
LECTURE 12

Out-of-order execution: Pentium Pro/II/III

EXECUTING IA32/IA64 INSTRUCTIONS FAST

• Problem: Complex instruction set

• Solution: Break instructions up into RISC-like micro operations

• Lengthens decode stage; simplifies execute

PENTIUM PRO/II/III PROCESS STAGES

• The first stage consists of the instruction fetch, decode, convert into

micro-ops, and reg rename

• The reorder buffer (ROB) is the buffer between the first and

second stages

• The ROB is also the buffer between the second and third stages

• The third stage retires the micro-operations in original program

order

• Completed micro-operations wait in the reorder buffer until all of the

preceding instructions have been retired

MEM
IF ID REN EX

ROB

CT

In-order In-order

Any order

ARF

Alloc

Rename Table

regID robIDX

v

robIDX

@ Fetch (2 cycles)

 read instructions (16 bytes)
from memory from IP (PC)

@ Decode (3 cycles)

 Decode up to 3 instructions
generating up to 6 ops

 Decoder can handle 2
“simple” instructions and 1
“complex” instruction. (4-1-
1)

@ Rename (1 cycle)

Index table with source
operand regID to locate
ROB/ARF entry

@ Alloc

Allocate ROB entry at Tail

 Rename Table

– Indexed with regID

– Returns (valid, robIDX)

– If valid, ROB does/will
contain value of register

– If invalid, ARF holds
value (no instruction in
flight defines this register)

Head Tail

Pentium Pro pipeline overview

MEM

PENTIUM PRO PIPELINE OVERVIEW

• @ Execute (parallel)

• Wait for sources

(schedule)

• Execute instruction (ex)

• Write back result to ROB

• @ Commit

• Wait until inst @ Head is

done

• If fault, initiate handler

• Else, write results to ARF

• Deallocate entry from ROB

EX

ROB

CT

Head Tail

PC

Dst regID

Dst value

Except?

• Reorder Buffer (ROB)

– Circular queue of spec state

– May contain multiple
definitions of same register

In-order In-order

Any order

ARF

IF ID REN Alloc

REGISTER RENAMING EXAMPLE

Logical Program Physical Program

r6 = r5 + r2

r8 = r6 + r3

r6 = r9 + r10

r12 = r8 + r6

1

2

3

4

5

6

7

8

9

10

11

12

Logical Program Physical Program

r6 = r5 + r2 p52 = p45 + p42

r8 = r6 + r3

r6 = r9 + r10

r12 = r8 + r6

1

2

3

4

5

6

7

8

9

10

11

12

p42

p45

xx

xx

p42

p45

p52

x

x

x

REGISTER RENAMING EXAMPLE

Logical Program Physical Program

r6 = r5 + r2 p52 = p45 + p42

r8 = r6 + r3 p53 = p52 + r3

r6 = r9 + r10

r12 = r8 + r6

1

2

3

4

5

6

7

8

9

10

11

12

Logical Program Physical Program

r6 = r5 + r2 p52 = p45 + p42

r8 = r6 + r3 p53 = p52 + r3

r6 = r9 + r10 p54 = r9 + r10

r12 = r8 + r6

1

2

3

4

5

6

7

8

9

10

11

12

p42

p45

p53

x

x

x

p42

p45

p54

p53

x

xx

x

x

p52 x

REGISTER RENAMING EXAMPLE

Logical Program Physical Program

r6 = r5 + r2 p52 = p45 + p42

r8 = r6 + r3 p53 = p52 + r3

r6 = r9 + r10 p54 = r9 + r10

r12 = r8 + r6 p55 = p53 + p54

1

2

3

4

5

6

7

8

9

10

11

12

p45

p54

p53

p55

x

x

x

x

x

p42

CROSS-CUTTING ISSUE: MISPECULATION

• What are the impacts of mispeculation or exceptions?

• When instructions are flushed from the pipeline, rename mappings must be restored
to point-of-restart

• Otherwise, new instructions will see stale definitions

• Two recovery approaches

• Simple/slow

1. Wait until the faulting/mispredicting instruction reaches retirement

2. Flush ALL speculative register definitions by clearing all rename table valid bits

• Complex/fast

1. Checkpoint ENTIRE rename table anywhere recovery may be needed

2. At soon as mispeculation detected, recover table associated with PC

DISCUSSION POINTS

• What are the trade-offs between rename table flush recovery
and checkpointing?

• What if another instruction (being renamed) needs to access
a physical storage entry after it has been overwritten?

• Can I rename memory?

MEM

REORDER BUFFER

• @ Alloc

• Allocate result storage at Tail

• @ Execute

• Get inputs (ROB T-to-H then ARF)

• Wait until all inputs ready

• Execute operation

• @ WB

• Write results/fault to ROB

• Indicate result is ready

• @ CT

• Wait until inst @ Head is done

• If fault, initiate handler

• Else, write results to ARF

• Deallocate entry from ROB

IF ID REN alloc EX

ROB

CT

Head Tail

PC

Dst regID

Dst value

Except?

• Reorder Buffer (ROB)

– Circular queue of spec state

– May contain multiple
definitions of same register

In-order In-order

Any order

ARF

MEM

DYNAMIC INSTRUCTION SCHEDULING

@ Alloc
• Allocate ROB storage at Tail

• Allocate RS for instruction

@ REG
• Get inputs from ROB/ARF

entry specified by REN

• Write instruction with
available operands into
assigned RS

@ WB
• Write result into ROB entry

• Broadcast result into RS
with phyID of dest register

• Dellocate RS entry
(requires
maintenance of an RS free
map)

IF ID REN alloc EX

ROB

CT

In-order In-order

Any order

ARF

REG

 Reservation Stations (RS)

– Associative storage indexed
by phyID of dest, returns
insts ready to execute

– phyID is ROB index of inst that
will compute operand (used to
match on broadcast)

– Value contains actual operand

– Valid bits set when operand is
available (after broadcast)

RS

Any order

phyID

phyID

V

V

Value

Value

dstID Op

WB

WAKEUP-SELECT-EXECUTE LOOP

MEM
EX

RS

WB
src1 val1 src2 val2 dstID

src1 val1 src2 val2 dstID

src1 val1 src2 val2 dstID

req

grant

Selection

Logic

= =

= =

= =

dstID result

To EX/MEM

WINDOW SIZE VS. CLOCK SPEED

• Increasing the number of RS [Brainiac]
• Longer broadcast paths
• Thus more capacitance, and slower signal propagation
• But, more ILP extracted

• Decreasing the number of RS [Speed Demon]
• Shorter broadcast paths
• Thus less capacitance, and faster signal propagation
• But, less ILP extracted

• Which approach is better and when?

CROSS-CUTTING ISSUE: MISPECULATION

• What are the impacts of mispeculation or exceptions?
• When instructions are flushed from the pipeline, their RS entries must be

reclaimed

• Otherwise, storage leaks in the microarchitecture

• This can happen, Alpha 21264 reportedly flushes the instruction window to reclaim all
RS resources every million or so cycles

• The PIII processor reportedly contains a livelock/deadlock detector that would
recover this failure scenario

• Typical recovery approach
• Checkpoint free map at potential fault/mispeculation points

• Recover the RS free map associated with recovery PC

OPTIMIZING THE SCHEDULER

• Optimizing Wakeup
• Value-less reservation stations

• Remove register values from latency-critical RS structures

• Pipelined schedulers
• Transform wakeup-select-execute loop to wakeup-execute loop

• Clustered instruction windows
• Allow some RS to be “close” and other “far away”, for a clock boost

• Optimizing Selection
• Reservation station banking

• Associate RS groups with a FU, reduces the complexity of picking

VALUE-LESS RESERVATION STATIONS

• Q: Do we need to know the value of a register to schedule
its dependent operations?
• A: No, we simply need dependencies and latencies

• Value-less RS only contains required info
• Dependencies specified by physical register IDs

• Latency specified by opcode

• Access register file in a later stage, after selection

• Reduces size of RS, which improves broadcast speed

MEM
IF ID REN alloc EX

ROB

CT

In-order In-order

Any order

ARF

REG

RS

Any order

WB

phyID

phyID

V

V

dstID Op

VALUE-LESS RESERVATION STATIONS

MEM
EX

RS

WB
src1 src2 dstID

src1 src2 dstID

src1 src2 dstID

req

grant

Selection

Logic

= =

= =

= =

dstID

To EX/MEM

PIPELINED SCHEDULERS

• Q: Do we need to know the result of an instruction to schedule its

dependent operations?

• A: Once again, no, we need know only dependencies and latency

• To decouple wakeup-select loop

• Broadcast dstID back into scheduler N-cycles after inst enters REG,

where N is the latency of the instruction

• What if latency of operation is non-deterministic?

• E.g., load instructions (2 cycle hit, 8 cycle miss)

• Wait until latency known before scheduling dependencies (SLOW)

• Predict latency, reschedule if incorrect

• Reschedule all vs. selective

MEM
IF ID REN alloc EX

ROB

CT

In-order In-order

Any order

ARF

REG

RS

Any order

WB

phyID

phyID

V

V

dstID Op

PIPELINED SCHEDULERS

MEM
EX

RS

WB
src1 src2 dstID

src1 src2 dstID

src1 src2 dstID

req

grant

Selection

Logic

= =

= =

= =

dstID

To EX/MEM

timer

timer

timer

CLUSTERED INSTRUCTION WINDOWS

• Split instruction window into execution
clusters

• W/N RS per cluster, where W is the
window size, N is the # of clusters

• Faster broadcast into split windows

• Inter-cluster broadcasts take at
least an one more cycle

• Instruction steering

• Minimizes inter-cluster transfers

• Integer/Floating point split

• Integer/Address split

• Dependence-based steering

Single

Cycle

Broadcast

Single

Cycle

Broadcast

Single

Cycle

Broadcast

Single Cycle

Inter-Cluster

Broadcast
I-steer

RESERVATION STATION BANKING

• Split instruction window into banks

• Group of RS associated with FU

• Faster selection within bank

• Instruction steering

• Direct instructions to bank

associated with instruction opcode

• Trade-offs with banking

• Fewer selection candidates speeds

selection logic, which is O(log W)

• But, splits RS resources by FU,

increasing the risk of running out of

RS resources in ALLOC stage

Unified

RS

Pool

RS

Bank

for FU #1

RS

Bank

for FU #2

I-steer

Selection

Logic

Selection

Logic

Selection

Logic

DISCUSSION POINTS

• If we didn’t rename the registers, would the dynamic scheduler still work?

• We can deallocate RS entries out-of-order (which improves RS utilization), why not
allocate them out-of-order as well?

• What about memory dependencies?

MEMORY DEPENDENCE ISSUES IN AN OUT-

OF-ORDER PIPELINE

• Out-of-order memory scheduling

• Dependencies are known only after address calculation.

• This is handled in the Memory-order-buffer (MOB)

• When can memory operations be performed out-of-order?

• What does the MOB have to do to insure that?

EFFECTS OF SPECULATION IN AN OUT-OF-

ORDER PIPELINE

• What happens when a branch mis-predicts?

• When should this be recognized?

• What needs to be cleaned up?

MEM
ID REN alloc EX

ROB

CT

In-order

ARF

REG

RS

WB

STRUCTURE THAT MUST BE UPDATED

AFTER A BRANCH MISPREDICTION.

• ROB
• Set tail to head to delete everything

• Rename table
• Mark all entries as invalid (correct

values are in the ARF)

• Reservation stations
• Free all reservation station entries

• MOB
• Free all MOB entries

• Correctly handle any outstanding
memory operations.

ROB

Head Tail

Rename Table

regID robIDX

v

robIDX

