
LECTURE 5
Single-Cycle

Datapath and Control

PROCESSORS

• Datapath and control are the two components that come together to be collectively known

as the processor.

• Datapath consists of the functional units of the processor.

• Elements that hold data.

• Program Counter, Register File, Instruction Memory, etc.

• Elements that operate on data.

• ALU, adders, etc.

• Buses for transferring data between elements.

• Control commands the datapath regarding when and how to route and operate on data.

MIPS

• To showcase the process of creating a datapath and designing a control, we will be

using a subset of the MIPS instruction set. Our available instructions include:

• add, sub, and, or, slt

• lw, sw

• beq, j

DATAPATH

• To start, we will look at the datapath elements needed by every instruction.

• First, we have instruction memory.

• Instruction memory is a state element that

provides read-access to the instructions of

a program and, given an address as input,

supplies the corresponding instruction at that

address.

DATAPATH

• Next, we have the program counter or PC.

• The PC is a state element that holds the address of

the current instruction. Essentially, it is just a 32-bit

register which holds the instruction address and is

updated at the end of every clock cycle.

• The arrows on either side indicate that the PC

state element is both readable and writeable.

DATAPATH

• Lastly, we have the adder.

The adder is responsible for incrementing

the PC to hold the address of the next

instruction.

• It takes two input values, adds them together

and outputs the result.

DATAPATH

• So now we have instruction memory, PC, and adder datapath elements. Now, we can

talk about the general steps taken to execute a program.

• Use the address in the PC to fetch the current instruction from instruction memory.

• Determine the fields within the instruction (decode the instruction).

• Perform the operation indicated by the instruction.

• Update the PC to hold the address of the next instruction.

DATAPATH

• Use the address in the PC to

fetch the current instruction

from instruction memory.

• Determine the fields within

the instruction (decode the

instruction).

• Perform the operation

indicated by the instruction.

• Update the PC to hold the

address of the next

instruction.

Note: we perform PC+4 because instructions are word-aligned.

R-FORMAT INSTRUCTIONS

• Now, let’s consider R-format instructions. In our limited MIPS instruction set, these are

add, sub, and, or and slt.

• All R-format instructions read two registers, rs and rt, and write to a register rd.

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R format op rs rt rd shamt funct

op – instruction opcode.

rs – first register source operand.

rt – second register source operand.

rd – register destination operand.

shamt – shift amount.

funct – additional opcodes.

DATAPATH

• To support R-format instructions, we’ll need to add a state element called a register file. A

register file is a collection

readable/writeable registers.

• Read register 1 – first source register.

5 bits wide.

• Read register 2 – second source

register. 5 bits wide.

• Write register – destination register.

5 bits wide.

• Write data – data to be written to a

register. 32 bits wide.

DATAPATH

• At the bottom, we have the

RegWrite input. A writing

operation only occurs when this

bit is set.

The two output ports are:

• Read data 1 – contents of

source register 1.

• Read data 2 – contents of

source register 2.

DATAPATH

• To actually perform R-format instructions, like add for example, we need to include

the ALU element.

• The ALU performs the operation indicated by the

instruction. It takes two inputs, the operands to perform

the operation on, as well as a 4-bit wide operation

selector value.

The result of the operation is the output value.

We have an additional output specifically for

branching – we will cover this in a minute.

DATAPATH

Here is our datapath

for R-format instructions.

1. Grab instruction address

 from PC.

DATAPATH

Here is our datapath

for R-format instructions.

2. Fetch instruction from

 instruction memory.

3. Decode instruction.

DATAPATH

Here is our datapath

for R-format instructions.

4. Pass rs, rt, and rd into

 read register and write

 register arguments.

DATAPATH

Here is our datapath

for R-format instructions.

5. Retrieve contents of read

 register 1 and read

 register 2 (rs and rt).

DATAPATH

Here is our datapath

for R-format instructions.

6. Pass contents of rs and

 rt into the ALU as

 operands of the operation

 to be performed.

DATAPATH

Here is our datapath

for R-format instructions.

7. Retrieve result of operation

 performed by ALU and

 pass back as the write

 data argument of the

 register file (with the

 RegWrite bit set).

DATAPATH

Here is our datapath

for R-format instructions.

8. Add 4 bytes to the PC

 value to obtain the

 word-aligned address

 of the next instruction.

I-FORMAT INSTRUCTIONS

Now that we have a complete datapath for R-format instructions, let’s add in
support for I-format instructions. In our limited MIPS instruction set, these are lw,

sw, and beq.

• The op field is used to identify the type of instruction.

• The rs field is the source register.

• The rt field is either the source or destination register, depending on the

instruction.

• The immed field is zero-extended if it is a logical operation. Otherwise, it is

sign-extended.

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

I format op rs rt immed

DATA TRANSFER INSTRUCTIONS

• Let’s start with accommodating the data transfer instructions – we’ll get to beq in a bit. For

lw and sw, we have the following format:

• The memory address is computed by sign-extending the 16-bit immediate to 32-bits,

which is added to the contents of $rs.

• In lw, $rt represents the register that will be assigned the memory value. In sw, $rt

represents the register whose value will be stored in memory.

Bottom line: we need two more datapath elements to access memory and perform sign-

extending.

lw $rt, immed($rs)

sw $rt, immed($rs)

DATAPATH

• The data memory element implements the functionality for reading and writing data

to/from memory.

• There are two inputs. One for the address of the

memory location to access, the other for the data

to be written to memory if applicable.

• The output is the data read from the memory

location accessed, if applicable.

• Reads and writes are signaled by MemRead and

MemWrite, respectively, which must be asserted for

the corresponding action to take place.

DATAPATH

• To perform sign-extending, we can add a sign extension element.

• The sign extension element takes as input a 16-bit

wide value to be extended to 32-bits.

To sign extend, we simply replicate the most-significant

bit of the original field until we have reached the

desired field width.

DATAPATH FOR LOAD WORD

• Here, we have

modified the datapath

to work only for the

lw instruction.

• The registers have been

added to the datapath

for added clarity.

lw $rt, immed($rs)
rs

rt

immed

DATAPATH FOR STORE WORD

• Here, we have

modified the datapath

to work only for the

sw instruction.

• The registers have

been

added to the datapath

for added clarity.

sw $rt, immed($rs)
rs

rt

immed

DATAPATH FOR R-FORMAT AND MEMORY
ACCESS

Note: PC, adder, and

instruction memory are

omitted.

add $rd, $rs, $rt

lw $rt, immed($rs)

sw $rt, immed($rs)

DATAPATH FOR R-FORMAT AND MEMORY
ACCESS

Note: PC, adder, and

instruction memory are

omitted.

add $rd, $rs, $rt

lw $rt, immed($rs)

sw $rt, immed($rs)

DATAPATH FOR R-FORMAT AND MEMORY
ACCESS

Note: PC, adder, and

instruction memory are

omitted.

add $rd, $rs, $rt

lw $rt, immed($rs)

sw $rt, immed($rs)

DATAPATH FOR R-FORMAT AND MEMORY
ACCESS

Note: PC, adder, and

instruction memory are

omitted.

add $rd, $rs, $rt

lw $rt, immed($rs)

sw $rt, immed($rs)

BRANCHING INSTRUCTIONS

• Now we’ll turn out attention to a branching instruction. In our limited MIPS instruction
set, we have the beq instruction which has the following form:

• This instruction compares the contents of $t1 and $t2 for equality and uses the 16-bit

immediate field to compute the target address of the branch relative to the current

address.

beq $t1, $t2, target

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

I format op rs rt immed

BRANCHING INSTRUCTIONS

• Note that our immediate field is only 16-bits so we can’t specify a full 32-bit target

address. So we have to do a few things before jumping.

• The immediate field is left-shifted by two because the immediate represents the

number of words offset from PC+4, not the number of bytes (and we want to get it in

number of bytes!).

• We sign-extend the immediate field to 32-bits and add it to PC+4.

beq $t1, $t2, target

Name Fields

Field Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

I format op rs rt immed

BRANCHING INSTRUCTIONS

• Besides computing the target address, a branching instruction also has to compare

the contents of the source registers.

• As stated before, the ALU has an output line denoted

as Zero. This output is specifically hardwired to be

set when the result of an operation is zero.

• To test whether a and b are equal, we can set the

ALU to perform a subtraction operation. The Zero

output line is only set if a – b is 0, indicating a and

b are equal.

DATAPATH FOR BEQ

Here, we have

modified the datapath

to work only for the
beq instruction.

The registers have been

added to the datapath

for added clarity.

beq $rs, $rt, immed

rs

rt

immed

DATAPATH FOR R AND I FORMAT

add $rd, $rs, $rt

lw $rt, immed($rs)

sw $rt, immed($rs)

beq $rs, $rt, immed

Now we have a datapath which

supports all of our R and I format

instructions.

DATAPATH FOR R AND I FORMAT

add $rd, $rs, $rt

lw $rt, immed($rs)

sw $rt, immed($rs)

beq $rs, $rt, immed

Now we have a datapath which

supports all of our R and I format

instructions.

J-FORMAT INSTRUCTIONS

• The last instruction we have to implement in our simple MIPS subset is the jump

instruction. An example jump instruction is j L1. This instruction indicates that the

next instruction to be executed is at the address of label L1.

• We have 6 bits for the opcode.

• We have 26 bits for the target address.

J-FORMAT INSTRUCTIONS

• Note, as in the branching example, we do not have enough space in the instruction to

specify a full target address. Branching solves this problem by specifying an offset in

words.

Jump instructions solve this problem by specifying a portion of an absolute address,

not an offset.

• We take the 26-bit target address field of the instruction, left-shift by two (because we

are word-aligned), and concatenate the result with the upper 4 bits of PC+4.

DATAPATH FOR J-FORMAT

Here, we have

modified the datapath

to work only for the
j instruction.

j targaddr

SINGLE-CYCLE CONTROL

• Now we have a complete datapath for our simple MIPS subset – we will show the whole diagram in

just a couple of minutes. Before that, we will add the control.

• The control unit is responsible for taking the instruction and generating the appropriate signals for

the datapath elements.

• Signals that need to be generated include

• Operation to be performed by ALU.

• Whether register file needs to be written.

• Signals for multiple intermediate multiplexors.

• Whether data memory needs to be written.

For the most part, we can generate these signals using only the opcode and funct fields of an

instruction.

ALU CONTROL LINES

• Note here that the ALU has a 4-bit control line called

ALU operation. The first two bits indicate whether a

and b need to be inverted, respectively. The last two

bits indicate the operation.

ALU Control

Lines

Function

0000 AND

0001 OR

0010 Add

0110 Subtract

0111 Set on less than

1100 NOR

ALU CONTROL LINES

• How do we set these control lines? Consider the control unit below.

• The 2-bit ALUop input indicates whether

an operation should be add (00) for loads and

stores, subtract (01) for beq, or determined

by the funct input (10).

• The 6-bit Funct input corresponds to the funct

field of R-format instructions. Each unique funct

field corresponds to a unique set of ALU control

input lines.

ALUop

Funct

ALU

Operatio

n Control

Input

2

6

4
Control Unit

ALU CONTROL LINES

ALUop

Funct

ALU

Control

Input

2

6

4
Control Unit

Opcod

e

ALU

op

Operation Funct ALU

action

ALU

Control

Input

lw 00 Load word N/A add 0010

sw 00 Store word N/A add 0010

beq 01 Branch equal N/A subtrac

t

0110

R-

type

10 Add 100000 add 0010

R-

type

10 Subtract 100010 subtrac

t

0110

R-

type

10 AND 100100 AND 0000

R-

type

10 OR 100101 OR 0001

R-

type

10 Set on less

than

101010 slt 0111

Here, we have

modified the

datapath

to work with every

instruction except

the

jump instruction.

Notice the added

element for

determining

the ALU control input

from the funct field

for

R-types.

CONTROL SIGNALS

• As we can see from the previous slide, we also need to use the instruction to set

control signals other than the ALU.

Signal

Name

Effect when not set Effect when set

RegDst Destination register comes from rt

field.

Destination register comes from the rd

field.

RegWrite None. Write Register is written to with Write

Data.

ALUSrc Second ALU operand is Read Data 2. Second ALU operand is immediate

field.

PCSrc PC  PC + 4 PC  Branch target

MemRead None. Contents of Address input are copied

to Read Data.

MemWrite None. Write Data is written to Address.

MemToReg Value of register Write Data is from

ALU.

Value of register Write Data is memory

Read Data.

Here, we have

modified the

datapath

to work with every

instruction except

the

jump instruction.

Notice how most of

the

control decisions

can be

decided using only

the

upper 6 bits of the

instruction

(opcode).

CONTROL SIGNALS

• From the previous slide, we can see that the control signals are chosen based on the

upper 6 bits of the instruction. That is, the opcode is used to set the control lines.

• Furthermore, as we saw before, the ALU control input lines are also dictated by the funct

fields of applicable instructions.

Inst

r.

RegDs

t

ALUSr

c

MemToR

eg

RegWrit

e

MemRea

d

MemWrit

e

Branc

h

ALUOp1 ALUOp

2

R 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq X 0 X 0 0 0 1 0 1

Here we add in an

additional control line

for jump instructions.

Quiz Time!

What are the relevant

datapath lines for the

add instruction and

what are the values of

each of the control lines?

add $rd, $rs, $rt

Quiz Time!

What are the relevant

datapath lines for the

add instruction and

what are the values of

each of the control

lines?

add $rd, $rs,

$rt

Datapath shown

in yellow. Relevant

control line

assertions

in green.

Quiz Time!

What are the relevant

datapath lines for the

add instruction and

what are the values of

each of the control lines?

add $rd, $rs, $rt

Datapath shown

in yellow. Relevant

control line assertions

in green.

Quiz Time!

What are the relevant

datapath lines for the

beq instruction and

what are the values of

each of the control lines?

beq $rs, $rt, imm

Quiz Time!

What are the relevant

datapath lines for the

beq instruction and

what are the values of

each of the control lines?

beq $rs, $rt, imm

RELATIVE CYCLE TIME

• What is the longest path (slowest instruction) assuming 4ns for instruction and data

memory, 3ns for ALU and adders, and 1ns for register reads or writes? Assume

negligible delays for muxes, control unit, sign extend, PC access, shift left by 2,

routing, etc

 Type Instruction

Memory

Register

Read

ALU

Operation

Data

Memory

Register

Write

Total

R-format 4 1 3 0 1 9

lw 4 1 3 4 1 13

sw 4 1 3 4 0 12

beq 4 1 3 0 0 8

j 4 0 0 0 0 4

SINGLE-CYCLE IMPLEMENTATION

• The advantage of single cycle implementation is that it is simple to implement.

• Disadvantages

• The clock cycle will be determined by the longest possible path, which is not the

most common instruction. This type of implementation violates the idea of making the

common case fast.

• May be wasteful with respect to area since some functional units, such as adders,

must be duplicated since they cannot be shared during a single clock cycle

