
LECTURE 10

Pipelining: Advanced ILP

EXCEPTIONS

• An exception, or interrupt, is an event

other than regular transfers of control

(branches, jumps, calls, returns) that

changes the normal flow of instruction

execution.

• An exception refers to any

unexpected change in control flow

without distinguishing if the cause is

internal or external.

• An interrupt is an event that is

externally caused.

Event Source Terminology

I/O Device Request External Interrupt

Syscall Internal Exception

Arithmetic Overflow Internal Exception

Page Fault Internal Exception

Undefined Instruction Internal Exception

Hardware Malfunction Either Either

MULTIPLE EXCEPTIONS

• Exceptions can occur on different pipeline stages on different instructions.

• Multiple exceptions can occur in the same clock cycle. The load word

instruction could have a page fault in the MEM stage and the add instruction

could have an integer overflow in the EX stage, both of which are in cycle 4.

• Exceptions can occur out of order. The and instruction could have a page fault

in the IF stage (cycle 3), whereas the load word instruction could have a page

fault in the MEM stage (cycle 4).

Cycl

e

1 2 3 4 5 6 7 8

lw IF ID EX MEM WB

add IF ID EX MEM WB

and IF ID EX MEM WB

sub IF ID EX MEM WB

PRECISE EXCEPTIONS

Supporting precise exceptions means that:

• The exception addressed first is the one associated with the instruction that entered

the pipeline first.

• The instructions that entered the pipeline previously are allowed to complete.

• The instruction associated with the exception and any subsequent instructions are

flushed.

• The appropriate instruction can be restarted after the exception is handled or the

program can be terminated.

HANDLING EXCEPTIONS

• When an exception is detected, the machine:

• Flushes the instructions from the pipeline – this includes the instruction causing the

exception and any subsequent instructions.

• Stores the address of the exception-causing instruction in the EPC (Exception

Program Counter).

• Begins fetching instructions at the address of the exception handler routine.

DATAPATH WITH EXCEPTION HANDLING

• New input value for PC

holds the initial address to

fetch instruction from in the

event of an exception.

• A Cause register to record

the cause of the exception.

• An EPC register to save the

address of the instruction

to which we should return.

HANDLING AN ARITHMETIC EXCEPTION

• Assume we have the following instruction sequence.

• Also assume that in the event of an exception, the instructions to be evoked begin

like this:

Ͷ0ℎ𝑒𝑥 sub $11, $2, $4 ͶͶℎ𝑒𝑥 and $12, $2, $5 Ͷ8ℎ𝑒𝑥 or $13, $2, $6 Ͷ𝐶ℎ𝑒𝑥 add $1, $2, $1 ͷ0ℎ𝑒𝑥 slt $15, $6, $7 ͷͶℎ𝑒𝑥 lw $16, 50($7)

40000040ℎ𝑒𝑥 sw $25, 1000($0)

40000044ℎ𝑒𝑥 sw $26, 1004($0)

...

What happens in the pipeline if

an overflow exception occurs in

the add instruction?

HANDLING AN ARITHMETIC EXCEPTION

• The address after the add is

saved in the EPC and flush

signals cause control values

in the pipeline registers to

be cleared.

HANDLING AN ARITHMETIC EXCEPTION

• Instructions are converted

into bubbles in the

pipeline and the first

of the exception handling

instructions begins its IF

stage.

MULTIPLE CYCLE OPERATIONS

• The EX stages of many arithmetic operations are traditionally performed in multiple

cycles.

• integer and floating-point multiplication.

• integer and floating-point division.

• floating-point addition, subtraction, and conversions.

• Completing these operations in a single cycle would require a longer clock cycle

and/or much more logic in the units that perform these operations.

MULTIPLE CYCLE OPERATIONS

• In this datapath, the multicycle

operations loop when they reach the

EX stage as these multicycle units are

not pipelined. Unpipelined multicycle

units can lead to structural hazards.

MULTIPLE CYCLE OPERATIONS

• The latency is the minimum number of intervening cycles between an instruction that

produces a result and an instruction that uses the result.

• The initiation interval is the number of cycles that must elapse between issuing two

operations of a given type.

Functional Unit Latency Initiation Interval

Integer ALU 0 1

Data Memory 1 1

FP Add 3 1

FP Multiply 6 1

FP Divide 23 24

MULTIPLE CYCLE OPERATIONS

• The multiplies, FP adds,

and FP subtracts are

pipelined.

• Divides are not

pipelined since this

operation is used less

often.

MULTIPLE CYCLE OPERATIONS

• Consider this example pipelining of independent (i.e. no dependencies) floating

point instructions.

• The states in italics show where data is needed. The states is bold show where data is

available.

MULTIPLE CYCLE OPERATIONS

• Stalls for read-after-write hazards will be more frequent.

• The longer the pipeline, the more complicated the stall and forwarding logic

becomes.

• Structural hazards can occur when multicycle operations are not fully pipelined.

• Multiple instructions can attempt to write to the FP register file in a single cycle.

• Write-after-write hazards are possible since instructions may not reach the WB stage

in order.

• Out of order completion may cause problems with exceptions.

MULTIPLE CYCLE OPERATIONS

• The multiply is stalled due to a load delay.

• The add and store are stalled due to read-after-write FP hazards.

MULTIPLE CYCLE OPERATIONS

• In this example three instructions attempt to simultaneously perform a write-back to

the FP register file in clock cycle 11, which causes a write-after-write hazard due to a

single FP register file write port. Out of order completion can also lead to imprecise

exceptions.

MORE INSTRUCTION LEVEL PARALLELISM

• Superpipelining

• Means more stages in the pipeline.

• Lowers the cycle time.

• Increases the number of pipeline stalls.

• Multiple issue

• Means multiple instructions can simultaneously enter the pipeline and advance to each stage during each cycle.

• Lowers the cycles per instruction (CPI).

• Increases the number of pipeline stalls.

• Dynamic scheduling

• Allows instructions to be executed out of order when instructions that previously entered the pipeline are stalled or require

additional cycles.

• Allows for useful work during some instruction stalls.

• Often increases cycle time and energy usage.

MIPS R4000 PIPELINE

• Below are the stages for the MIPS R4000 integer pipeline.

• IF - first half of instruction fetch; PC selection occurs here with the initiation of the IC

access.

• IS - second half of instruction fetch; complete IC access.

• RF - instruction decode, register fetch, hazard checking, IC hit detection.

• EX - effective address calculation, ALU operation, branch target address calculation

and condition evaluation.

• DF - first half of data cache access.

• DS - second half of data cache access.

• TC - tag check to determine if DC access was a hit.

• WB - write back for loads and register-register operations.

MIPS R4000 PIPELINE

• A two cycle delay is possible because the loaded value is available at the end

of the DS stage and can be forwarded.

• If the tag check in the TC stage indicates a miss, then the pipeline is backed up

a cycle and the L1 DC miss is serviced.

MIPS R4000 PIPELINE

• A load instruction followed by an immediate use of the loaded value results in a 2

cycle stall.

MIPS R4000 PIPELINE

• The branch delay is 3 cycles since the condition evaluation is performed during the

EX stage.

MIPS R4000 PIPELINE

• A taken branch on the MIPS R4000 has a 1 cycle delay slot followed by a 2 cycle stall.

MIPS R4000 PIPELINE

• A not taken branch on the MIPS R4000 has just a 1 cycle delay slot.

STATIC MULTIPLE ISSUE

• In a static multiple-issue processor, the compiler has the responsibility of arranging

the sets of instructions that are independent and can be fetched, decoded, and

executed together.

• A static multiple-issue processor that simultaneously issues several independent

operations in a single wide instruction is called a Very Long Instruction Word (VLIW)

processor. Below is an example static two-issue pipeline in operation.

STATIC MULTIPLE ISSUE

• The additions needed for

double-issue are

highlighted in blue.

STATIC MULTIPLE ISSUE

• Original loop in C:

• Original loop in MIPS assembly:

for (i = n-1; i != 0; i = i-1)

 a[i] += s

Loop: lw $t0,0($s1) # $t0 = a[i];

 addu $t0,$t0,$s2 # $t0 += s;

 sw $t0,0($s1) # a[i] = $t0;

 addi $s1,$s1,-4 # i = i-1;

 bne $s1,$zero,Loop # if (i!=0) goto Loop

DYNAMIC MULTIPLE ISSUE

• Dynamic multiple-issue processors dynamically detect if sequential instructions can

be simultaneously issued in the same cycle.

• no data hazards (dependences)

• no structural hazards

• no control hazards

• These type of processors are also known as superscalar.

• One advantage of superscalar over static multiple-issue is that code compiled for

single issue will still be able to execute.

OUT-OF-ORDER EXECUTION PROCESSORS

• Some processors are designed to execute instructions out of order to perform useful

work when a given instruction is stalled.

• The add is dependent on the lw, but the sub is independent.

• Out-of-order or dynamically scheduled processors:

• Fetch and issue instructions in order

• Execute instructions out of order

• Commit results in order

• Many out-of-order processors also support multi-issue to further improve performance.

lw $1,0($2)

add $3,$4,$1

sub $6,$4,$5

DYNAMICALLY SCHEDULED PIPELINE

INTEL MICROPROCESSORS

• Due to thermal limitations, the clock rate has not increased in recent years, which has

led to fewer pipeline stages and the adoption of multi-core processors.

EMBEDDED AND SERVER PROCESSORS

