
LECTURE 6 
Multi-Cycle  

Datapath and Control 



SINGLE-CYCLE IMPLEMENTATION 

• As we’ve seen, single-cycle implementation, although easy to implement, could 

potentially be very inefficient.  

 

In single-cycle, we define a clock cycle to be the length of time needed to execute a 

single instruction. So, our lower bound on the clock period is the length of the most-

time consuming instruction.  

 

In our previous example, our jump instruction needs only 4ns but our clock period 

must be 13ns to accommodate the load word instruction! 



MULTI-CYCLE IMPLEMENTATION 

• We can get around some of the disadvantages by introducing a little more complexity 

to our datapath.  

• Instead of viewing the instruction as one big task that needs to be performed, in 

multi-cycle the instructions are broken up into smaller fundamental steps.  

 

As a result, we can shorten the clock period and perform the instructions 

incrementally across multiple cycles.  

• What are these fundamental steps? Well, let’s take a look at what our instructions 
actually need to do… 



R-FORMAT STEPS 

•  An instruction is fetched from instruction memory and the PC is incremented. 

•  Read two source register values from the register file. 

•  Perform the ALU operation on the register data operands. 

•  Write the result of the ALU operation to the register file.  



LOAD STEPS 

•  An instruction is fetched from instruction memory and the PC is incremented. 

•  Read a source register value from the register file and sign-extend the 16 least 

significant bits of the instruction. 

•  Perform the ALU operation that computes the sum of the value in the register and the 

sign-extended immediate value from the instruction. 

•  Access data memory at the address given by the result from the ALU. 

•  Write the result of the memory value to the register file. 

 



STORE STEPS 

•  An instruction is fetched from instruction memory and the PC is incremented. 

•  Read two source register values from the register file and sign-extend the 16 least 

significant bits of the instruction. 

•  Perform the ALU operation that computes the sum of the value in the register and the 

sign-extended immediate value from the instruction. 

•  Update data memory at the address given by the result from the ALU. 

 



BRANCH EQUAL STEPS 

•  An instruction is fetched from instruction memory and the PC is incremented. 

•  Read two source register values from the register file and sign-extend the 16 least 

significant bits of the instruction and then left shifts it by two. 

•  The ALU performs a subtract on the data values read from the register file. The value 

of PC+4 is added with the sign-extended left-shifted by two immediate value from 

the instruction, which results in the branch target address. 

•  The Zero result from the ALU is used to decide which adder result should be used to 

update the PC. 

 



JUMP STEPS 

•  An instruction is fetched from instruction memory and the PC is incremented. 

•  Concatenate the four most significant bits of PC+4, the 26 least significant bits of the 

instruction, and two zero bits. Assign the result to the PC. 

 



GENERAL STEPS 

• So, generally, we can say we need to perform the following steps:  

1. Instruction Fetch Step. 

2. Instruction Decode and Register Fetch Step. 

3. Execution, Memory Address Computation, Branch Completion Step, or Jump 

Completion Step. 

4. Memory Access or R-Type Instruction Completion Step. 

5. Memory Read Completion Step. 

 

•   



MULTI-CYCLE DATAPATH 

• Here is a general overview of our new multi-cycle datapath.  

• We now have a 

single  

memory element 

that  

interacts with both  

instructions and 

data.  

• Single ALU unit, no 

dedicated adders.  

• Several temporary 

registers. 



MULTI-CYCLE DATAPATH 



MULTI-CYCLE DATAPATH 

These are some old datapath 

elements that we are already 

used to. Note, however, that 

the Memory element is now 

pulling double-duty as both 

the Instruction Memory and 

Data Memory element. 



MULTI-CYCLE DATAPATH 



MULTI-CYCLE DATAPATH 

• New Temporary Registers:  

•  Instruction Register (IR) – holds the instruction after its been pulled from memory. 

•  Memory Data Register (MDR) – temporarily holds data grabbed from memory 

until the next cycle. 

•  A – temporarily holds the contents of read register 1 until the next cycle. 

•  B – temporarily holds the contents of read register 2 until the next cycle.  

•  ALUout – temporarily holds the contents of the ALU until the next cycle.  

Note: every register is written on every cycle except for the instruction register. 

 



MULTI-CYCLE DATAPATH 



MULTI-CYCLE DATAPATH 

• The IorD control signal. 

•  Deasserted: The contents of PC is used as the Address for the memory unit.  

•  Asserted: The contents of ALUout is used as the Address for the memory unit.  



MULTI-CYCLE DATAPATH 



MULTI-CYCLE DATAPATH 

• The RegDst control signal. 

•  Deasserted: The register file destination number for the Write register comes from 

the rt field. 

•  Asserted: The register file destination number for the Write register comes from the 

rd field. 



MULTI-CYCLE DATAPATH 



MULTI-CYCLE DATAPATH 

• The MemToReg control signal. 

•  Deasserted: The value fed to the register file input comes from ALUout. 

•  Asserted: The value fed to the register file input comes from MDR. 

 



MULTI-CYCLE DATAPATH 



MULTI-CYCLE DATAPATH 

• One of the changes we’ve made is that we’re using only a single ALU. We have no 
dedicated adders on the side. To implement this change, we need to add some 

multiplexors.  

•  ALUSrcA multiplexor chooses between the contents of PC or the contents of 

temporary register A as the first operand.  

•  ALUSrcB multiplexor chooses between the contents of temporary register B, the 

constant 4, the immediate field, or the left-shifted immediate field as the second 

operand.  

 



MULTI-CYCLE DATAPATH AND CONTROL 



MULTI-CYCLE DATAPATH AND CONTROL 
1-Bit Signal 

Name 

Effect When Deasserted Effect When Asserted 

RegDst The register file destination number 

for the Write register comes from the rt 

field. 

The register file destination number for the 

Write register comes from the rd field. 

RegWrite None Write register is written with the value of the 

Write data input. 

ALUSrcA The first ALU operand is PC. The first ALU operand is A register. 

MemRead None Content of memory at the location specified 

by the Address input is put on the Memory 

data output. 

MemWrite None Memory contents of the location specified 

by the 

Address input is replaced by the value on 

the 

Write data input. 



MULTI-CYCLE DATAPATH AND CONTROL 

1-Bit Signal 

Name 

Effect When Deasserted Effect When Asserted 

MemToReg The value fed to the register file input is 

ALUout. 

The value fed to the register file input 

comes from Memory data register. 

IorD The PC supplies the Address to the 

Memory element. 

ALUOut is used to supply the address to 

the memory unit. 

IRWrite None The output of the memory is written into 

the 

Instruction Register (IR). 

PCWrite None The PC is written; the source is controlled 

by 

PC-Source. 

PCWriteCond None The PC is written if the Zero output from 

the ALU is also active. 



MULTI-CYCLE DATAPATH AND CONTROL 
2-bit 

Signal 

Value Effect 

ALUOp 00 The ALU performs an add operation. 

01 The ALU performs a subtract operation. 

10 The funct field of the instruction determines the operation.  

ALUSrcB 00 The second input to ALU comes from the B register. 

01 The second input to ALU is 4.  

10 The second input to the ALU is the sign-extended, lower 16 bits of the Instruction 

Register (IR). 

11 The second input to the ALU is the sign-extended, lower 16 bits of the IR shifted left 

by 2 bits. 

PCSource 00 Output of the ALU (PC+4) is sent to the PC for writing. 

01 The contents of ALUOut (the branch target address) are sent to the PC for writing. 

10 The jump target address (IR[25-0] shifted left 2 bits and concatenated with PC + 4[31-

28]) is sent to the PC for writing. 



MULTI-CYCLE DATAPATH AND CONTROL 

• Ok, so we already observed that our instructions can be roughly broken up into 

the following steps:  

1. Instruction Fetch Step. 

2. Instruction Decode and Register Fetch Step. 

3. Execution, Memory Address Computation, Branch Completion Step, or Jump 

Completion Step. 

4. Memory Access or R-Type Instruction Completion Step. 

5. Memory Read Completion Step. 

• Instructions take 3-5 of the steps to complete. The first two are performed 

identically in all instructions.  

 



INSTRUCTION FETCH STEP 

 IR = Memory[PC]; 

 PC = PC + 4; 

 

• Operations: 

•  Send contents of PC to the Memory element as the Address. 

•  Read instruction from Memory. 

•  Write instruction into IR for use in next cycle.  

•  Increment PC by 4.  

So 

Fetch! 



INSTRUCTION FETCH STEP 

Signal Value 

PCWrite 

IorD 

MemRead 

MemWrit

e 

IRWrite 

PCSource 

ALUOp 

ALUSrcB 

ALUSrcA 

RegWrite 



INSTRUCTION FETCH STEP 

Signal Value 

PCWrite 1 

IorD 0 

MemRead 1 

MemWrit

e 

0 

IRWrite 1 

PCSource 00 

ALUOp 00 

ALUSrcB 01 

ALUSrcA 0 

RegWrite 0 



INSTRUCTION DECODE + REG FETCH STEP 

  A = Reg[IR[25-21]]; 

  B = Reg[IR[20-16]];  

  ALUOut = PC + (sign-extend(IR[15-0]) << 2);  

 

• Operations:  

•  Decode instruction. 

•  Optimistically read registers. 

•  Optimistically compute branch target. 



INSTRUCTION DECODE + REG FETCH STEP 

Signal Value 

ALUOp 

ALUSrcB 

ALUSrcA 



INSTRUCTION DECODE + REG FETCH STEP 

Signal Value 

ALUOp 00 

ALUSrcB 11 

ALUSrcA 0 



EXECUTION STEP 

• Here is where our instructions diverge.  

•  Memory Reference: 

•  ALUOut = A + sign-extend(IR[15-0]); 

•  Arithmetic-Logical Reference:  

•  ALUOut = A op B; 

•  Branch: 

•  if (A == B) PC = ALUOut; 

•  Jump 

•  PC = PC[31-28] || (IR[25-0] << 2); 



EXECUTION: MEMORY REFERENCE 

Signal Value 

ALUOp 00 

ALUSrcB 10 

ALUSrcA 1 



EXECUTION: ARITHMETIC/LOGICAL OP 

Signal Value 

ALUOp 10 

ALUSrcB 00 

ALUSrcA 1 



EXECUTION: BRANCH 

Signal Value 

ALUOp 01 

ALUSrcB 00 

ALUSrcA 1 

PCSource 01 

PCWriteCo

nd 

1 



EXECUTION: JUMP 

Signal Value 

PCSource 10 

PCWrite 1 



MEMORY ACCESS/R-TYPE COMPLETION 
STEP 

•  Memory Reference: 

•  Load: MDR = Memory[ALUOut]; 

•  Store: Memory[ALUOut] = B; 

•  R-type Instruction: 

•  Reg[IR[15-11]] = ALUOut; 



MEMORY ACCESS: LOAD 

Signal Value 

MemRead 1 

IorD 1 

IRWrite 0 



MEMORY ACCESS: STORE 

Signal Value 

MemWrit

e 

1 

IorD 1 



R-TYPE COMPLETION 

Signal Value 

MemtoRe

g 

0 

RegWrite 1 

RegDst 1 



READ COMPLETION STEP 

•  Load operation: 

     Reg[IR[20-16]] = MDR; 



READ COMPLETION 

Signal Value 

RegWrite 1 

MemtoRe

g 

1 

RegDst 0 



MULTI-CYCLE DATAPATH AND CONTROL 

• So, now we know what the steps are and what happens in each step for each kind of 

instruction in our mini-MIPS instruction set.  

 

To make things clearer, let’s investigate how multi-cycle works for a particular 

instruction at a time.  

 



R-FORMAT 

• R-format instructions require 4 cycles to complete. Let’s imagine that we’re executing 
an add instruction.  

 

 add $s0, $s1, $s2 

•  

which has the following fields:  

opcode rs rt rd shamt funct 

000000 10001 10010 10000 00000 100000 



R-FORMAT: CYCLE 1 

Signal Value 

PCWrite 1 

IorD 0 

MemRead 1 

MemWrit

e 

0 

IRWrite 1 

PCSource 00 

ALUOp 00 

ALUSrcB 01 

ALUSrcA 0 

RegWrite 0 



R-FORMAT: CYCLE 2 

Signal Value 

ALUOp 00 

ALUSrcB 11 

ALUSrcA 0 

Note that we compute the  

speculative branching  

target in this step even  

though we will not need it. 

We have nothing better to  

do while we decode the  

instruction so we might as  

well.  



R-FORMAT: CYCLE 3 

Signal Value 

ALUOp 10 

ALUSrcB 00 

ALUSrcA 1 



R-FORMAT: CYCLE 4 

Signal Value 

MemtoRe

g 

0 

RegWrite 1 

RegDst 1 



BRANCH 

• Branch instructions require 3 cycles to complete. Let’s imagine that we’re executing a 
beq instruction.  

 

 beq $s0, $s1, L1 

•  

which has the following fields:  

opcode rs rt immed 

000100 10001 10010 XXXXXXXXXXXXXXXX 



BRANCH: CYCLE 1 

Signal Value 

PCWrite 1 

IorD 0 

MemRead 1 

MemWrit

e 

0 

IRWrite 1 

PCSource 00 

ALUOp 00 

ALUSrcB 01 

ALUSrcA 0 

RegWrite 0 



BRANCH: CYCLE 2 

Signal Value 

ALUOp 00 

ALUSrcB 11 

ALUSrcA 0 



BRANCH: CYCLE 3 

Signal Value 

ALUOp 01 

ALUSrcB 00 

ALUSrcA 1 

PCSource 01 

PCWriteCo

nd 

1 


