need to know the value of a register to schedule
its dependent operations?

» A:No, we simply need dependencies and latencies

IF | ID REN  alloc ™

In-order In-order

Value-less RS only contains required info
» Dependencies specified by physical register IDs
» Latency specified by opcode

Access register file in a later stage, after selection

Reduces size of RS, which improves broadcast speed



VALUE-LESS RESERVATION STATIONS

To EXIMEM

dstiD

v
ke

Selection
Logic




PIPELINED SCHEDULERS

IF

ID

REN

alloc

In-order

Any order Any order

WB  CT

In-order

Q: Do we need to know the result of an instruction to schedule its
dependent operations?

* A:Once again, no, we need know only dependencies and latency

To decouple wakeup-select loop
* Broadcast dstID back into scheduler N-cycles after inst enters REG,
where N is the latency of the instruction
What if latency of operation is non-deterministic?
* E.g.,load instructions (2 cycle hit, 8 cycle miss)
» Wait until latency known before scheduling dependencies (SLOW)
* Predict latency, reschedule if incorrect

* Reschedule all vs. selective



PIPELINED SCHEDULERS

WB

dstiD

To EXIMEM

Selection
Logic



CLUSTERED INSTRUCTION WINDOWS

Single Cycle
Inter-Cluster
Broadcast

» Split instruction window into execution
clusters

« W/N RS per cluster, where W is the
window size, N is the # of clusters

» Faster broadcast into split windows
* Inter-cluster broadcasts take at
least an one more cycle
* Instruction steering
* Minimizes inter-cluster transfers
* Integer/Floating point split
* Integer/Address split
Dependence-based steering



RESERVATION STATION BANKING

* Split instruction window into banks

* Group of RS associated with FU

Selection
Logic  Faster selection within bank

* Instruction steering

* Direct instructions to bank
associated with instruction opcode

* Trade-offs with banking

Seﬂg;}f” * Fewer selection candidates speeds
selection logic, which is O(log W)

* But, splits RS resources by FU,
increasing the risk of running out of
RS resources in ALLOC stage

Selection
Logic




DISCUSSION POINTS

» If we didn’t rename the registers, would the dynamic scheduler still work?

 We can deallocate RS entries out-of-order (which improves RS utilization), why not
allocate them out-of-order as well?

 What about memory dependencies?



MEMORY DEPENDENCE ISSUES IN AN OUT-
OF-ORDER PIPELINE

* Out-of-order memory scheduling

* Dependencies are known only after address calculation.

* This is handled in the Memory-order-buffer (IMOB)

« When can memory operations be performed out-of-order?
« What does the MOB have to do to insure that?
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EFFECTS OF SPECULATION IN AN OUT-OF-
ORDER PIPELINE

 What happens when a branch mis-predicts?

 When should this be recognized?

 What needs to be cleaned up?

ID | REN | alloc | REG JEj;(ﬂrw"WB > CT
In-order
D —




STRUCTURE THAT MUST BE UPDATED
AFTER A BRANCH MISPREDICTION.

e

* Set tail to head to delete everything Head Tail
* Rename table
* Mark all entries as invalid (correct Rename Table

values are in the ARF)

e Reservation stations
e Free all reservation station entries

 MOB
e Free all MOB entries

* Correctly handle any outstanding
memory operations.

reglD robIDX




