
Specification Synthesis with
Constrained Horn Clauses

Sumanth Prabhu
sumanth.prabhu@tcs.com

TCS Research
Indian Institute of Science

India

Grigory Fedyukovich
grigory@cs.fsu.edu

Florida State University
USA

Kumar Madhukar
kumar.madhukar@tcs.com

TCS Research
India

Deepak D’Souza
deepakd@iisc.ac.in

Indian Institute of Science
India

Abstract

The problem of synthesizing specifications of undefined pro-
cedures has a broad range of applications, but the useful-
ness of the generated specifications depends on their quality.
In this paper, we propose a technique for finding maximal
and non-vacuous specifications. Maximality allows for more
choices for implementations of undefined procedures, and
non-vacuity ensures that safety assertions are reachable. To
handle programs with complex control flow, our technique
discovers not only specifications but also inductive invari-
ants. Our iterative algorithm lazily generalizes non-vacuous
specifications in a counterexample-guided loop. The key
component of our technique is an effective non-vacuous
specification synthesis algorithm. We have implemented the
approach in a tool called HornSpec, taking as input systems
of constrained Horn clauses. We have experimentally demon-
strated the tool’s effectiveness, efficiency, and the quality of
generated specifications on a range of benchmarks.

CCS Concepts: · Theory of computation→ Invariants;
Program specifications; Logic and verification; Auto-
mated reasoning.

Keywords: specification synthesis, automated verification,
inductive invariants, SMT solvers.

ACM Reference Format:

Sumanth Prabhu, Grigory Fedyukovich, KumarMadhukar, andDeepak

D’Souza. 2021. Specification Synthesis with ConstrainedHornClauses.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00

https://doi.org/10.1145/3453483.3454104

In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (PLDI ’21), June

20ś25, 2021, Virtual, Canada. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3453483.3454104

1 Introduction

Specification synthesis is a challenging and important prob-
lem because of its multiple applications. A direct application
is the problem of finding specifications of functions with un-
known bodies in the verification of open programs [3, 15, 48];
it can also be applied in the problem of inferring safe precon-
ditions for a program [14, 40, 44, 45], and winning strategy
synthesis in safety games [9]. One practically useful formu-
lation of this task is concerned with a maximal and non-

vacuous interpretation of unknown procedures under which
a safety property (a.k.a. assertion) holds. Maximal specifica-
tions summarize the largest set of behaviors for unknown
procedures, and thus are logically weakest. Non-vacuous
specifications guarantee that the safety property does not
hold vacuously by becoming unreachable.

Maximal specifications make minimal assumptions about
undefined procedures, hence they are very valuable. The
fewer the assumptions, the more choices are available for im-
plementations of undefined procedures. However, maximal-
ity should be considered along with the program’s structure.
In programs with loops, the maximal specifications should
allow for invariants to exist to satisfy the safety property.
Non-vacuous specifications are useful as they make asser-
tions, capturing the program safety, reachable. A notable
obstacle for an approach to specification synthesis is that for
some tasks, there could be infinitely manymaximal solutions,
and some maximal solutions could be vacuous.

Multiple variants of specification synthesis have been pro-
posed in [1, 3, 5, 8, 13ś15, 26, 29, 42, 46ś48]. The approaches
include automata learning [3], learning patterns from pro-
gram executions [5], usage of decision procedure [13], ab-
stract interpretation [14] and even user guidance [15]. How-
ever, they rarely address the problems of maximality and
non-vacuity at the same time (see Sect. 7 for more details).

1203

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454104
https://doi.org/10.1145/3453483.3454104

PLDI ’21, June 20ś25, 2021, Virtual, Canada Sumanth Prabhu, Grigory Fedyukovich, Kumar Madhukar, and Deepak D’Souza

A prominent approach to maximal specification synthe-
sis [1] uses quantifier elimination to infer the weakest and
non-vacuous preconditions for safety properties. It guesses
specifications iteratively and uses a black-box verification
oracle to find counterexample paths indicating the need to
refine the specifications. Because driven by explicit coun-
terexamples and external verification tools, this approach,
however, may be ineffective on programs with control-flow
divergence and loop invariants that are often difficult to find.

Our work is motivated by programs with complex control
flow, i.e., with (possibly nested) loops and recursive func-
tions. In such programs, specifications and invariants are
tightly connected, thus allowing us to discover them at the
same time. To guarantee non-vacuity, the search for spec-
ifications needs to be łglobalž: although a specification for
some function is discovered with respect to only its calling
context, we have to check that it does not lead to undesired
consequences in the rest of the program.
As outlined in Fig. 1, our framework addresses the chal-

lenges of finding maximal and non-vacuous specifications
for a wide class of programs with complicated control flow. It
can be parameterized by choosing a constraint solver to pro-
duce some (possibly, non-maximal) specifications iteratively.
Our approach lazily collects specifications and combines
them in a single specification, which eventually becomes
maximal. To accelerate convergence, we additionally require
our framework to yield non-vacuous solutions ś otherwise,
combining specifications may have no effect. However, this
non-vacuity requirement for the constraint solver appeared
to be too strict for the existing solvers based on Syntax-
Guided Synthesis (SyGuS) [2] and Satisfiability Modulo The-
ory of Uninterpreted Functions [16]. In particular, only one
SyGuS-solver [43] is currently capable of taking the vacuity
constraints into account ś others cannot even parse them.
Our key contribution is thus twofold:

• an effective approach to yield non-vacuous specifica-
tions (the upper block in Fig. 1), which is a key com-
ponent in:
• an iterative generalization procedure (the rightmost
block in Fig. 1) to combine various non-vacuous speci-
fications to yield a maximal one.

Our novel algorithm to find non-vacuous specifications
is based on the idea of alternating backward and forward

reasoning over the program. Backward reasoning attempts
to propagate the safety property towards the initial states of
the program, similar to weakest precondition inference. On
the other hand, forward reasoning resembles strongest post-
condition inference, and is useful for inductive invariants
(e.g., when an unknown function is called in a loop). While
both propagation techniques are widely used in program
analysis, our contribution is in their effective combination.
Specifically, the alternation of these techniques lets us use
some part of already learned inductive invariants to discover

Non-

Vacuous

Solving

SMT

Model

Finder

SyGuS

Solver

Maximality

Checker

Is Maximal?

Find Weaker

CHC

Solution

Input

CHC

Maximal

Initial

Solution

Backward

Propagate

Forward

Propagate

CHC Solver

Solution

Figure 1. Architecture diagram of the framework.

specifications and vice versa. Furthermore, to facilitate the
synthesis of inductive invariants and specifications, our ap-
proach adopts SyGuS andHoudini [24] to find helper lemmas,
without which the propagated invariants are not inductive.

Because our algorithm makes use of inductive invariants,
it is convenient to view the verification conditions (with the
safety property and the missing specification) as a set of con-
strained Horn clauses (CHCs), implications in first order logic
using uninterpreted predicates. Our third contribution in the
paper is the formulation of the maximal and non-vacuous
specification synthesis problems as (sequences of) existen-
tial CHC problems, where the quantifiers are imposed by
the vacuity constraints. Existing CHC solvers rarely support
existential quantifiers, thus our paper introduces a new spe-
cialized CHC solving algorithm as well. CHCs are used as an
intermediate representation in a variety of verification and
synthesis tools, [12, 19, 25, 27, 30, 33ś35, 38, 39], to name a
few, thus our approach can be integrated with the existing
verification frontends.

We have implemented our algorithm in a tool calledHorn-
Spec on top of the FreqHorn [20, 21] framework. We evalu-
ated HornSpec on a set of 65 CHC benchmarks with Linear
Integer Arithmetic (LIA) operations, largely derived from the
competition of CHC solvers (CHC-Comp) [23]. Due to the
lack of solvers that can get both maximal and non-vacuous
specifications, we instantiated our non-vacuous synthesis al-
gorithm with CVC4 (a SyGuS solver) and Z3 (an SMT solver)
in our tool and compared their performance. When the tool
used our non-vacuous CHC solving algorithm, it found max-
imal specifications for twice the number of benchmarks than
the other two techniques combined (54/65 vs. 21/65 and 5/65).
Even when we compared only non-vacuous CHC solving,
our algorithm performed significantly better, exhibiting that
it efficiently generates general solutions.
The rest of the paper is organized as follows. After an

illustrating example in Sect. 2, we define the notation and
terms in Sect. 3. Then, Sect. 4 and Sect. 5 give an overview
of our solvers for non-vacuity and maximality, respectively.
Experimental evaluation is presented in Sect. 6. Finally, we
discuss related work in Sect. 7 and conclude in Sect. 8.

1204

Specification Synthesis with Constrained Horn Clauses PLDI ’21, June 20ś25, 2021, Virtual, Canada

2 Illustrating Example

Fig. 2 gives a program and its verification conditions. The
problem is to find specifications for functions 𝑓 and 𝑔, whose
bodies are unknown, such that the assertion is not violated.
The generated verification conditions can be represented
by three (implicitly universally quantified) implication con-
straints (called constrained Horn clauses or CHCs, formally
defined in Sect. 3.1). In the CHCs, the uninterpreted relation
𝒊𝒏𝒗 (𝑥) represents an inductive (loop) invariant, and 𝒇 (𝑧)
and 𝒈(𝑦) represent the specifications for the functions 𝑓 and
𝑔, respectively. The first CHC requires that the initial state
be part of the inductive invariant; the second captures that
the inductive invariant is closed under the body of the loop
(and outputs of 𝑓); and the third CHC constrains the states
in the inductive invariant such that they (and outputs of 𝑔)
do not violate the assertion. To solve the problem, we need
to find interpretations for 𝒊𝒏𝒗, 𝒇 , and 𝒈 under which every
CHC is valid. Notice that, due to function calls, the last two
CHCs have two relations on their left-hand sides, making
them non-linear CHCs.
The existing non-linear CHC solving techniques, [18, 36,

49] to name a few, generate vacuous specifications for the
given CHCs, which makes the assertion unreachable. For
example, Spacer [36] yields 𝒊𝒏𝒗 ↦→ 𝜆𝑥 .⊤, 𝒇 ↦→ 𝜆𝑧 .⊥, and
𝒈 ↦→ 𝜆𝑦 .⊥. This solution satisfies the CHCs, but allows for
no behaviors of 𝒇 and 𝒈, hence a meaningless solution. In
order to get useful non-vacuous solutions, our technique
augments CHCs with existentially quantified constraints
(defined in Sect. 3.4).

The technique presented in [1] is not designed to directly
handle inductive CHCs, like the second CHC in our example.
Inductive CHCs are necessary to encode programs with a
complex control flow, e.g., having loops and/or recursive
functions. Inductive CHCs are challenging for SMT solvers
that handle uninterpreted functions. For instance, the Z3
SMT solver (version 4.8.8) takes around ten minutes to come
up with a solution.

We present an algorithm that not only approaches induc-
tive CHCs, but also generates non-vacuous specifications
using the alternation of forward and backward reasoning.
For example, the algorithm finds the solution𝑀2 = { 𝒊𝒏𝒗 ↦→
𝜆𝑥 . 𝑥 ≤ 19, 𝒈 ↦→ 𝜆𝑦 .𝑦 ≥ 19, and 𝒇 ↦→ 𝜆𝑧 . 𝑧 ≤ 0} for
the CHCs in Fig. 2. It iterates over input CHCs to fix those
implications that are not valid under the current solution.

in t x = 1 9 ;

while (∗) {

in t z = f () ;

x = x + z ;

}

in t y = g () ;

as se r t (y >= x) ;

𝑥 = 19 =⇒ 𝒊𝒏𝒗 (𝑥)

𝒊𝒏𝒗 (𝑥) ∧ 𝒇 (𝑧) ∧ 𝑥′ = 𝑥 + 𝑧 =⇒ 𝒊𝒏𝒗 (𝑥′)

𝒊𝒏𝒗 (𝑥) ∧ 𝒈 (𝑦) ∧ ¬(𝑦 ≥ 𝑥) =⇒ ⊥

Figure 2. An example program (with a nondeterministic
loop condition) and its CHC encoding.

An implication can be made valid either by weakening the
relation on the right-hand side and/or strengthening the left-
hand side’s some relations. We refer to these as forward and
backward propagation, respectively. An implication can also
be made valid, albeit vacuously, by computing a solution
that makes the left-hand side ⊥. The algorithm avoids such
vacuous solutions by requiring the left-hand side of each im-
plication (after inserting a candidate solution) to be always
satisfiable.

To solve the CHCs in Fig. 2, the algorithm begins with the
weakest solution ⊤ for all relations. It finds that the third
CHC is not satisfiable, hence performs backward propaga-
tion to strengthen 𝒊𝒏𝒗 and 𝒈. For example, 𝒊𝒏𝒗 ↦→ 𝜆𝑥 . 𝑥 ≤ 0

and 𝒈 ↦→ 𝜆𝑦 .𝑦 ≥ 0. It then proceeds to the second CHC
and backward propagates the solution of 𝒊𝒏𝒗 to get 𝒇 ↦→
𝜆𝑧 . 𝑧 ≤ 0. At this point, the algorithm realizes that the cur-
rent solution for 𝒊𝒏𝒗 (i.e., 𝒊𝒏𝒗 ↦→ 𝜆𝑥 . 𝑥 ≤ 0) can not satisfy
the first CHC as it is too strong. It now changes the direc-
tion of propagation to forward and finds a weaker solution
𝒊𝒏𝒗 ↦→ 𝜆𝑥 . 𝑥 ≤ 19. It verifies that the solutions of 𝒊𝒏𝒗 and 𝒇
also satisfy the second CHC. However, the third CHC is not
satisfiable as 𝒈 ↦→ 𝜆𝑦 .𝑦 ≥ 0. It uses backward propagation
again, strengthening to 𝒈 ↦→ 𝜆𝑦 .𝑦 ≥ 19. This gives the solu-
tion𝑀2, which satisfies all the three CHCs, so the algorithm
terminates (details follow in Sect. 4).
Usefulness of specifications depends on the number of

choices available for program implementations of undefined
procedures. For example, when compared to another non-
vacuous solution 𝑁2 = { 𝒊𝒏𝒗 ↦→ 𝜆𝑥 . 𝑥 ≤ 19, 𝒇 ↦→ 𝜆𝑧 . 𝑧 = −1,
and 𝒈 ↦→ 𝜆𝑦 .𝑦 = 19}, 𝑀2 allows more behaviors for 𝒇 and
𝒈, hence more choices to implement procedures 𝑓 and 𝑔. In
fact, 𝑀2 is the maximal solution for the CHCs in a sense
that weakening of any of𝑀2 (𝒊𝒏𝒗),𝑀2 (𝒇), or𝑀2 (𝒈), makes
at least one CHC invalid.
To guarantee the maximality, we introduce a counter-

example driven loop that lazily weakens the solution by
reduction to another non-vacuous CHC task. For each (pos-
sibly non-maximal) solution, it first checks if any current
interpretation could be weakened without sacrificing the
validity of all CHCs. If not, the current solution is maximal.
Otherwise, we obtain a counterexample-to-maximality (CTM)
to formulate a new CHC task to be solved by our algorithm.
By construction, the new CHCs are guaranteed to have a
non-vacuous solution, which is weaker than the current one.
For instance, for a candidate 𝑁2 = { 𝒊𝒏𝒗 ↦→ 𝜆𝑥 . 𝑥 ≤ 19,

𝒇 ↦→ 𝜆𝑧 . 𝑧 = −1, and 𝒈 ↦→ 𝜆𝑦 .𝑦 = 19}, the loop first
constructs an SMT formula that is satisfiable (with a CTM)
if 𝑁2 can be weakened, while also satisfying all the CHCs.
It then uses the CTM and the current solution to determine
which of the relations can be weakened. For instance, to
weaken any of our relations, it constructs additional CHCs,
including: 1) 𝑧 = −1 =⇒ 𝒇 (𝑧) and 2) 𝑧 ≠ −1 ∧ 𝒑𝒇 (𝑧) =⇒
𝒇 (𝑧). Intuitively, the two CHCs constrain a new solution to
𝒇 to be strictly weaker than the current one, when relation

1205

PLDI ’21, June 20ś25, 2021, Virtual, Canada Sumanth Prabhu, Grigory Fedyukovich, Kumar Madhukar, and Deepak D’Souza

𝒑𝒇 has a non-vacuous solution (i.e., it does not conflict with
𝑧 ≠ −1). A similar pair of CHCs are added for the relation 𝒈.
These four CHCs along with the input CHCs are provided as
input to the non-vacuous CHC solving algorithm, which in
turn generates the maximal solution𝑀2 (details in Sect 5).

3 Background

This paper approaches the task of specification synthesis
by reduction to Satisfiability Modulo Theories (SMT) tasks.
SMT aims to determine the existence of an assignment to
variables of a first-order logic formula making it true. We
write𝑚 |= 𝜑 to denote that an assignment𝑚 satisfies 𝜑 (also
called a model). Formula 𝜑 is logically stronger than formula
𝜓 (denoted 𝜑 =⇒ 𝜓), if every model of 𝜑 also satisfies 𝜓 .
The unsatisfiability of formula 𝜑 is denoted 𝜑 =⇒ ⊥.

We will be dealing with first-order logic over a finite set
of relation symbols R . We assume that each symbol 𝑟 in R

comes with an arity 𝑎𝑟 . We write 𝜑 (𝑥1, . . . , 𝑥𝑛) to denote a
formula 𝜑 with free variables in {𝑥1, . . . , 𝑥𝑛}. For a formula 𝜑
with a free variable 𝑥 , and a term 𝑡 , we write𝜑 [𝑡/𝑥] to denote
the formula obtained by replacing each free occurrence of 𝑥
in 𝜑 by 𝑡 . We define an interpretation for a relation symbol
𝑟 ∈ R to be a map of the form 𝜆𝑥1 . . . 𝜆𝑥𝑎𝑟 .𝜑 (𝑥1, . . . , 𝑥𝑎𝑟),
where𝜑 is a quantifier-free formula that does not contain any
symbols from R . An interpretation for R itself is a map𝑀

which associates with each symbol 𝑟 ∈ R an interpretation
for 𝑟 . Given a formula 𝜑 and an interpretation 𝑀 for R ,
we define 𝜑 [𝑀/R] to be the formula obtained from 𝜑 by
replacing each occurrence of a term of the form 𝑟 (𝑥1, . . . , 𝑥𝑎𝑟)
by𝑀 (𝑟) (𝑥1, . . . , 𝑥𝑎𝑟), where 𝑟 ∈ R .
As interpretations for a relation symbol are essentially

logical formulas, we can treat them as such and define, for
instance,𝑀 (𝑟) =⇒ 𝑁 (𝑟) to mean that for all 𝑥1, . . . , 𝑥𝑎𝑟 we
have𝑀 (𝑟) (𝑥1, . . . , 𝑥𝑎𝑟) =⇒ 𝑁 (𝑟) (𝑥1, . . . , 𝑥𝑎𝑟).

By Expr we denote the space of all possible quantifier-free
formulas in our background theory and by Vars a range of
possible variables. Sincewewill mainly deal with conjunctive
formulas (which are created by adding/dropping conjuncts),
we will sometimes interpret a finite subset 𝑠 of Expr as a
conjunction of all its elements, i.e.,

∧

𝑐∈𝑠
𝑐 .

Definition 3.1 (CHC). A CHC over a set of uninterpreted
relation symbols R is a formula in first-order logic that has
the form of one of the following three implications:

𝜑 (®𝑥0) =⇒ 𝒓0 (®𝑥0) (1)
∧

0≤𝑖≤𝑛

𝒓𝑖 (®𝑥𝑖)∧𝜑 (®𝑥0, . . . , ®𝑥𝑛+1) =⇒ 𝒓𝑛+1 (®𝑥𝑛+1) (2)

∧

0≤𝑖≤𝑛

𝒓𝑖 (®𝑥𝑖)∧𝜑 (®𝑥0, . . . , ®𝑥𝑛) =⇒ ⊥ (3)

where:

• for every 𝑖 , 𝒓𝑖 ∈ R is an uninterpreted symbol;

• for some 𝑖 and 𝑗 , such that 𝑖 ≠ 𝑗 , it could be (though
not necessary) that 𝒓𝑖 = 𝒓 𝑗 ;
• for every 𝑖 , ®𝑥𝑖 is a vector of variables of length 𝑎𝑟𝑖 ;
• for every 𝑖, 𝑗 with 𝑖 ≠ 𝑗 , the vectors ®𝑥𝑖 and ®𝑥 𝑗 have no
variables in common; and
• 𝜑 is a satisfiable quantifier-free formula that does not
contain any uninterpreted symbols.

For a CHC 𝐶 , we will make use of the following notation:

• body(𝐶) (resp. head (𝐶)) denotes the left (resp. right)
side of the implication in 𝐶;
• rels(body(𝐶)) denotes the set of uninterpreted sym-
bols 𝒓𝑖 ∈ R that appear in body(𝐶);
• rels(head (𝐶)) denotes the singleton set containing the
uninterpreted symbol in head (𝐶) when𝐶 is of type (1)
or (2), and {⊥} otherwise;
• For 𝐶 of type (1), args(body(𝐶)) denotes ®𝑥1, while for
𝐶 of type (2) and (3), args(body(𝐶)) denotes

⋃𝑛
𝑖=0 ®𝑥𝑖 ;

• args(head (𝐶)) denotes ®𝑥1 when 𝐶 is of type (1), ®𝑥𝑛+1
when 𝐶 is of type (2), and ∅ when 𝐶 is of type (3);
• args(𝐶) denotes args(head (𝐶)) ∪ args(body(𝐶));
• args(𝒓𝑖 , body(𝐶)) (resp. args(𝒓𝑖 , head (𝐶)) denotes ®𝑥𝑖 ,
where 𝒓𝑖 (®𝑥𝑖) appears in body(𝐶) (resp. in head (𝐶));
and
• 𝜑𝐶 is used as a shortcut for the formula 𝜑 in 𝐶 .

A CHC of type (1) is called a fact, of type (2) is called in-

ductive, and of type (3) is called a query. A CHC𝐶 is linear if
|rels(body(𝐶)) | ≤ 1; otherwise it is non-linear. Linear CHCs
can be used to model safety proofs for transition systems
(i.e., programs with only one loop), while one typically needs
non-linear CHCs to model programs with possibly recursive
functions. In this paper, we consider systems that may con-
tain both linear and non-linear CHCs at the same time, thus
supporting programs with complex control flow.

Example 3.2. In Fig. 2, 𝑆 consists of three CHCs over R =

{ 𝒊𝒏𝒗,𝒇 ,𝒈}. The first CHC is a fact, the second is inductive
and the third is a query. The first CHC is linear and the last
two CHCs are non-linear.

Definition 3.3 (Solution). A system 𝑆 of CHCs over R is
said to be satisfiable if there exists an interpretation 𝑀 for
R which makes all implications in 𝑆 valid, i.e., for all 𝐶 ∈ 𝑆 ,
it holds that body(𝐶) [𝑀/R] =⇒ head (𝐶) [𝑀/R]. We call
such an interpretation𝑀 a solution to 𝑆 .

Definition 3.4 (Vacuous Solution). Let 𝑆 be a system of
CHCs over R and let𝑀 be a solution to 𝑆 . We say that𝑀 is
vacuous if 1) for some 𝑟 ∈ R , 𝑀 (𝑟) =⇒ ⊥, or 2) for some
CHC 𝐶 ∈ 𝑆 which is not a query, body(𝐶) [𝑀/R] =⇒ ⊥.

Existing CHC solvers cannot guarantee to output non-
vacuous solutions (which are necessary for our specification
synthesis task). Note that to avoid vacuous solutions, a sys-
tem of CHCs can be augmented by existentially-quantified

constraints. In particular, for both points of Def. 3.4, this
would require:

1206

Specification Synthesis with Constrained Horn Clauses PLDI ’21, June 20ś25, 2021, Virtual, Canada

void main () {

in t x = f () ;

in t y = f () ;

i f (x == 5) return ;

as se r t (x == y) ;

}

𝒇 (𝑥) ∧ 𝒇 (𝑦) ∧ 𝑥 ≠ 5 =⇒ 𝒎𝒂𝒊𝒏(𝑥, 𝑦)

𝒎𝒂𝒊𝒏(𝑥, 𝑦) ∧ (𝑥 ≠ 𝑦) =⇒ ⊥

Figure 3. Example of maximal vacuous solution.

𝒉(𝑥) ∧ 𝒉(𝑦) ∧ 𝑥′ = 𝑥 + 𝑦 =⇒ 𝒇 (𝑥′)

𝒉(𝑥) ∧ 𝒉(𝑦) ∧ 𝑥′ = 𝑥 + 𝑦 =⇒ 𝒈 (𝑥′)

𝒇 (𝑥) ∧ 𝒈 (𝑦) ∧ ¬(𝑥 ≥ 𝑦) =⇒ ⊥

(a)

𝒇 (𝑥) ∧ 𝑥′ = 𝑥 + 2 =⇒ 𝒇 (𝑥′)

𝒇 (𝑥) ∧ 𝒇 (𝑦) ∧ ¬(𝑦 ≠ 𝑥 + 1) =⇒ ⊥

(b)

𝑧 = 0 =⇒ 𝒈 (𝑧)

𝒇 (𝑥) ∧𝒈 (𝑧) ∧ if (𝑧 = 0) then 𝑥′ = 2021 else 𝑥′ = 𝑥 =⇒ 𝒇 (𝑥′)

𝒇 (𝑥) ∧ 𝒇 (𝑦) ∧ ¬(𝑥 = 𝑦) =⇒ ⊥

(c)

Figure 4. Non-linear CHCs for specification synthesis.

• for each 𝑟 ∈ R , ∃®𝑥 . 𝑟 (®𝑥), and
• for each CHC 𝐶 ∈ 𝑆 , ∃®𝑥 . body(𝐶) (®𝑥).

We call such a CHC system ∃-extended, where these added
constraints cannot be described by Def. 3.1, and thus need
to be handled by an external solver.

Definition 3.5 (StrengthOrder). Let 𝑆 be a system of CHCs
over a set of relation symbols R . We define a partial or-
der (modulo logical equivalence) on the set of solutions of
𝑆 , as follows. For solutions 𝑀 and 𝑀 ′ to 𝑆 , we say 𝑀 ′ is
weaker than𝑀 , written𝑀 ⪯ 𝑀 ′, if for each 𝑟 ∈ R we have
𝑀 (𝑟) =⇒ 𝑀 ′(𝑟). We say 𝑀 ′ is strictly weaker than 𝑀 ,
written𝑀 ≺ 𝑀 ′, if𝑀 ⪯ 𝑀 ′ and there is an 𝑟 ∈ R such that
𝑀 ′(𝑟) ≠⇒ 𝑀 (𝑟).

Definition 3.6 (Maximal Solution). Let 𝑆 be a system of
CHCs over R . We call a solution𝑀 to 𝑆 maximal if there is
no solution𝑀 ′ strictly weaker than it.

It is possible that a maximal solution is vacuous. For exam-
ple, in a program in Fig. 3, 𝒎𝒂𝒊𝒏(𝑥,𝑦) represents the values
of 𝑥 and 𝑦 that reach the assertion. But CHCs are ignorant
of the assertion reachability in the original program. All for-
mulas of the form 𝑥 = 𝑛, where 𝑛 is an integer, are maximal
solutions for 𝒇 . However, one of them, 𝑥 = 5, is vacuous.
Interestingly, some CHC task could have many maximal

solutions, where some of them could be vacuous.

4 Non-Vacuous Specification Synthesis

In this section, we describe our algorithm that overcomes the
challenges of specification synthesis. A set of examples in
Fig. 4 represents independent specification-synthesis prob-
lems. All of them have some uninterpreted predicate symbols
that allow for vacuous solutions. In particular, in the CHC
system in Fig. 4a the interpretation 𝑀vac = {𝒇 ↦→ ⊤,𝒉 ↦→
⊥,𝒈 ↦→ ⊥} satisfies all the CHCs, but it is vacuous. A non-
vacuous solution is

𝑀4𝑎 = {𝒇 ↦→ 𝜆𝑥 . 𝑥 ≥ 0,𝒈 ↦→ 𝜆𝑦 .𝑦 ≤ 0,𝒉 = 𝜆𝑥 . 𝑥 = 0}.

Similarly, non-vacuous solutions for the systems in Fig. 4b
and Fig. 4c are

𝑀4𝑏 = {𝒇 ↦→ 𝜆𝑥 . 𝑥 mod 2 = 0}; and

𝑀4𝑐 = {𝒇 ↦→ 𝜆𝑥 . 𝑥 = 2021,𝒈 ↦→ 𝜆𝑧 . 𝑧 = 0}.

4.1 Key Conceptual Insights

The challenges in finding non-vacuous and maximal solu-
tions arise in the non-linearity of CHCs. For a linear CHC
system, an approach based on abduction [17], would apply
a backward reasoning beginning with the query CHC, and
it would systematically find the weakest precondition. In
contrast, for non-linear CHCs (such as all queries in Fig. 4),
multi-abduction [1] can be used to get interpretations for
predicates1 in a query, which then can be propagated back-
wards to eventually yield the weakest preconditions for all
unknown predicates upon reaching their invocations. How-
ever, this might lead to vacuous solutions for CHCs because
multi-abduction is driven by the SMT models obtained from
a single CHC and ignores constraints from other CHCs2.
For Fig. 4a, an interpretation for 𝒇 (𝑥) and 𝒈(𝑦) depends

on some model 𝑚 |= 𝑥 ≥ 𝑦. If 𝑚1 = {𝑥 ↦→ 0, 𝑦 ↦→ 0},
the solution is non-vacuous, as shown previously, but if
𝑚2 = {𝑥 ↦→ 1, 𝑦 ↦→ 1}, we get the mapping 𝑀vac , such
that 𝑀vac (𝒇) = 𝜆𝑥 . 𝑥 ≥ 1 and 𝑀vac (𝒈) = 𝜆𝑦 .𝑦 ≤ 1. When
this is propagated to the first two CHCs to get𝑀vac (𝒉), us-
ing isomorphic decomposition, it leads to the only solution:
𝑀vac (𝒉) = 𝜆𝑥 . 𝑥 > 0 ∧ 𝑥 < 0, which is vacuous. To prevent
learning such predicates, our algorithm uses backtracking
and iteratively re-solvesmulti-abduction using differentmod-
els, while exploiting positive and negative results from the
previous runs.

Abduction is not sufficient for the discovery of inductive
interpretations in the case of loops, motivating us to alter-

nate backward and forward reasoning. For instance, for Fig. 4b
and 4c, the decomposition alone can respectively diverge, or
be restarted many times. The former case, mentioned as a

1Technically, we discover specifications as interpretations of predicates

from CHCs. Thus, throughout the paper, we use the terms specifications

and interpretations interchangeably.
2Note that this side effect is specific only to our CHC settings, which in some

sense modular. The original procedure in [1] can be applied to a łglobalž

counterexample path-program, thus avoiding vacuous solutions.

1207

PLDI ’21, June 20ś25, 2021, Virtual, Canada Sumanth Prabhu, Grigory Fedyukovich, Kumar Madhukar, and Deepak D’Souza

Algorithm 1: solveCHCs

Input: CHCs 𝑆 over R

Output: res ∈ {(sat, Lemmas : R →

2Expr), (unknown,∅)}

1 forward ← ⊥;

2 for each 𝑟 ∈ R do Σ(𝑟) ← ∅;

3 while ⊤ do

4 if ∃𝐶 ∈ 𝑆 .
(

body(𝐶) [Σ/R] =⇒ ⊥∧ head (𝐶) ≠ ⊥
)

∨
(

∃𝑟1 ∈ rels(body(𝐶)) . Σ(𝑟1)=⊥ ∧ head (𝐶)=⊥
)

then

5 Σ ← weaken(𝐶,Σ);

6 forward ← ⊤;

7 else if ∃𝐶 ∈ 𝑆 . body(𝐶) [Σ/R] ≠⇒ head (𝐶) [Σ/R]

then

8 if rels(body(𝐶)) = ∅ then

9 forward ← ⊤;

10 if forward = ⊥ then

11 Σ ← strengthen(𝐶,Σ);

12 else

13 Σ ← propagate(𝑆,𝐶,Σ,∅);

14 forward ← ⊥;

15 else

16 return (sat,Σ);

17 return (unknown,∅);

challenge in [1], is solved quickly by our algorithm. In par-
ticular, the algorithm takes into account the inductive CHC,
guesses candidate decompositions for 𝒇 , having the form of
divisibility constraints, and propagates them forward (with
the help of a Houdini-style algorithm [24]). After an induc-
tive subset is found, the query is checked, and (if needed)
the multi-abduction is solved. For Fig. 4c, there could be
infinitely many decompositions for 𝒇 : 𝜆𝑥 . 𝑥 = 0, 𝜆𝑥 . 𝑥 = 1,
𝜆𝑥 . 𝑥 = 2,. . . but only one of them is essentially useful. In-
stead of taking a significant amount of time to enumerate all
solutions, our approach learns that 𝒈 ↦→ 𝜆𝑧 . 𝑧 = 0 satisfies
the first CHC, then forward-propagates it to the second CHC
to get 𝒇 ↦→ 𝜆𝑥 . 𝑥 = 2021, which satisfies the third CHC,
allowing for speedy and successful termination.
These and other features of the algorithm are described

in detail in the following sections.

4.2 Algorithm Overview

In this section, we give an overview of our core algorithm
that synthesizes non-vacuous specifications assuming a first
order theory that admits quantifier elimination, e.g., Linear
Integer Arithmetic (LIA).

Basic Rules. Algorithm 1 maintains a set Σ of candidate
specifications and initiates it (line 2) by empty sets (which
corresponds to ⊤ formulas) and refines them based on the
following intuitive rules:

R1 If vacuity (line 4) holds for some 𝐶 , then it is likely
because some specifications are ⊥ or in conflict with

the body. The algorithm picks some relation 𝑟 from
the body of 𝐶 and creates Σ′(𝑟) which is logically
weaker than Σ(𝑟) (line 5). Thus, body(𝐶) [Σ′/R] be-
comes weaker than body(𝐶) [Σ/R] and is more likely
to pass the vacuity check in the next iteration.

R2 If validity (line 7) does not hold for some 𝐶 , then
candidate specifications in rels(body(𝐶)) need to be
strengthened and/or the candidate specification for
rels(head (𝐶)) needs to be weakened. The algorithm
acts according to the current direction (backward or
forward) of the CHC traversal.

It is important that the rules are applied in the specific or-
der:R2 assumes that Σ is non-vacuous, otherwise the checks
would trivially succeed. If neither R1 nor R2 is applicable,
then Σ satisfies all constraints in the system and is returned
to the user as a final result.

Theorem 4.1. The candidate specifications remaining after

Algorithm 1 terminates are non-vacuous.

Proof. Note that after new candidate specifications are added
in Algorithm 1, either by strengthen (line 11) or by propa-

gate (line 13), R1 (line 4) is checked in the next iteration. So
if the SMT solver proves that candidates are non-vacuous in
R2 (line 7), the algorithm terminates. We prove it by contra-
diction. Suppose there exists a CHC 𝐶 with vacuous candi-
dates in Σ. By definition of vacuous candidates, there are two
cases: (1) for some 𝒓 ∈ rels(body(𝐶)), Σ(𝒓) is unsatisfiable,
(2) body(𝐶) [Σ/R] is unsatisfiable (if 𝐶 is not a query). In
either cases, weaken guarantees to drop some part of Σ(𝒓)
of some 𝒓 and the check is repeated (at most, a finite number
of times). Note that for two relations 𝒓1, 𝒓2 ∈ rels(body(𝐶))
if the conjunction Σ(𝒓1) ∧Σ(𝒓2) is unsatisfiable, one of them
must be unsatisfiable (since they do not share any argu-
ments). □

Backward / Forward Alternation. A distinguishing fea-
ture of our algorithm is that it alternates between backward
and forward reasoning over CHCs. In particular, it exploits
the implications in each CHC and either generates (1) new
candidate specifications of the predicates in rels(body(𝐶))
based on a specification for rels(head (𝐶)) (backward, see
more details in Sect. 4.4), or (2) new candidate interpreta-
tion for rels(head (𝐶)) based on given interpretations for
rels(body(𝐶)) (forward, see more details in Sect. 4.3). The
algorithm has therefore a flag forward that indicates whether
forward reasoning is enabled (and otherwise, backward rea-
soning is enabled).

Initially, backward reasoning is enabled (line 1), and the al-
gorithm initializes the specifications from the queries. When
updated, specifications in Σ(𝑟) of some 𝑟 require to perform
the R2 check for every CHC 𝐶 , such that 𝑟 ∈ rels(head (𝐶)).
Whenever a vacuity constraint R1 (for current Σ) is violated
or the candidates cannot be updated further, the direction of
reasoning gets changed (lines 6, 9, or 14).

1208

Specification Synthesis with Constrained Horn Clauses PLDI ’21, June 20ś25, 2021, Virtual, Canada

Example 4.2. Recall the example in Sect. 2. To eventually
end up with the solution, Algorithm 1 begins with the empty
Σ, i.e., Σ(𝒊𝒏𝒗) = Σ(𝒇) = Σ(𝒈) = 𝜆𝑥 .⊤ that is not vacuous.
The algorithm finds that the third CHC is not satisfiable
while checking rule R2:

⊤ ∧ ⊤ ∧ ¬(𝑦 ≥ 𝑥) ≠⇒ ⊥.

Since the propagation direction is backward, candidates are
strengthened to Σ(𝒊𝒏𝒗) = 𝜆𝑥 . 𝑥 ≤ 0 and Σ(𝒈) = 𝜆𝑦 .𝑦 ≥ 0

(line 11) using the abductive strengthening (to be explained
in Sect. 4.4).

In the second iteration of the algorithm, R2 fails again as
the second CHC is not satisfiable under Σ(𝒊𝒏𝒗) = 𝜆𝑥 . 𝑥 ≤ 0

and Σ(𝒇) = 𝜆𝑥 .⊤:

𝑥 ≤ 0 ∧ ⊤ ∧ 𝑥 ′ = 𝑥 + 𝑧 ≠⇒ 𝑥 ′ ≤ 0.

In this case, the algorithm decides to strengthen only 𝒇 ,
though the second CHC also has 𝒊𝒏𝒗 in its body. This, too,
distinguishes our algorithm from [1] and is achieved by the
fairness heuristic (to be explained in Sect. 4.5). The solution
returned is Σ(𝒇) = 𝜆𝑧 . 𝑧 ≤ 0. But again, R2 fails as the first
CHC (a fact) is not satisfiable under Σ(𝒊𝒏𝒗) = 𝜆𝑥 . 𝑥 ≤ 0:

𝑥 = 19 ≠⇒ 𝑥 ≤ 0

Since the failed CHC is a fact, the direction of propagation
changes (line 6). The candidate for 𝒊𝒏𝒗 is repaired to 𝜆𝑥 . 𝑥 ≤
19 by the inductive weakening (to be explained in Sect. 4.3),
and the direction of reasoning is reversed (lines 13, 14). How-
ever, the query is still not satisfiable under Σ(𝒊𝒏𝒗) = 𝜆𝑥 . 𝑥 ≤
19 and Σ(𝒈) = 𝜆𝑦 .𝑦 ≥ 0:

𝑥 ≤ 19 ∧ 𝑦 ≥ 0 ∧ ¬(𝑦 ≥ 𝑥) ≠⇒ ⊥.

Then, the abductive strengthening yields Σ(𝒈) = 𝜆𝑦 .𝑦 ≥ 0∧
𝑦 ≥ 19. In the final iteration neither R1 nor R2 is applicable,
so the current candidate𝑀2 is returned. □

To search for solutions of a system of CHCs, as done for
example in [21], it is useful to define an ordering between
CHCs. To keep the presentation simpler, our pseudocode
does not specify which particular CHCs are selected for fur-
ther processing. If either of checks R1 or R2 fails for more
than one CHC ś intuitively, it picks the one closer to a fact
CHC (in the case of forward) or the one closer to a query
(in the case of backward reasoning). Given 𝐶 ′,𝐶,𝐶 ′′ ∈ 𝑆 ,
we say 𝐶 ′ is closer to 𝐶 than 𝐶 ′′, if there is a shorter se-
quence of CHCs connecting 𝐶 ′ to 𝐶 , where a sequence of
CHCs 𝐶1, . . . ,𝐶𝑛 ∈ 𝑆 connects if for each pair 𝐶𝑖 and 𝐶𝑖+1,
rels(head (𝐶𝑖)) ⊆ rels(body(𝐶𝑖+1)). For instance, in Exam-
ple 4.2, in the second iteration, when the algorithm was
performing backward propagation, both the first and the sec-
ond CHC fails, but the algorithm chooses the second CHC,
which is closer to the query. However, any other ordering
heuristics can in principle be used.

Algorithm 2: propagate

Input: CHCs 𝑆 over R , 𝐶 ∈ 𝑆 , Σ′ : R → 2Expr , visited ⊆ 𝑆

Output: Σ′ : R → 2Expr

1 if rels(ℎ𝑒𝑎𝑑 (𝐶)) = ⊥ or 𝐶 ∈ visited then return Σ;

2 visited ← visited ∪ {𝐶};

3 let 𝑟ℎ and ®𝑥ℎ be such that 𝑟ℎ (®𝑥ℎ) = head (𝐶);

4 if body(𝐶) [Σ/R] ≠⇒ Σ(𝑟ℎ) (®𝑥ℎ) then

5 while ∃𝑚.𝑚 |= body(𝐶) [Σ/R] ∧ ¬Σ(𝑟ℎ) (®𝑥ℎ) do

6 for each 𝑑 ∈ Σ(𝑟ℎ) do

7 if 𝑚 |= ¬𝑑 (®𝑥ℎ) then

8 Σ(𝑟ℎ) ← Σ(𝑟ℎ) \ {𝑑};

9 Σ(𝑟ℎ) ← Σ(𝑟ℎ) ∪

over(𝑄𝐸
(

∃
[

args(body(𝐶)) \ ®𝑥ℎ
]

.body(𝐶) [Σ/R]
)

);

10 for each 𝐶 ′ ∈ 𝑆 do

11 if 𝐶 ′≠𝐶 and 𝑟ℎ ∈ rels(body(𝐶
′))∪rels(head (𝐶 ′)) then

12 Σ ← propagate(𝑆,𝐶 ′,Σ);

13 return Σ;

4.3 Inductive Weakening and Propagation

Each fact in the CHC system is potentially useful for gen-
eration of interpretations. A formula from its body forms
a candidate which is checked in the next stages of a CHC-
solving algorithm. Whenever the inductiveness check fails
for some of the CHCs, the candidate for the predicate in its
body can be weakened, eventually leading to an inductive

subset. Such a weakening loop is commonly referred to as
Houdini [24] and used in the many CHC solving approaches,
such as [36] and [21]. In addition, [21] forward-propagates
successful candidates through bodies of CHCs to be consid-
ered candidates for the interpretations of predicates from the
heads. Algorithm 2 demonstrates howwe combine inductive
weakening and forward propagation.

The algorithm begins with finding an inductive subset of
candidates by dropping conjuncts from the interpretations
of rels(head (𝐶)) (denoted in the pseudocode as 𝑟ℎ). The ba-
sic idea is to use so-called counterexamples to induction that
identify non-inductive conjuncts (line 7). Note that the loop
always terminates, and in the worst case it ends up with drop-
ping all conjuncts in Σ(𝑟ℎ), making the implication easily
valid.

The second phase of Algorithm 2 aims at strengthening
Σ(𝑟ℎ) based on bodies of other CHCs 𝐶 ′ that involve 𝑟ℎ
(line 11). In particular, in the recursive call of Algorithm 2,
the fact CHC 𝐶 ′, whose head involves 𝑟ℎ , can be considered
(line 9), and a strengthening of Σ(𝑟ℎ) is obtained by quantifier
elimination (QE) over the body of 𝐶 ′ (i.e., by eliminating
variables that do not appear in head (𝐶)).

We also rely on various heuristics to obtain potentially
inductive interpretations from precise results of quantifier
elimination (referred to as over at line 9). Given the formula
𝜑 , we collect a finite set of its over-approximations, and then:

over(𝜑)
def
= {𝜑} ∪ {𝜓𝑖 | 𝜑 =⇒ 𝜓𝑖 }

1209

PLDI ’21, June 20ś25, 2021, Virtual, Canada Sumanth Prabhu, Grigory Fedyukovich, Kumar Madhukar, and Deepak D’Souza

where𝜓𝑖 can be obtained by Syntax-Guided Synthesis (Sy-
GuS) (as shown in Sect. 4.7) or by any post-condition in-
ference techniques. We also use a set of simple rules that
break equalities into inequalities, merge inequalities, etc. Any
heuristics can be used to add more elements to the candidate
specifications set ś all inappropriate ones will be dropped
by the weakening loop (lines 5-8) in the next iterations of
the algorithm.

Example 4.3. Recall Example 4.2 for the system of CHCs
in Fig. 2. The main algorithm is in the forward propagation
mode, and it aims first at weakening the candidate 𝑥 ≤ 0

given the first CHC. The Houdini loop immediately discov-
ers the model 𝑚 = {𝑥 ↦→ 19}, such that 𝑚 |= ¬(𝑥 ≤ 0),
thus leading to dropping the only conjunct. We now have
Σ(𝒊𝒏𝒗) = 𝜆𝑥 .⊤ at line 9, and 𝑥 = 19 is passed to QE with no
existentially-quantified variables (as Vars(body(𝐶)) \ ®𝑥ℎ is
{𝑥} \ {𝑥} = ∅)), yielding 𝑥 = 19 as the solution. The method
over generates 𝑥 ≥ 19 and 𝑥 ≤ 19 as potential candidates.
This is followed by the recursive calls to other CHCs (line 11).
For the second CHC, the check at line 4 fails:

𝑥 ≥ 19∧𝑥 ≤ 19∧𝑧 ≤ 0∧𝑥 ′ = 𝑥 +𝑧 ≠⇒ 𝑥 ′ ≥ 19∧𝑥 ′ ≤ 19.

Here, 𝑥 ≥ 19 ∧ 𝑥 ≤ 19 is 𝒊𝒏𝒗’s candidate and 𝑧 ≤ 0 is 𝒇 ’s
candidate (recall Example 4.2). Any model𝑚 computed at
line 5 for 𝑥 ≥ 19∧𝑥 ≤ 19∧𝑧 ≤ 0∧𝑥 ′ = 𝑥+𝑧∧¬(𝑥 ′ ≥ 19∧𝑥 ′ ≤
19) will be such that 𝑚(𝑥 ′) ≤ 19 as 𝑧 ≤ 0. Hence, only
𝑥 ≤ 19 satisfies this model, and 𝑥 ≥ 19 is dropped (lines 7-
8). Since there are no more CHCs that are not visited, the
algorithm returns with Σ(𝒊𝒏𝒗) = 𝜆𝑥 . 𝑥 ≤ 19. Note here that
it retained Σ(𝒇) = 𝜆𝑧 . 𝑧 ≤ 0 due to the usage of inductive
weakening, which will be the final solution for 𝒇 as seen
from Example 4.2. □

4.4 Abductive Strengthening

Backward propagation in our algorithm is responsible for
lifting the property (i.e., the negated body of the query) to-
wards the initial states of the program. It is implemented
in Algorithm 3, which takes as input a CHC 𝐶 and sets of
current candidate interpretations Σ and returns updated sets
as output. It is mainly based on [17] and further on [1].
The algorithm first applies abduction via universal quan-

tifier elimination to obtain a formula 𝜓 (line 3) over argu-
ments of predicates that appear in the body of 𝐶 . If 𝐶 is
linear, then𝜓 gets an interpretation to the only predicate 𝒓
in rels(body(𝐶)), and the only action the algorithm needs to
perform before termination is to update Σ(𝒓)3. Otherwise,𝜓
has to be decomposed among relations in rels(body). For this
purpose, we adapt the multi-abduction technique, originated
from [1] (lines 6-11).
The simplest use of multi-abduction assumes that the al-

gorithm proceeds with all the predicates from the body of𝐶 ,

3Our pseudocode does not have this for brevity, but the general functionality

produces the same result.

Algorithm 3: strengthen

Input: CHC 𝐶 ∈ 𝑆 and Σ : 𝑅 → 2Expr

Output: Σnew : 𝑅 → 2Expr

1 Σnew ← Σ;

2 let rels(body(𝐶)) = {𝒓0, . . . , 𝒓𝑛};

3 𝜓 ← QE
(

∀
[

args(body(𝐶)) \ args(𝒓0, . . . , 𝒓𝑛, body(𝐶)))
]

.

(body(𝐶) [Σ/R]) =⇒
∧

𝑐∈Σ (rels (head (𝐶)))
𝑐
)

;

4 let Rf ⊆ rels(body(𝐶));

5 let𝑚 |= 𝜓 ;

6 for each 𝑟 ∈ 𝑅𝑓 do

7 Σnew(𝑟) ← ®𝑥 =𝑚(®𝑥), s.t. ®𝑥 = args(𝑟,body(𝐶));

8 for each 𝑟 ∈ 𝑅𝑓 do

9 Σnew (𝑟) ← QE
(

∀
[
⋃

𝑟 ′≠𝑟
args(𝑟 ′, body(𝐶))

]

.

∧

𝑟 ′≠𝑟
Σnew (𝑟 ′) =⇒ 𝜓

)

;

10 for each 𝑟 ∈ 𝑅𝑓 if invoked several times in rels(body(𝐶))

do

11 Σnew (𝑟) ← isoDecompose(Σnew (𝑟), 𝑟 ,𝐶);

12 return Σnew ;

i.e., 𝑅𝑓 = rels(body(𝐶)) at line 4 (the other use is discussed
in Sect. 4.5). The algorithm gets a model of𝜓 (at line 5) and
creates under-approximations of candidates (called elemen-

tary) as equalities between arguments of each 𝑟 ∈ 𝑅𝑓 and
their values from the model (at line 7). These elementary
solutions get further weakened (at line 9) by subsequent
runs of abduction [17]. Each relation under consideration is
assumed to be uninterpreted, while formulas are substituted
for others. Weakened solutions for the relations covered in
earlier iterations, and elementary interpretations for the rest
(lines 8-9). The algorithm performs the isomorphic decompo-
sition (line 11; to be described in Sect. 4.6) for those relations
that are invoked multiple times in the body of 𝐶 .

Example 4.4. Consider the first iteration from Example 4.2,
where Algorithm 1 is running in the backward direction on
CHCs from Fig. 2. The third CHC with Σ(𝒊𝒏𝒗) = Σ(𝒈) =
𝜆𝑥 .⊤ has failed. The algorithm starts with multi-abducing
𝑦 ≥ 𝑥 . For the QE at line 3, 𝑦 ≥ 𝑥 is passed without any
quantified variables (as {𝑥,𝑦} \ {𝑥,𝑦} = ∅). Since there are
two relations, the algorithm continues with 𝜓 = 𝑦 ≥ 𝑥 , to
decompose the following:

𝒊𝒏𝒗 (𝑥) ∧ 𝒈(𝑦) =⇒ 𝑦 ≥ 𝑥 .

Suppose, the algorithm computes a model𝑚 = {𝑥 ↦→ 0, 𝑦 ↦→
0} at line 7, and 𝑅𝑓 = { 𝒊𝒏𝒗,𝒈}, using which, we construct
Σnew

= { 𝒊𝒏𝒗 ↦→ 𝜆𝑥 . 𝑥 = 0,𝒈 ↦→ 𝜆𝑦 .𝑦 = 0}. The first QE
call (line 9) is made with ∀𝑦 .𝑦 = 0 =⇒ 𝑦 ≥ 𝑥 for 𝒊𝒏𝒗,
which yields 𝑥 ≤ 0. In the second QE call, 𝒈 gets 𝑦 ≥ 0

corresponding to ∀𝑥 . 𝑥 ≤ 0 =⇒ 𝑦 ≥ 𝑥 . Since there are no
multiple invocations of any relation, the algorithm returns
with this solution. □

1210

Specification Synthesis with Constrained Horn Clauses PLDI ’21, June 20ś25, 2021, Virtual, Canada

4.5 Fairness

Our approach makes use of a useful fairness heuristic that
allows for decomposing a property into candidate interpre-
tations (as in Sect. 4.4), but only of a subset of relations.
Fairness prioritizes relations that currently have no candi-
dates. Intuitively, it drops those relations for which the same
candidates are repeated from a previous iteration. During the
decomposition, non-chosen relations are replaced by their
existing candidate specifications.

In Algorithm 3, fairness is applied in two ways: (1) if there
are relations without any candidates (i.e., Σ(𝑟) = ⊤), then
other relations are excluded from 𝑅𝑓 ; (2) after finding a de-
composition, if a candidate is rediscovered for the second
time, then this candidate is dropped, the relation is excluded
from 𝑅𝑓 , and the backward propagation restarts. This re-
quires maintaining the history of candidates, which is intu-
itive but not shown in the algorithm for brevity.

Example 4.5. Recall Example 4.2 (Algorithm 1 running on
Fig. 2), where in the second iteration, the second CHC has
failed for Σ(𝒊𝒏𝒗) = 𝜆𝑥 . 𝑥 ≤ 0 and Σ(𝒇) = 𝜆𝑥 .⊤. The decom-
position query is therefore as follows:

𝒊𝒏𝒗 (𝑥) ∧ 𝒇 (𝑧) =⇒ (𝑥 ≤ 0 ∧ 𝑥 ′ = 𝑥 + 𝑧 =⇒ 𝑥 ′ ≤ 0).

In this case, Algorithm 3 computes 𝜓 = 𝑥 + 𝑧 ≤ 0 after
applying QE (line 3) to ∀𝑥 ′ . 𝑥 ≤ 0 ∧ 𝑥 ′ = 𝑥 + 𝑧 =⇒ 𝑥 ′ ≤ 0.
There are two relations (𝒇 and 𝒊𝒏𝒗) in the body, however it
is fair to let 𝑅𝑓 = {𝒇 }. Suppose the algorithm computes a
model𝑚 = {𝑥 ↦→ 0, 𝑧 ↦→ 0} for 𝑥 + 𝑧 ≤ 0 (line 7). Initially,
Σnew (𝒇) = 𝜆𝑧 . 𝑧 = 0, whereas Σnew (𝒊𝒏𝒗) = 𝜆𝑥 . 𝑥 ≤ 0. QE
(line 9) is passed with ∀𝑥 . 𝑥 ≤ 0 =⇒ (𝑥 + 𝑧) ≤ 0, for 𝒇 ,
which returns 𝜆𝑧 . 𝑧 ≤ 0. □

Example 4.6. Let us consider the case when the third CHC
failed with Σ(𝒊𝒏𝒗) = 𝜆𝑥 . 𝑥 ≤ 19 and Σ(𝒈) = 𝜆𝑦 .𝑦 ≥ 0:

𝒊𝒏𝒗 (𝑥) ∧ 𝒈(𝑦) =⇒ (𝑥 ≤ 19 ∧ 𝑦 ≥ 0 =⇒ 𝑦 ≥ 𝑥).

Without the fairness heuristic, this abduction query would
yield the strengthening for 𝒊𝒏𝒗 (as in Example 4.4). How-
ever, the candidate 𝑥 ≤ 0 is identified as repeated for 𝒊𝒏𝒗,
the algorithm drops it, lets 𝑅𝑓 = {𝒈}, and restarts. This
results in a different initial solution: Σnew (𝒈) = 𝜆𝑦 .𝑦 = 19

and Σnew (𝒊𝒏𝒗) = 𝜆𝑥 . 𝑥 ≤ 19. Further, on QE with ∀𝑥 . 𝑥 ≤
19 =⇒ 𝑦 ≥ 𝑥 (line 9), 𝒈 gets 𝜆𝑦 .𝑦 ≥ 19. □

4.6 History-based Isomorphic Decomposition

Finding a decomposition if some relation from the body of a
CHC has two or more invocations (with different arguments)
is achieved by the isomorphic decomposition algorithm in [1].
For each such relation, the algorithm tries to further decom-
pose the interpretation obtained in the previous step (recall
Sect. 4.4) by progressively weakening interpretations until
the required solution is found. In this section, we present
this algorithm (Algorithm 4) with the following significant
modification to [1].

Algorithm 4: isoDecompose

Input: cand ∈ Expr , 𝑟 ∈ R and CHC 𝐶 ∈ 𝑆

Output: soln ∈ Expr

1 for each 𝑟 (®𝑥𝑖) ∈ body(𝐶) do

2 let ®𝑝𝑥𝑖 be fresh copies of ®𝑥𝑖 ;

3 soln← ⊥;

4 𝜓 ←
∧

®𝑥𝑖

(
∨

®𝑝𝑥𝑗

®𝑥𝑖 = ®𝑝𝑥 𝑗
);

5 while ∃𝑚 .𝑚 |=
∧

®𝑝𝑥𝑖

¬soln[®𝑝𝑥𝑖 /®𝑥] ∧ (∀®𝑥𝑖 . . . ®𝑥𝑛 .𝜓 =⇒ cand)

do

6 soln← soln ∨
∨

®𝑝𝑥𝑖

®𝑥 =𝑚(®𝑝𝑥𝑖);

7 for each ®𝑥𝑖 do

8 soln𝑖 (®𝑥𝑖) ← soln[®𝑥𝑖/®𝑥]

9 for each ®𝑥𝑖 do

10 soln𝑖 ← QE(∀[®𝑥 𝑗≠𝑖]
∧

𝑗≠𝑖
soln𝑗 =⇒ cand)

11 soln←
∧

®𝑥𝑖

soln𝑖 [®𝑥/®𝑥𝑖];

12 𝜓 ←
∧

®𝑥𝑖

(
∨

®𝑝𝑥𝑗

®𝑥𝑖 = ®𝑝𝑥 𝑗
) ∨ soln[®𝑥𝑖/®𝑥];

13 return soln;

Algorithm 4 receives a relation 𝑟 that occursmultiple times
in body(𝐶) and the corresponding candidate (represented by
cand) that has been computed by considering 𝑟 as a single
instance with all its arguments (i.e., Σnew (𝑟) in Algorithm 3).
The algorithm begins by creating placeholder variables ®𝑝𝑥𝑖 .
These are used to make sure that the solution is unaffected
by exchange of argument instances. This constraint is en-
coded by the formula 𝜓 (line 4). The algorithm iteratively
strengthens the solution (soln) in a loop (line 5- 12). In each
iteration of this loop, the algorithm begins by computing an
initial solution that has not been considered previously. This
is achieved by getting a model for the formula that is not
part of current solution (i.e in ¬soln), but implies cand even
when the arguments are exchanged (line 6). The model is
projected over each argument instance to get an initial solu-
tion (soln𝑖) (lines 7,8). These initial solutions are weakened
using quantifier elimination (line 9), similar to Algorithm 3.
Finally, a conjunction of all these solutions is considered as
the interpretation of current iteration (line 11). This loop
continues until no interpretation can be added.

In the original algorithm (as presented in [1]), the formula
𝜓 is not updated in each iteration. However, to consider
previously generated interpretations, our algorithm disjoins
it with current interpretation soln[®𝑥𝑖/®𝑥]. This helps in ter-
mination of our algorithm when there are infinitely many
maximal solutions (like shown in Example 4.7), where the
original algorithm does not terminate.

Example 4.7. Consider the system of CHCs from Fig. 4c. At
the first iteration, for the third CHC (with two invocations
of 𝒇), the abductive strengthening calls Algorithm 4 with

1211

PLDI ’21, June 20ś25, 2021, Virtual, Canada Sumanth Prabhu, Grigory Fedyukovich, Kumar Madhukar, and Deepak D’Souza

cand = (𝑥 = 𝑦) as the candidate for 𝒇 . Note that cand has
infinitely many decompositions (recall Sect. 4.1). Algorithm 4
gets a model𝑚 = {𝑝𝑥 ↦→ 0, 𝑝𝑦 ↦→ 0}, constructs a formula:

⊤∧∀𝑥,𝑦 . (𝑥 = 𝑝𝑥 ∨𝑥 = 𝑝𝑦) ∧ (𝑦 = 𝑝𝑥 ∨𝑦 = 𝑝𝑦) =⇒ 𝑥 = 𝑦,

initializes soln1 (𝑥) = 𝑥 = 0, soln2 (𝑦) = 𝑦 = 0 for two invoca-
tions of 𝒇 , and constructs candidates as soln = 𝑥 = 0 after
QE (line 11). Now, 𝜓 = ((𝑥 = 𝑝𝑥 ∨ 𝑥 = 𝑝𝑦 ∨ 𝑥 = 0) ∧ (𝑦 =

𝑝𝑥 ∨ 𝑦 = 𝑝𝑦 ∨ 𝑦 = 0)) (line 12). This makes the algorithm
terminate at the next iteration since the following equation
at line 5 is unsatisfiable:

(𝑝𝑥 ≠ 0) ∧ (𝑝𝑦 ≠ 0)∧

∀𝑥,𝑦 . (𝑥 = 𝑝𝑥 ∨ 𝑥 = 𝑝𝑦 ∨ 𝑥 = 0)∧

(𝑦 = 𝑝𝑥 ∨ 𝑦 = 𝑝𝑦 ∨ 𝑦 = 0) =⇒ 𝑥 = 𝑦

The original algorithm [1] does not terminate as the above
equation without 𝑥 = 0 and 𝑦 = 0 is satisfiable. Moreover,
it is not able to find any solution as all the solutions are
satisfiable in the equation above without adding the current
candidate.
Algorithm 1 continues with Σ(𝒇) = 𝜆𝑥 . 𝑥 = 0, backward

propagates Σ(𝒈) = 𝜆𝑧 .¬(𝑧 = 0) using the second CHC and
fairness, weakens Σ(𝒈) = 𝜆𝑥 .⊤ and forward-propagates
Σ(𝒈) = 𝜆𝑧 . 𝑧 = 0 using the first CHC, and finally recursively
forward-propagates Σ(𝒇) = 𝜆𝑥 . 𝑥 = 2021. □

4.7 Vacuity Weakening and Additional Candidates

The candidates obtained from previous methods can lead to
vacuous solutions (recall Def. 3.4). In order to consider only
non-vacuous solutions, Algorithm 1 performs weakening
(line 4). This method drops the candidates using the unsat
core until the vacuity check passes.
Our technique can easily accommodate candidate speci-

fications derived from other CHC solving techniques like
FreqHorn [21] and Spacer [36]. is instantiated in Algo-
rithm 1 (before line 3) to derive additional candidates. A
subset of CHCs (fact, query, and inductive CHCs) are passed
to it and its solution is used to produce initial candidates. In
our implementation, we use a simple grammar in LIA with
divisibility constraints:

𝑙𝑖𝑛𝑐𝑜𝑚 ::= 𝑐𝑜𝑛𝑠𝑡 · 𝑣𝑎𝑟 + . . . + 𝑐𝑜𝑛𝑠𝑡 · 𝑣𝑎𝑟

𝑐𝑎𝑛𝑑 ::= 𝑙𝑖𝑛𝑐𝑜𝑚 > 𝑐𝑜𝑛𝑠𝑡
�

� 𝑙𝑖𝑛𝑐𝑜𝑚 ≥ 𝑐𝑜𝑛𝑠𝑡
�

� 𝑙𝑖𝑛𝑐𝑜𝑚 mod 𝑐𝑜𝑛𝑠𝑡 = 𝑐𝑜𝑛𝑠𝑡

More importantly, values for 𝑐𝑜𝑛𝑠𝑡 in the grammar are ob-
tained automatically from the results of the syntax analysis
of CHCs, as also done in [21].

Example 4.8. Consider the CHCs from Fig. 4b. The tech-
nique presented in [1] is not able to solve them as the solu-
tion (𝑓 (𝑥) = 𝜆𝑥 .

∨

𝑘∈Z
𝑥 = 2 · 𝑘) requires infinite expressions

at linear arithmetic (integer or real). However, a technique
based on SyGuS generates candidates 𝜆𝑥 . 𝑥 mod 2 = 0 and

Algorithm 5: maximalSoln

Input: CHCs 𝑆 over R , ordered relations R ′ ⊆ R

Output: res ∈ {(sat,MaximalSoln : R → 2Expr)}

1 isMax ← ⊥, W ← ∅, Σ ← ∅;

2 while ¬isMax do

3 𝑆 ′ ← weakeningRules(𝑆,W ,Σ);

4 (res,Σ) ← solveCHCs(𝑆 ′);

5 (isMax,W ,CTM) ← isMaximal(𝑆,Σ);

6 return (sat,Σ);

Algorithm 6: isMaximal

Input: CHCs 𝑆 over R , Σ : R → 2Expr

Output: res ∈ {⊤,⊥},W ⊆ R , CTM

1 for each 𝑟 (®𝑥) ∈ R do

2 let ®𝑝 ®𝑥 be fresh copies of ®𝑥 ;

3 Σext (𝑟) ← Σ(𝑟) (®𝑥) ∨ ®𝑝 ®𝑥 = ®𝑥 ;

4 if ∃𝑚 .𝑚 |=
∨

𝑟 (®𝑥) ∈R

¬Σ(𝑟) (®𝑝 ®𝑥) ∧

∧

𝐶∈𝑆
∀args(𝐶) .

(

body(𝐶) [Σext/R] =⇒ head (𝐶) [Σext/R]
)

then

5 W ←
{

𝑟 ∈ R | 𝑚 |= ¬Σ(𝑟) (®𝑝 ®𝑥)
}

;

6 return (⊥,W ,𝑚);

7 return (⊤,∅,∅);

𝜆𝑥 . 𝑥 mod 2 = 1 based on the transition relation of first CHC
as 𝑥 ′ is getting incremented by 2. These candidates are then
passed to Algorithm 2 which filters out only inductive ones.
Finally, they leak into the multi-abduction query, and our
algorithm just needs to confirm that it is a solution. □

5 Maximal Specification Synthesis

Specifications discovered by our approach from the previ-
ous section are guaranteed to be non-vacuous but could be
non-maximal. A likely reason for non-maximality is the mod-
ularity of CHCs: an interpretation of predicate discovered
in one context (even, with abduction), may be unnecessarily
strengthened in another context. To check if it is the case,
a global reasoning is needed. The technique in this section
finds so-called counterexamples-to-maximality (CTM) by
checking if there is an interpretation for at least on of the
predicates that can be weakened by at least one model. We
present our algorithm that takes as input a set of CHCs 𝑆 over
uninterpreted relations R and discovers maximal solutions
automatically.

Algorithm Overview. Algorithm 5 begins with initializing
auxiliary variables that keep track of the current state of
the algorithm. Σ : R → 2Expr stores the current solution for
each relation, isMax denotes whether the current solution
is maximal, and W ⊆ R keeps track of relations that have
to be weakened. Algorithm 5 has a weakening loop (lines 2-
5), which runs till the current non-vacuous solution Σ is

1212

Specification Synthesis with Constrained Horn Clauses PLDI ’21, June 20ś25, 2021, Virtual, Canada

not maximal. In the weakening loop, method solveCHCs

returns a non-vacuous solution for a set of CHCs 𝑆 ′ (line 4)
and method isMaximal checks if the current non-vacuous
solution Σ is maximal (line 5).

If the current solution is not maximal, isMaximal returns
a CTM and a set of relations W that have to be weakened
in the next iteration. Method weakeningRules adds new
CHCs (line 3), such that any solution to 𝑆 ′ will be weaker
than the current solution. In the first iteration, however,
weakeningRules returns the original CHCs 𝑆 as W is empty.
Hence, the first call to solveCHCs solves the original set of
CHCs (𝑆). In the subsequent iterations, solveCHCs returns
a weaker solution for all the relations in W , while fixing
the current solution for other relations. This continues until
isMaximal confirms that the current solution is maximal.
Note that 𝑆 ′ always has a solution imposed by the CTM.

Thus, whenever solveCHCs returns unknown, the algo-
rithm disjoins the equalities produced from satisfying as-
signments from the CTM to the corresponding relation’s
current interpretation. If isMaximal fails to decide whether
the current solution is maximal, then the algorithm returns
unknown.

The isMaximal Algorithm. Algorithm 6 describes the
method that checks if the current solution Σ can be weak-
ened further w.r.t. CHCs 𝑆 . It constructs an SMT formula,
which is satisfiable if the current solution is not maximal.
Recall that a solution is not maximal if there is another solu-
tion that is strictly weaker for at least one relation (Def. 3.5).
Based on the satisfying assignment of the formula (which
is a CTM), this method also returns a set of relations which
can make the solution weaker.
It begins by extending the current solution by disjoining

with a new set of placeholder variables (lines 1-3). These
variables represent the values that are not part of the current
solution but satisfy all the CHCs. If there is at least one such
value, then the solution is not maximal. These extended for-
mulas are substituted in place of relations in the input CHCs.
This results in a set of universally quantified implications
over all the arguments in the corresponding CHCs (note that
the placeholder variables are not quantified in them). These
implications and a formula that asserts that at least one set
of values are not in the current solution, is checked for sat-
isfiability (line 4). If this formula is not satisfiable, then the
method returns that current solution is maximal. Otherwise,
it checks which placeholder variables have values outside
the current solution and returns the corresponding relations
(line 6).

Example 5.1. Recall the set of CHCs in Fig 2 and the non-
vacuous solution 𝑁2 in Sect. 2, which has Σ(𝒊𝒏𝒗) = 𝜆𝑥 . 𝑥 ≤
19, Σ(𝒇) = 𝜆𝑧 . 𝑧 = −1 and Σ(𝒈) = 𝜆𝑦 .𝑦 = 19. isMaximal

decides that Σ is not maximal and can return W = {𝒇 ,𝒈} by
using the model𝑚(𝑝𝑦) = 20,𝑚(𝑝𝑧) = 0 for the following

formula:

∀𝑥 . 𝑥 = 19 =⇒ 𝑥 ≤ 19 ∨ 𝑝𝑥 = 𝑥 ∧

∀𝑥, 𝑧, 𝑥 ′ . (𝑥 ≤ 19 ∨ 𝑝𝑥 = 𝑥)∧(𝑧 = −1 ∨ 𝑝𝑧 = 𝑧)

∧𝑥 ′ = 𝑥 + 𝑧 =⇒ (𝑥 ′ ≤ 19 ∨ 𝑝𝑥 = 𝑥 ′) ∧

∀𝑥,𝑦 . (𝑥 ≤ 19 ∨ 𝑝𝑥 = 𝑥)∧(𝑦 = 19 ∨ 𝑝𝑦 = 𝑦)

∧¬(𝑦 ≥ 𝑥) =⇒ ⊥ ∧

¬𝑝𝑥 ≤ 19 ∨ ¬𝑝𝑧 = −1 ∨ ¬𝑝𝑦 = 19 □

Theorem 5.2 (Correctness of isMaximal). Algorithm 5 re-

turns true iff the solution is maximal (assuming SMT solver

terminates on our formulas).

Proof. ⇒We prove by contradiction. Suppose isMaximal

decides that Σ is maximal, but it is not. By definition of maxi-
mality (Def. 3.6) there exists a solution Σ′ that is weaker than
Σ. Hence, Σ(𝑟) =⇒ Σ′(𝑟) for all the relations and there is at
least one relation 𝑟 for which Σ′(𝑟) ≠⇒ Σ(𝑟). This implies
that ¬Σ(𝑟) (®𝑝𝑥) is satisfiable. Also, Σ

′ is a solution to all the
CHCs (i.e., all implications are satisfiable when relations are
substituted by interpretation in Σ′). However, isMaximal

found that this formula is unsatisfiable as it decided that Σ
is maximal. This contradicts our initial assumption.
⇐We prove the contrapositive: if isMaximal decides that

the Σ is not maximal then it is not maximal. It is easy to see
that the Σext is a weaker solution than Σ when the place-
holder variables are substituted by corresponding satisfying
assignment of first SMT formula. isMaximal decides that Σ
is not maximal only when this formula is satisfiable. □

Weakening Rules. Our method for weakening returns a
set of CHCs, such that a non-vacuous solution to them is
weaker than the current solution Σ. When W is empty, it
returns the original set of CHCs 𝑆 . Otherwise,

• in 𝑆 , it substitutes each relation outside of W by its
interpretation in Σ and then rewrites 𝑆 to conform to
the CHC structure;
• it adds the following two additional CHCs for each
relation 𝑟 (®𝑥) in W :

Σ(𝑟) (®𝑥) =⇒ 𝑟 (®𝑥)

¬Σ(𝑟) (®𝑥) ∧ 𝑝𝑟 (®𝑥) =⇒ 𝑟 (®𝑥) .

In the last additional CHC, 𝑝𝑟 is a placeholder relation that
does not appear in R . Intuitively, both additional CHCs en-
sure that the new solution is strictly weaker than the current
solution Σ(𝑟). This is because by definition of non-vacuous
solution (Def. 3.4) the solution of 𝑝𝑟 (®𝑥) does not conflict with
¬Σ(𝑟) (®𝑥). Hence, 𝑝𝑟 (®𝑥) should have at least one satisfying
assignment outside of ¬Σ(𝑟) (®𝑥). By semantics of implica-
tion, a new solution for 𝑟 should contain this assignment,
hence it is strictly weaker than Σ(𝑟) (®𝑥). It is easy to see in
the following theorem.

Theorem 5.3 (Correctness of weakeningRules). Let 𝑆 be a

system of CHCs over R , W ⊆ R be a non-empty set of relations

1213

PLDI ’21, June 20ś25, 2021, Virtual, Canada Sumanth Prabhu, Grigory Fedyukovich, Kumar Madhukar, and Deepak D’Souza

to be weakened, Σ is a solution, and 𝑆 ′ is a set of CHCs obtained

from weakeningRules. Then a non-vacuous solution 𝑆 ′ is

weaker than the solution Σ over relations in W .

Example 5.4. Recall the set of CHCs in Fig 2. Let Σ =

{ 𝒊𝒏𝒗 ↦→ 𝜆𝑥 . 𝑥 ≤ 19, 𝒇 ↦→ 𝜆𝑧 . 𝑧 = −1, 𝒈 ↦→ 𝜆𝑦 .𝑦 = 19},
and W = {𝒇 ,𝒈}. Then the new set of CHCs obtained from
weakeningRules is shown below.

𝑧 = −1 =⇒ 𝒇 (𝑧)

𝑧 ≠ −1 ∧ 𝒑𝒇 (𝑧) =⇒ 𝒇 (𝑧)

𝑦 = 19 =⇒ 𝒈(𝑦)

𝑦 ≠ 19 ∧ 𝒑𝒈 (𝑦) =⇒ 𝒈(𝑦)

𝑥 ≤ 19 ∧ 𝒇 (𝑧) ∧ 𝑥 ′ = 𝑥 + 𝑧 ∧ ¬(𝑥 ≤ 19) =⇒ ⊥

𝑥 ≤ 19 ∧ 𝒈(𝑦) ∧ ¬(𝑦 ≥ 𝑥) =⇒ ⊥

When these CHCs are given as input to solveCHCs, it re-
turns the maximal solution 𝑀2 = { 𝒊𝒏𝒗 ↦→ 𝜆𝑥 . 𝑥 ≤ 19,
𝒈 ↦→ 𝜆𝑦 .𝑦 ≥ 19, 𝒇 ↦→ 𝜆𝑧 . 𝑧 ≤ 0}. □

Our algorithm can be parameterized by a subset of rela-
tions (𝑅𝑢 ⊆ R) on which the maximality constraint should
be imposed. Then the method checks if the current non-
vacuous solution is maximal for 𝑅𝑢 , while ensuring there
exists a solution for relations in R \ 𝑅𝑢 .

6 Evaluation

Implementation. We have implemented the maximality
specification synthesis algorithm (Algorithm 5) as a tool
HornSpec on top of the FreqHorn [20, 21] framework4. The
tool has an implementation of Algorithm 1 as the default non-
vacuous CHC solving. It also supports SyGuS and SMT based
non-vacuous CHC solving by using the tools CVC4 [43]
and Z3 [16], respectively. HornSpec uses Z3 for maximality
checks. For quantifier elimination, it uses the implementation
of model-based projection [10] for LIA available in Z3.

Our evaluation goals are to confirm that:

• HornSpec can generate maximal specifications while
exhibiting good performance and
• non-vacuous specifications are generated efficiently
and can be extended to maximal specifications.

Towards this, we experimented on 65 non-linear CHC
benchmarks with integer variables and LIA operations that
represent open programs. Of these benchmarks, 43 were de-
rived from CHC-COMP [23] and 22 from common patterns
in many benchmarks from verification competitions [6]. The
CHC-COMP benchmarks are CHC-encodings of real pro-
grams automatically generated from various tools and ad-
heres to a common format. They are available in public and
generally challenging. The original benchmarks represented
verification tasks of closed programs, which is not in the
scope of this work. Hence, we modified them by removing

4The source code and benchmarks can be found at https://github.com/

freqhorn/hornspec.

arbitrary predicates and CHCs, thus generating specification
synthesis tasks. Overall, the benchmarks have 7 CHCs and
4 unknown relations in average with a standard deviation
of 1 and 0.95, respectively. The benchmark with maximum
CHCs has 28 CHCs and 12 unknown relations. Unknown
relations in these benchmarks correspond to loop invariants,
preconditions and open functions, expressible in LIA. We
performed this experiment on an Ubuntu 20.04 machine with
2.5 GHz processor and 16 GB memory. Each benchmark was
given a timeout of 100 seconds.

To the best of our knowledge, there are no tools that can
discover maximal specifications for a set of CHCs. The CHCs
in our benchmarks have inductive structure, hence the tech-
nique presented in [1] is not directly applicable. However,
our tool is parameterized by a non-vacuous CHC solving
technique and that problem can be encoded as SMT of unin-
terpreted functions and SyGuS constraints (with existential
quantification for the vacuity check; see Def. 3.4). So, for
comparison, we replaced our non-vacuous CHC solving tech-
nique by the Z3 (v4.8.8) SMT solver, and the CVC4 SyGuS
solver (v1.8 with the option –sygus-add-const-grammar),
that can accept existential quantification and is the winner
of multiple categories in SyGuS-Comp 2019 [4].

Non-Vacuous Specifications. We first report the results
of the tools for generating non-vacuous specifications. Here,
Algorithm 5 was exited after the generation of first solution
(i.e., exit after first execution of line 4 in Algorithm 5). This
experiment was done to provide a baseline in performance of
non-vacuous specification generation. Out of 65 benchmarks,
HornSpec was able to solve 60, CVC4 was able to solve 51,
and Z3 solved 23.HornSpecwas able to solve 56 benchmarks
within 30 seconds (and the rest 4 within 45 seconds), which
shows that HornSpec can get non-vacuous solution quickly.
The scatter plot in Fig. 5 shows the time taken by different
tools. CVC4was better thanHornSpec on 9 benchmarks and
Z3 on 3 with a time difference of 5 or more seconds. CVC4
was able to solve 3 benchmarks that HornSpec could not.

Maximal Specifications. We finally report the results for
complete runs of Algorithm 5, hence the discovered specifica-
tions are maximal. Out of 65 benchmarks, HornSpec solved
54, CVC4 solved 23, and Z3 only 5. We have observed that
the initial non-vacuous solution generated by HornSpec

was maximal in 39/54 benchmarks, whereas the remaining
15/54 were solved within one (12/15) or two (3/15) iterations.
This demonstrates effectiveness of our CHC solving algo-
rithm in finding initial and weaker solutions. Z3, on the other
hand, was stuck in the weakening loop in most cases, and
CVC4 was unable to find a weaker specification to the initial
non-maximal one. The scatter plot in Fig. 6 shows the time
taken by different tools. In terms of time,CVC4 outperformed
HornSpec in 9 benchmarks and Z3 in 4, however, the time

difference was less than 2 seconds in all but one benchmark.

1214

https://github.com/freqhorn/hornspec
https://github.com/freqhorn/hornspec

Specification Synthesis with Constrained Horn Clauses PLDI ’21, June 20ś25, 2021, Virtual, Canada

10−1 100 101 102

10−1

100

101

102

vs CVC4
10−1 100 101 102

10−1

100

101

102

vs Z3

Figure 5. HornSpec vs competitors in synthesizing non-
vacuous solution. Each round in a plot represents the run
times of HornSpec (x-axis) and a competitor (y-axis) in
seconds. Timeouts are placed on the boundaries.

10−1 100 101 102

10−1

100

101

102

vs CVC4
10−1 100 101 102

10−1

100

101

102

vs Z3

Figure 6. HornSpec vs competitors while proving maximal
specifications. Legends are same as in Fig. 5.

There was no benchmark on which CVC4 or Z3 was able to
find a maximal specification, but HornSpec could not.

7 Related Work

Specification synthesis is closely related to the task of logical
abduction, which is the inference of missing hypotheses for a
given premise and conclusion. It has been used for inferring
inductive invariants [17], and also to infer preconditions [11].
In the context of specification synthesis, a generalization is
needed to consider multiple abducibles over different vocabu-
laries, which [1] terms as multi-abduction. The subject of [1]
comes closest to our work as they also address the problem
of deriving most general specifications of multiple unknown
procedures to ensure a desired safety property. However,
their technique is not directly applicable for recursive CHCs,
which often arise due to complex control flow, and require
additional verification oracles. In contrast, we solve CHCs
with inductive structures as well, by the use of an iterative
algorithm capable of forward and backward reasoning.

The work on angelic verification [15] [37]) also addresses
the problem of open program verification, but depends on
a user-supplied set of acceptable specifications, and neither
guarantees maximality, nor infers inductive invariants. Our
work automatically generates maximal specifications and
inductive invariants.

The problem of precondition inference [14, 40, 44, 45] can
be posed as a specification synthesis problem by adding a re-
lation over program variables and placing it at the beginning

of the program. In comparison our problem is more general,
as we also allow unknown functions. Inferring missing spec-
ifications is addressed in [7] and [48] as well, though limited
to taint analysis. In contrast, our approach is not tied to any
particular analysis and we look at safety in general.

Another problem also referred to as specification synthesis
is addressed in [3, 5, 29, 46, 48]. These techniques infer so
called call sequences under which an assertion is safe. It is
done by analyzing functions’ bodies [3, 29], its usage [46],
or program executions [5, 48]. In these techniques, open
program refers to a class-like structure with functions. Our
work synthesizes logical specifications for functions without
bodies (also referred to as open programs), and hence is an
orthogonal work.
The technique presented in [28] infers maximal refine-

ment types in user-specified preference order. The predicates
in refinement types correspond to specifications. A maximal
solution is computed in a loop by continuously improving
the current solution until a fixed point is obtained, similar to
ours. However, in their problem setting, a procedure body is
given on which the refinement type is inferred, akin to closed
program verification. Also, they depend on a template-based
method to find necessary inductive invariants.

CHC solving has gained a lot of attention in recent years
in synthesis of inductive invariants and verification of closed
programs (i.e., programs with function calls with known bod-
ies) [18, 21, 22, 31, 32, 36, 41, 49]. But since programs of our
interest are open, the existing non-linear CHC solvers gen-
erate vacuous specifications. Hence, obtaining non-vacuous
specifications requires imposition of additional constraints
on the generated specifications.

The winning strategy synthesis of safety games [9] can be
viewed as a specification synthesis problem, albeit in a richer
logical formalism of existential Horn clauses, for which our
present technique can be extended in future.

8 Conclusion

We have presented a novel approach to discover maximal
and non-vacuous specifications. We treated this problem as
an instance of a CHC problem and proposed an iterative
generalization procedure in which non-vacuous solutions
are combined until a maximal one is found. The core of our
approach is a non-vacuous CHC solver that synthesises solu-
tions by alternating forward and backward reasoning. It uses
multi-abduction, SyGuS, and Houdini to discover inductive
lemmas for (conjunctive) invariants, and it propagates them
to the final specifications. Empirically, we demonstrated that
our technique is both effective and efficient over a wide space
of benchmarks originated from CHC-COMP. We are cur-
rently investigating the challenges and benefits in adapting
our approach for other related problems such as quantified
specifications for programs handling arrays and strategy
synthesis for safety games.

1215

PLDI ’21, June 20ś25, 2021, Virtual, Canada Sumanth Prabhu, Grigory Fedyukovich, Kumar Madhukar, and Deepak D’Souza

References
[1] Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. 2016. Maximal

specification synthesis. In POPL. ACM, 789ś801. https://doi.org/10.

1145/2914770.2837628

[2] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin,

Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando

Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-

Guided Synthesis. In FMCAD. IEEE, 1ś17. https://doi.org/10.3233/978-

1-61499-495-4-1

[3] Rajeev Alur, Pavol Cerný, P. Madhusudan, and Wonhong Nam. 2005.

Synthesis of interface specifications for Java classes. In POPL. ACM,

98ś109. https://doi.org/10.1145/1040305.1040314

[4] Rajeev Alur, Dana Fisman, Saswat Padhi, Andrew Reynolds, Rishabh

Singh, and Abhishek Udupa. 2019. SyGuS-Comp 2019. https://sygus.

org/comp/2019/results-slides.pdf.

[5] Glenn Ammons, Rastislav Bodík, and James R. Larus. 2002. Mining

specifications. In POPL. ACM, 4ś16. https://doi.org/10.1145/503272.

503275

[6] Ezio Bartocci, Dirk Beyer, Paul E. Black, Grigory Fedyukovich, Hubert

Garavel, Arnd Hartmanns, Marieke Huisman, Fabrice Kordon, Julian

Nagele, Mihaela Sighireanu, Bernhard Steffen, Martin Suda, Geoff

Sutcliffe, Tjark Weber, and Akihisa Yamada. 2019. TOOLympics 2019:

An Overview of Competitions in Formal Methods. In TACAS, Part III

(LNCS), Vol. 11429. Springer, 3ś24. https://doi.org/10.1007/978-3-030-

17502-3_1

[7] Osbert Bastani, Saswat Anand, and Alex Aiken. 2015. Specification

Inference Using Context-Free Language Reachability. In Proceedings

of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2015, Mumbai, India, January 15-17,

2015. 553ś566. https://doi.org/10.1145/2676726.2676977

[8] Nels E. Beckman and Aditya V. Nori. 2011. Probabilistic, modular and

scalable inference of typestate specifications. In PLDI. ACM, 211ś221.

https://doi.org/10.1145/1993498.1993524

[9] Tewodros A. Beyene, Swarat Chaudhuri, Corneliu Popeea, and Andrey

Rybalchenko. 2014. A constraint-based approach to solving games on

infinite graphs. In The 41st Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,

January 20-21, 2014. 221ś234. https://doi.org/10.1145/2535838.2535860

[10] Nikolaj Bjùrner and Mikolás Janota. 2015. Playing with Quantified

Satisfaction. In LPAR (short papers) (EPiC Series in Computing), Vol. 35.

EasyChair, 15ś27. https://easychair.org/publications/paper/jmM

[11] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok

Yang. 2011. Compositional Shape Analysis by Means of Bi-Abduction.

J. ACM 58, 6 (2011), 26:1ś26:66. https://doi.org/10.1145/2049697.

2049700

[12] Adrien Champion, Tomoya Chiba, Naoki Kobayashi, and Ryosuke

Sato. 2018. ICE-Based Refinement Type Discovery for Higher-Order

Functional Programs. In TACAS, Part I (LNCS), Vol. 10805. Springer,

365ś384. https://doi.org/10.1007/978-3-319-89960-2_20

[13] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano

Tonetta. 2013. Parameter synthesis with IC3. In FMCAD. IEEE, 165ś168.

http://ieeexplore.ieee.org/document/6679406/

[14] Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco

Logozzo. 2013. Automatic Inference of Necessary Preconditions. In

Verification, Model Checking, and Abstract Interpretation, 14th Inter-

national Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013.

Proceedings. 128ś148. https://doi.org/10.1007/978-3-642-35873-9_10

[15] Ankush Das, Shuvendu K. Lahiri, Akash Lal, and Yi Li. 2015. Angelic

Verification: Precise Verification Modulo Unknowns. In CAV, Part I

(LNCS), Vol. 9206. Springer, 324ś342. https://doi.org/10.1007/978-3-

319-21690-4_19

[16] Leonardo Mendonça de Moura and Nikolaj Bjùrner. 2008. Z3: An

Efficient SMT Solver. In TACAS (LNCS), Vol. 4963. Springer, 337ś340.

https://doi.org/10.1007/978-3-540-78800-3_24

[17] Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. 2013.

Inductive invariant generation via abductive inference. In OOPSLA.

ACM, 443ś456. https://doi.org/10.1145/2509136.2509511

[18] P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P.

Madhusudan. 2018. Horn-ICE learning for synthesizing invariants

and contracts. PACMPL 2, OOPSLA (2018), 131:1ś131:25. https://doi.

org/10.1145/3276501

[19] Grigory Fedyukovich, Maaz Bin Safeer Ahmad, and Rastislav Bodík.

2017. Gradual Synthesis for Static Parallelization of Single-Pass Array-

Processing Programs. In PLDI. ACM, 572ś585. https://doi.org/10.1145/

3062341.3062382

[20] Grigory Fedyukovich, Samuel Kaufman, and Rastislav Bodík. 2017.

Sampling Invariants from Frequency Distributions. In FMCAD. IEEE,

100ś107. https://doi.org/10.23919/FMCAD.2017.8102247

[21] Grigory Fedyukovich, Sumanth Prabhu, Kumar Madhukar, and Aarti

Gupta. 2018. Solving Constrained Horn Clauses Using Syntax and

Data. In FMCAD. IEEE, 170ś178. https://doi.org/10.23919/FMCAD.

2018.8603011

[22] Grigory Fedyukovich, Sumanth Prabhu, Kumar Madhukar, and Aarti

Gupta. 2019. Quantified Invariants via Syntax-Guided Synthesis. In

CAV, Part I (LNCS), Vol. 11561. Springer, 259ś277. https://doi.org/10.

1007/978-3-030-25540-4_14

[23] Grigory Fedyukovich, Philipp Rümmer, and Arie Gurfinkel. 2019. CHC-

COMP. https://chc-comp.github.io/2019/chc-comp19.pdf.

[24] Cormac Flanagan and K. Rustan M. Leino. 2001. Houdini: an An-

notation Assistant for ESC/Java. In FME (LNCS), Vol. 2021. Springer,

500ś517. https://doi.org/10.1007/3-540-45251-6_29

[25] Pierre-Loïc Garoche, Temesghen Kahsai, and Xavier Thirioux. 2016. Hi-

erarchical State Machines as Modular Horn Clauses. In HCVS (EPTCS),

Vol. 219. 15ś28. https://doi.org/10.4204/EPTCS.219.2

[26] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky,

Noam Rinetzky, Mooly Sagiv, and Yoni Zohar. 2018. Online detection

of effectively callback free objects with applications to smart contracts.

PACMPL 2, POPL (2018), 48:1ś48:28. https://doi.org/10.1145/3158136

[27] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A.

Navas. 2015. The SeaHorn Verification Framework. In CAV (LNCS),

Vol. 9206. Springer, 343ś361. https://doi.org/10.1007/978-3-319-21690-

4_20

[28] Kodai Hashimoto and Hiroshi Unno. 2015. Refinement Type Inference

via Horn Constraint Optimization. In SAS (LNCS), Sandrine Blazy

and Thomas P. Jensen (Eds.), Vol. 9291. Springer, 199ś216. https:

//doi.org/10.1007/978-3-662-48288-9_12

[29] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. 2005. Per-

missive interfaces. In ESEC/SIGSOFT FSE. ACM, 31ś40. https://doi.

org/10.1145/1081706.1081713

[30] Hossein Hojjat, Filip Konecný, Florent Garnier, Radu Iosif, Viktor Kun-

cak, and Philipp Rümmer. 2012. A Verification Toolkit for Numerical

Transition Systems - Tool Paper. In FM (LNCS), Vol. 7436. Springer,

247ś251. https://doi.org/10.1007/978-3-642-32759-9_21

[31] Hossein Hojjat and Philipp Rümmer. 2018. The ELDARICA Horn

Solver. In FMCAD. IEEE, 158ś164. https://doi.org/10.23919/FMCAD.

2018.8603013

[32] Bishoksan Kafle, John P. Gallagher, and Pierre Ganty. 2016. Solving non-

linear Horn clauses using a linear Horn clause solver. In Proceedings 3rd

Workshop on Horn Clauses for Verification and Synthesis, HCVS@ETAPS

2016, Eindhoven, The Netherlands, 3rd April 2016. 33ś48. https://doi.

org/10.4204/EPTCS.219.4

[33] Temesghen Kahsai, Rody Kersten, Philipp Rümmer, and Martin Schäf.

2017. Quantified Heap Invariants for Object-Oriented Programs. In

LPAR (EPiC Series in Computing), Vol. 46. EasyChair, 368ś384. https:

//easychair.org/publications/paper/Pmh

[34] Temesghen Kahsai, Philipp Rümmer, Huascar Sanchez, and Martin

Schäf. 2016. JayHorn: A Framework for Verifying Java programs. In

CAV, Part I (LNCS), Vol. 9779. Springer, 352ś358. https://doi.org/10.

1216

https://doi.org/10.1145/2914770.2837628
https://doi.org/10.1145/2914770.2837628
https://doi.org/10.3233/978-1-61499-495-4-1
https://doi.org/10.3233/978-1-61499-495-4-1
https://doi.org/10.1145/1040305.1040314
https://sygus.org/comp/2019/results-slides.pdf
https://sygus.org/comp/2019/results-slides.pdf
https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/503272.503275
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1145/2676726.2676977
https://doi.org/10.1145/1993498.1993524
https://doi.org/10.1145/2535838.2535860
https://easychair.org/publications/paper/jmM
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1007/978-3-319-89960-2_20
http://ieeexplore.ieee.org/document/6679406/
https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1007/978-3-319-21690-4_19
https://doi.org/10.1007/978-3-319-21690-4_19
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2509136.2509511
https://doi.org/10.1145/3276501
https://doi.org/10.1145/3276501
https://doi.org/10.1145/3062341.3062382
https://doi.org/10.1145/3062341.3062382
https://doi.org/10.23919/FMCAD.2017.8102247
https://doi.org/10.23919/FMCAD.2018.8603011
https://doi.org/10.23919/FMCAD.2018.8603011
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/978-3-030-25540-4_14
https://chc-comp.github.io/2019/chc-comp19.pdf
https://doi.org/10.1007/3-540-45251-6_29
https://doi.org/10.4204/EPTCS.219.2
https://doi.org/10.1145/3158136
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-662-48288-9_12
https://doi.org/10.1007/978-3-662-48288-9_12
https://doi.org/10.1145/1081706.1081713
https://doi.org/10.1145/1081706.1081713
https://doi.org/10.1007/978-3-642-32759-9_21
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.4204/EPTCS.219.4
https://doi.org/10.4204/EPTCS.219.4
https://easychair.org/publications/paper/Pmh
https://easychair.org/publications/paper/Pmh
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-319-41528-4_19

Specification Synthesis with Constrained Horn Clauses PLDI ’21, June 20ś25, 2021, Virtual, Canada

1007/978-3-319-41528-4_19

[35] Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. 2011. Predicate

abstraction and CEGAR for higher-order model checking. In ACM.

ACM, 222ś233. https://doi.org/10.1145/1993498.1993525

[36] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2014. SMT-

Based Model Checking for Recursive Programs. In CAV (LNCS),

Vol. 8559. 17ś34. https://doi.org/10.1007/978-3-319-08867-9_2

[37] Shuvendu K Lahiri, Akash Lal, Sridhar Gopinath, Alexander Nutz,

Vladimir Levin, Rahul Kumar, Nate Deisinger, Jakob Lichtenberg, and

Chetan Bansal. 2020. Angelic Checking within Static Driver Verifier:

Towards high-precision defects without (modeling) cost. In FMCAD.

IEEE. https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_24 169ś

178.

[38] Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. 2020.

RustHorn: CHC-Based Verification for Rust Programs. In ESOP (LNCS),

Peter Müller (Ed.), Vol. 12075. Springer, 484ś514. https://doi.org/10.

1007/978-3-030-44914-8_18

[39] Dmitry Mordvinov and Grigory Fedyukovich. 2017. Verifying Safety

of Functional Programs with Rosette/Unbound. CoRR abs/1704.04558

(2017). https://github.com/dvvrd/rosette.

[40] Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-driven

precondition inference with learned features. ACM SIGPLAN Notices

51, 6 (2016), 42ś56. https://doi.org/10.1145/2908080.2908099

[41] Sumanth Prabhu, Kumar Madhukar, and R Venkatesh. 2018. Efficiently

learning safety proofs from appearance as well as behaviours. In SAS

(LNCS), Vol. 11002. Springer, 326ś343. https://doi.org/10.1007/978-3-

319-99725-4_20

[42] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan.

2007. Static specification inference using predicate mining. In PLDI.

ACM, 123ś134. https://doi.org/10.1145/1250734.1250749

[43] Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark W. Barrett,

and Cesare Tinelli. 2019. cvc4sy: Smart and Fast Term Enumeration for

Syntax-Guided Synthesis. In CAV, Part II (LNCS), Vol. 11562. Springer,

74ś83. https://doi.org/10.1007/978-3-030-25543-5_5

[44] Sriram Sankaranarayanan, Swarat Chaudhuri, Franjo Ivancic, and

Aarti Gupta. 2008. Dynamic inference of likely data preconditions

over predicates by tree learning. In Proceedings of the ACM/SIGSOFT

International Symposium on Software Testing and Analysis, ISSTA 2008,

Seattle, WA, USA, July 20-24, 2008. 295ś306. https://doi.org/10.1145/

1390630.1390666

[45] Mohamed Nassim Seghir and Daniel Kroening. 2013. Counterexample-

Guided Precondition Inference. In ESOP (Lecture Notes in Computer

Science), Vol. 7792. Springer, 451ś471. https://doi.org/10.1007/978-3-

642-37036-6_25

[46] Sharon Shoham, Eran Yahav, Stephen Fink, and Marco Pistoia. 2007.

Static specification mining using automata-based abstractions. In IS-

STA. ACM, 174ś184. https://doi.org/10.1145/1273463.1273487

[47] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and

Manuvir Das. 2006. Perracotta: mining temporal API rules from imper-

fect traces. In ICSE. ACM, 282ś291. https://doi.org/10.1145/1134285.

1134325

[48] Haiyan Zhu, Thomas Dillig, and Isil Dillig. 2013. Automated Inference

of Library Specifications for Source-Sink Property Verification. In

Programming Languages and Systems - 11th Asian Symposium, APLAS

2013, Melbourne, VIC, Australia, December 9-11, 2013. Proceedings. 290ś

306. https://doi.org/10.1007/978-3-319-03542-0_21

[49] He Zhu, Stephen Magill, and Suresh Jagannathan. 2018. A data-driven

CHC solver. In PLDI. ACM, 707ś721. https://doi.org/10.1145/3192366.

3192416

1217

https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1145/1993498.1993525
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_24
https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1007/978-3-030-44914-8_18
https://github.com/dvvrd/rosette
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1007/978-3-319-99725-4_20
https://doi.org/10.1007/978-3-319-99725-4_20
https://doi.org/10.1145/1250734.1250749
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1145/1390630.1390666
https://doi.org/10.1145/1390630.1390666
https://doi.org/10.1007/978-3-642-37036-6_25
https://doi.org/10.1007/978-3-642-37036-6_25
https://doi.org/10.1145/1273463.1273487
https://doi.org/10.1145/1134285.1134325
https://doi.org/10.1145/1134285.1134325
https://doi.org/10.1007/978-3-319-03542-0_21
https://doi.org/10.1145/3192366.3192416
https://doi.org/10.1145/3192366.3192416

	Abstract
	1 Introduction
	2 Illustrating Example
	3 Background
	4 Non-Vacuous Specification Synthesis
	4.1 Key Conceptual Insights
	4.2 Algorithm Overview
	4.3 Inductive Weakening and Propagation
	4.4 Abductive Strengthening
	4.5 Fairness
	4.6 History-based Isomorphic Decomposition
	4.7 Vacuity Weakening and Additional Candidates

	5 Maximal Specification Synthesis
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

