
Bridging Arrays and ADTs in Recursive Proofs

Grigory Fedyukovich1(B) and Gidon Ernst2

1 Florida State University, Tallahassee, USA, grigory@cs.fsu.edu
2 Ludwig-Maximilians-University, Munich, Germany, gidon.ernst@lmu.de

Abstract. We present an approach to synthesize relational invariants
to prove equivalences between object-oriented programs. The approach
bridges the gap between recursive data types and arrays that serve to rep-
resent internal states. Our relational invariants are recursively-defined,
and thus are valid for data structures of unbounded size. Based on intro-
ducing recursion into the proofs by observing and lifting the constraints
from joint methods of the two objects, our approach is fully automatic
and can be seen as an algorithm for solving Constrained Horn Clauses
(CHC) of a specific sort. It has been implemented on top of the SMT-
based CHC solver AdtChc and evaluated on a range of benchmarks.

1 Introduction

Relational verification is widely applicable during an iterative process of soft-
ware development, when a high-level specification, a prototype implementation,
or even an arbitrary previous version is compared to the current version and
verified for the absence of newly introduced bugs. As software grows large, com-
positionality becomes a crucial factor to achieve scalability of relational verifi-
cation tasks: reasoning about pairs of entire programs is reduced to reasoning
about pairs of modules or isolated components of code. Proofs found for one
component can be reused while reasoning about another component, or even
the system in a whole. Successful examples in large-scale verification projects
include a step-wise refinement in seL4 [30] and the integration of model checking
to software development workflow in AWS C Common [11].

In this work, we represent relational verification problems over object-oriented
programs as Constrained Horn Clauses (CHC). A CHC is an implication in first-
order logic that involves a set of unknown predicates. For a system of CHCs, we
wish to find an interpretation for all predicates that validates all implications.
CHCs are used in various tasks appearing in verification, e.g., finding loop in-
variants or function summaries. For relational verification, a system of CHCs
can be constructed by pairing components of code of two versions in lockstep
and supplying it with relational pre- and post-conditions [14, 39, 44, 53]. State-
of-the-art tools for solving CHC, e.g., [9,19,21,27,32], are based on Satisfiability
Modulo Theories (SMT), e.g., [40, 47], they gradually become more robust, as
long as the programs under analysis do not have a mixed use of data structures.

Verification conditions of real-world problems involve data structures such
as arrays and Algebraic Data Types (ADTs) of unknown size, expecting the
c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 24–42, 2021.
https://doi.org/10.1007/978-3-030-72013-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_2&domain=pdf
http://orcid.org/0000-0003-1727-4043
http://orcid.org/0000-0002-3289-5764
mailto:grigory@cs.fsu.edu
mailto:gidon.ernst@lmu.de

Bridging Arrays and ADTs in Recursive Proofs 25

proofs to capture (quantified or recursive) properties over countably infinite
sets of elements. Arrays are being handled in loops and often require finding
universally-quantified loop invariants [21]. ADTs, such as lists, maps, and sets,
require reasoning by structural induction [47] and often rely on additional helper
lemmas which are difficult to be synthesized automatically. For relational veri-
fication tasks, where one program is over arrays, and another is over ADTs, the
solvers should likely reason over quantified formulas and induction at the same
time, which is currently challenging for most of the automated tools.

We propose a set of new algorithms for solving CHCs constructed by pairing
programs over arrays and ADTs. Because we deal with object-oriented programs,
the data structures might be accessed and modified in any given method, and our
pairing is done for each method separately. Relational proofs are synthesized over
the data structures – they describe a relation that holds while simultaneously
traversing pairs of elements by any of the methods. Our key idea is that not all
methods may be needed for the actual synthesis. In fact, our algorithm generates
a candidate proof by bridging a single pair of methods and then validates/repairs
it on all others. In essence, we observe how pairs of inputs (or pairs of outputs)
change the states, guess a candidate relation between elements of states, and
(dis-)prove it on all other methods using an SMT-based theorem prover.

Our synthesis strategy is customized for different classes of benchmarks via
so called recipes. We present two recipes for the list ADT that are applicable,
respectively, for (1) stacks and queues, and (2) sets, multisets, and maps. They
both discover nontrivial invariants that need a recursive interpretation. We in-
dependently generate its base and recursive cases. The key point in determining
the relations is to automatically investigate how an input or an output affects the
state. Finally, we discover auxiliary lemmas that provide additional properties
about objects in isolation and help proving the inferred invariants are valid.

Importantly, in contrast to a more lightweight CHC setting over numeri-
cal theories (and even arrays) that can rely on an SMT solver to validate its
recursion-free solutions, the validation of our recursive solutions is conducted
by structural induction. We thus rely on recent advances in SMT-based fully
automated theorem proving [55] that (since recently) supports arrays. The ex-
periments have shown that the approach is reasonably fast in practice. Our
contribution, while presented in the CHC context, can be lifted on the program
analysis context and implemented in a range of robust verification tools that are
designed to support compositionality [7, 24].

The rest of the paper is structured as follows. A short outline on background
and notation is given in Sect. 2. In Sect. 3, we give an overview of the approach.
Then, Sect. 4 and Sect. 5 present our recipes. Finally, we give the evaluation
details in Sect. 6, related work in Sect. 7, and conclude the paper in Sect. 8.

2 Preliminaries

An object O = (St , Init , (Opn)n∈[1,N]) is defined over internal states St , with
initialization Init(s) denoting initial states s, and methods Opn, also called op-

26 G. Fedyukovich and G. Ernst

erations, for some identifier n (which for simplicity is treated as a natural number
in some finite interval, but later sections liberally refer to Opn by their name).
Each operation Opn(in, s, s

′, out) defines transitions between a pair of states s
and s′ for a given input in, producing an output out . Moreover, each operation
has an associated precondition pren(in, s), ranging over the input and pre-state.

In this paper, we take a syntactic approach by representing states as tuples of
variables. Specifically, we assume that Init(s) and each operation Op(in, s, s′, out)
is given as a predicate, i.e., as a characteristic formula, over the specified param-
eters, that holds for initial states, respectively, when the program can take a
particular transition. Such a formula can be obtained from the source code by
symbolic execution, and we assume that effect of loops inside operations is cap-
tured by quantified formulas, creation of which is an orthogonal problem. Hence,
our approach is language agnostic.

We assume that the programs under consideration are deterministic, and we
assume that pre(in, s) =⇒ ∃s′, out . Opn(in, s, s

′, out). Note that for determin-
istic programs, the existential quantifier in ∃s′, out . Opn(in, s, s

′, out) can be
eliminated if pre(in, s) holds as s′, out are functionally determined by in, s.

We aim at solving a relational verification problem over two objects and
reduce it to inductive invariant inference over a composition of two objects.

Definition 1. Two objects A and C are equivalent if there exists an inductive
invariant R over a composition of these objects, which satisfies all clauses below.
It connects two states StA and StC before and after each pair of operations
(OpA

n ,OpC
n)n∈[1,N].

initialization:

InitA(as) ∧ InitC(cs) =⇒ R(as, cs)

consecution:

R(as, cs) ∧OpA
1 (in, as, as

′, outA) ∧OpC
1 (in, cs, cs

′, outC) =⇒ R(as′, cs′)

. . .

R(as, cs) ∧OpA
N (in, as, as′, outA) ∧OpC

N (in, cs, cs′, outC) =⇒ R(as′, cs′)

safety: applicability:

R(as, cs) ∧ preA1 (in, as) =⇒ preC1 (in, cs)

R(as, cs) ∧ preC1 (in, as) =⇒ preA1 (in, cs)

. . .

R(as, cs) ∧ preAN (in, as) =⇒ preCN (in, cs)

R(as, cs) ∧ preCN (in, as) =⇒ preAN (in, cs)

safety: outputs:

R(as, cs) ∧OpA
1 (in, as, as

′, outA) ∧OpC
1 (in, cs, cs

′, outC) =⇒ outA=outC

. . .

R(as, cs) ∧OpA
N (in, as, as′, outA) ∧OpC

N (in, cs, cs′, outC) =⇒ outA=outC

Bridging Arrays and ADTs in Recursive Proofs 27

Implications in Def. 1 define a set of Constrained Horn Clauses (CHC) over
an uninterpreted relation symbol R. There are three types of constraints: (1) ini-
tialization, (2) consecution, and (3) safety. The third, safety, reflects the actual
relational specification, i.e., the correspondence between the programs under
analysis, in terms of the user-visible variables, namely the input in, and the
respective outputs, out and out ′. Here, safety is divided into applicability (coin-
cidence of preconditions) and equivalence of outputs, which together ensure that
the two programs are observationally equivalent. To prove that this equivalence
holds, one needs to infer a more complicated invariant R over the internal state.
For this reason, we need the initiation and the consecution constraints: whatever
happens due to each operation, the invariant is maintained, and by safety, the
programs remain observationally equivalent indefinitely.

Problem Statement: We seek an interpretation of R that satisfies all con-
straints in Def. 1 simultaneously. This conventional formulation of a CHC task
lets us to use any off-the-shelf CHC solver. However, the problem is undecidable
in general, thus no solver guarantees to handle our specific tasks. Furthermore,
existing solvers mainly support the lightweight arithmetic theories, and a few
exceptions support also ADTs [27] and arrays [21,32]. To the best of our knowl-
edge, there is no CHC solver that supports ADTs and arrays at the same time,
and there is no CHC solver that synthesizes recursive solutions.

Context: The system of CHCs ensures that A and C can be substituted
interchangeably in any calling context, and it is applicable to a wide range of
techniques for formal program development. The focus on equivalence instead of
subsumption is not essential for our work, and the presented approach works for
the asymmetric case just the same. Specifically, Liskov and Wing’s substitution
principle [36] follows (precondition strengthening is reflected by the applicability
constraints from preA to preC , and all postconditions with respect to the outputs
are equivalent). Data Refinement [15, 25] follows similarly (Def. 1 characterizes
that R is a forward simulation [37]). See Sect. 7 for more details.

3 Synthesis of Recursive Relational Invariants

In this section, we present the fundamentals of the approach to synthesize recur-
sive relational invariants for systems over arrays and ADTs that we instantiate
and illustrate on examples in the subsequent sections.

3.1 Overview

Our approach is purely symbolic and fully automatic in both stages: generating
a candidate relational invariant, and proving it correct (i.e., validating). The key
insight is an analysis of the operations joint in the constraints of Def. 1. We follow
a strategy of introducing recursion into the interpretation based on ADTs, and
by aligning the base case to initialization and the recurrence conditions to joint
operations. In particular, a relational invariant R that bridges an algebraic list xs

28 G. Fedyukovich and G. Ernst

Algorithm 1: Automated synthesis of recursive relational invariants
Input: Objects A = (as, InitA, (OpA

n)n∈N) and C = (cs, InitC , (OpC
n)n∈N),

where as, cs are the state variables, and xs is a list variable of as
Output: relational invariant R between A and C

1 R(nil, cs)← InitA(as[xs := nil]) ∧ InitC(cs);
2 φr ← true;
3 let y and ys be fresh variables;
4 while true do
5 csr ← Update(OpA

n ,OpC
n , as[xs := cons(y, ys)], cs) for some n ∈ N ;

6 φr ← φr ∧Match(OpA
m,OpC

m, as[xs := cons(y, ys)], cs, csr) for some m ∈ N ;
7 R(as[xs := cons(y, ys)], cs)← φr ∧R(as[xs := ys], csr);
8 if Validate(R, A, C) then return R;

and an array (with auxiliary variables, such as index) cs is defined recursively
over the structure of xs , which produces this general schema:

R(xs , cs) =

{
φb(cs) if xs = nil

∃ csr. φr(y, ys , cs, csr) ∧R(ys , csr) if xs = cons(y, ys)
(1)

This schema has two placeholders for constraints, φb in the base case and φr
in the recursive case, that may refer to the variables in scope (as indicated
by their respective parameter lists). Moreover, we seek a Skolem function to
eliminate the existentially-quantified state variable csr in the recursive position.
Intuitively the desired Skolem function captures the delta between two array
states that corresponds to the delta between xs and ys .

Alg. 1 gives our top-level synthesis procedure for interpretations of R. It takes
as input two objects, A and C, where as and cs are tuples variables that represent
their respective states. We refer to primed versions of these state variables to as
as ′ and cs ′, assuming that all as , cs, as ′, and cs ′ are distinct. The algorithm
works with algebraic lists specifically and thus as is assumed to have such a
component given by the state variable xs . We denote by as[xs := e] the updated
vector of variables such that xs is replaced in as by symbolic expression e.

The base case of the interpretation of R is straightforward (line 1): the al-
gorithm uses a predicate InitC and a predicate InitA in which the xs variable
is instantiated to nil. The inductive case of the interpretation of R is trickier
(line 7). Because several different operations that produce state, consume state,
or do nothing with a state are possible (see Def. 2 later in the section), some of
them might contribute to different parts of the interpretation being synthesized.
In particular, methods Match and Update are responsible for generating a
body of R. They are instantiated differently for our two recipes in Sect. 4 (ap-
plicable for stacks and queues) and Sect. 5 (applicable for (multi)sets and maps).

The first method, Update, synthesizes an updated symbolic state csr, a
tuple of symbolic expressions, to be used in the nested inductive call of R.
It can therefore be understood to compute a witness (or Skolem function) to
existential quantifier in Eq. (1) as an expression of the remaining variables in

Bridging Arrays and ADTs in Recursive Proofs 29

scope, y, ys , as, cs. The second method, Match then collects constraints φr from
suitable transitions w.r.t. this csr.

In a loop for each candidate interpretation of R, our algorithm runs an
automated SMT-based theorem prover [55] to validate it (line 8). The algorithm
can iterate several times and converges after a successful theorem-prover run.

A noteworthy feature of our framework is that Update and Match should
not necessarily be synchronized in pairs. Although csr and the result of Match
are going to be eventually combined and used in a single formula, the nonde-
terministic nature of our synthesis procedure suggests that the two ingredients
may originate from potentially non-joint operations, thereby enlarging the search
space of possible relational invariants.

3.2 Classifying Operations

Our particular strategies for choosing ingredients for the inductive interpretation
of R are based on the classification of the operations of the abstract object.

We define a partial ordering “�” on ADT states that connects constructors
discerned by the recurrence in R to the transitions of operations. With respect
to this ordering, we can for example recognize operations that leave the ADT
unchanged (“noops”, which play a special role in Sect. 5), operations that “pro-
duce” constructors and thereby enlarge the internal state by additional elements
and conversely operations that “consume” constructors. A natural choice for �
is the reflexive closure of the subterm ordering, where xs � ys for lists specifies
that xs is a suffix of ys . In general, this ordering can be used to control the result
of the synthesis for specific applications, and is a heuristic choice. A choice which
works well for our examples is that xs is a non-strict subsequence of ys .

The � ordering naturally extends to tuples of variables (and thus, states),
and lets us classify operations into the following three kinds.

Definition 2. Let Op be an operation of an abstract object. Then,

isNo(Op)
def
= ∀i, s, s′, o .Op(i, s, s′, o) =⇒ s = s′

isProd(Op)
def
= ∀i, s, s′, o .Op(i, s, s′, o) =⇒ s � s′ ∧ ¬isNo(Op)

isConsm(Op)
def
= ∀i, s, s′, o .Op(i, s, s′, o) =⇒ s′ � s ∧ ¬isNo(Op)

Example 1. The class of an operation can often be identified by a cheap syntactic
check to recognize when cons is applied to a current state or a next state variable.
In the upcoming stack example in Fig. 1, from xs′ = cons(in, xs) we have that
push is a producer operation, and from cons(out, xs′) = xs we classify pop as
consumer operation. A top operation, not shown in Fig. 1, would be recognized
as a noop (see also hasElement in the upcoming example in Fig. 3).

In the next two subsections, we introduce our particular strategies for the im-
plementations of Update and Match of Alg. 1, in reference to Def. 2. Some
operations fall into neither of the classes; or it may be hard to determine so if
they do, given that Def. 2 is semantic; and different operations may contribute

30 G. Fedyukovich and G. Ernst

different ingredients for a correct definition of R. To make use of as many oper-
ations as possible, we suggest strategies for all three classes of operations, to be
able to synthesize a relational invariant in complex cases, even when complete
information about the system is difficult to obtain.

4 Recipe 1: Linear Scan

We identify a class of problems that require scanning the arrays in implementa-
tions of stacks and queues linearly. A distinguishing feature in this class is the
presence of a numeric variable in cs through which array cells are accessed (de-
noted index in the rest of the section). We first illustrate the synthesis process
on the following example and then present the algorithmic details.

4.1 Motivating Example

Two realizations of a FIFO stack are shown in Fig. 1: one is based on linked lists,
and another is based on arrays. They share a common interface of initialization
and the two operations push and pop. For example, the encodings of pop of
ListStack and ArrStack are respectively:

OpListStack
pop (xs , xs ′, out)

= (xs 6= nil ∧ xs ′ = xs.tail ∧ out = xs.head)

= (xs = cons(out , xs ′)) (after simplification)

OpArrStack
pop (a, n, a′, n′, out)

= (n > 0 ∧ a′ = a ∧ n = n− 1 ∧ out = a[n′])

where xs 6= nil and n > 0 are the preconditions, and out captures the return
value. As an illustration, formula OpListStack

pop (s,_, 7) holds for all states s in
which pop terminates and returns 7 (by convention we use _ to denote terms
that are irrelevant in a particular context). Note also that in the implementation
of ArrStack, the popped value is not erased from the array – in order for a[n]
to be considered in the future, it has to be rewritten by some push operator. In
general, the array always contains infinitely many unknown values outside the
range of cells a[0], . . . , a[n− 1] which are never accessed.

A possible relational invariant R(xs , n, a) bridging ListStack and ArrStack

is defined as follows:

R(xs , n, a) =

{
n = 0 if xs = nil

n > 0 ∧ y = a[n− 1] ∧R(ys , n− 1, a) if xs = cons(y, ys)
(2)

Intuitively, this R captures that a list xs has the same content as the portion of
an array a between indexes 0 (including) and n (excluding). When xs is empty,
then the portion of a should be empty too, thus n = 0. Otherwise, xs is created
by cons-ing some other list ys and an element y then (1) n should be strictly
positive, and (2) y should belong to the designated portion of a.

Bridging Arrays and ADTs in Recursive Proofs 31

class ListStack:

def init():

xs = nil

def push(in):

xs = cons(in, xs)

def pop():

assert xs != nil

out = xs.head

xs = xs.tail

return out

class ArrStack:

def init():

n = 0

a = [...]

def push(in):

a[n] = in

n = n + 1

def pop():

assert n > 0

n = n - 1

return a[n]

Fig. 1: Two implementations of a FIFO stack.

cons(y, ys) ys

cs csr

OpA
n (in,out)

R R

OpC
n (in,out)

ys cons(y, ys)

csr cs

OpA
n (in,out)

R R

OpC
n (in,out)

Fig. 2: Transitions of consumer operations (left) and producer operations (right) used
to instantiate Eq. (1).

The schema in Sect. 3.1 has two placeholders for constraints, φb in the base
case and φr in the recursive case, that may refer to the variables in scope (as
indicated by their respective parameter lists). Moreover, we seek a state csr in
the recursive position. Placeholder φb is instantiated by constraints from the ini-
tialization operations, such as n = 0 from ArrStack. This alignment of base case
and initialization is not just a coincidence: many data structures start initially
empty and are gradually populated by calling operations (e.g., collections).

The purpose of φr in the recursive case of Eq. (1) is twofold. First, it connects
a portion of the ADT state (specifically y) to the array state cs, in the example
via a[n− 1] = y, and it determines a suitable array state csr as an argument of
the recursive occurrence of R. For instance, we take n− 1 for the recursive call
but leave a unchanged. This is motivated by the observation that a state where
xs = cons(y, ys) for some y, ys is consumed by pop. Using this information, the
recurrence of R must align with the corresponding array transitions, too, as
shown in Fig. 2 on the left. The constraint n > 0 is the precondition of the array
operation, whereas y = a[n− 1] follows from comparing the outputs. As shown
in Fig. 2 on the right, we can dually base the recurrence on push, which produces
a cons, i.e., a transition from ys to xs = cons(y, ys) for some y. In this case, both
transitions need to be viewed in reverse such that the respective successor states
of push now match the left side R(xs , cs) of the schema. Then, the assignment
n = n + 1 can be rewritten to yield the equation nr = n− 1.

32 G. Fedyukovich and G. Ernst

Algorithm 2: Update (recipe 1)
Input: Operations OpA and OpC ,

as[xs := cons(y, ys)] the shape of the state of A,
cs the state variables of C, assuming cs = (_, index , a) where index
and a are variables of integer and array types, resp.

Output: Updated arguments csr
1 if isProd(OpA) then
2 let csr = (_, index ′, a′) be s.t. ∀in, ∃out .OpC(in, csr, cs, out);
3 return (_, index ′, a);
4 if isConsm(OpA) then
5 let csr = (_, index ′, a′) be s.t. ∀in, ∃out .OpC(in, cs, csr, out);
6 return (_, index ′, a);

Algorithm 3: Match (recipe 1)
Input: Operations OpA and OpC ,

as[xs := cons(y, ys)] the shape of the state of A,
cs the state variables of C,
csr the updated state of C, assuming csr = (_, index ′, a) where index ′

and a are variables of integer and array types, resp.
Output: Formula φr

1 if isProd(OpA) then
2 inv ← GetLoopInvariant(index ′,OpC);
3 return inv ∧ ¬InitC(cs) ∧ y = a[index ′];
4 if isConsm(OpA) then
5 return preA

n ∧ preC
n ∧ y = a[index ′];

6 return true;

To make this intuition practical, our approach suggests a particular strat-
egy for picking operations to take constraints from, recognizing consumers and
producers more generally, and validating the guessed relational invariants using
induction and lemmas.

4.2 Algorithm Description

Alg. 2 and Alg. 3 show the implementations of Update and Match, respectively,
that suit stacks and queues. Recall that these algorithms are called from Alg. 1
and take as input pairs of nondeterministically chosen joint operations of A
and C; state variables cs of C; current version of state variables csr to be used
in the recursive call of R; and fresh variables y and ys introduced in Alg. 1 to
define the inductive rule of R. Outputs of Update and Match are respectively
an updated tuple of variables csr and a subformula ψ to be conjoined with the
inductive definition of R.

If the producing operator is picked (line 1 of Alg. 2), then we have to find a
term index ′, such that it would be transitioned by OpC to index . In particular,

Bridging Arrays and ADTs in Recursive Proofs 33

after assigning a new value to an array cell, index is monotonically updated (i.e.,
incremented like in the example in Fig. 1, or decremented). Thus, to access the
array cell containing a new value using an updated value of index , we have to
invert the arithmetic operation and obtain index −1 (for Fig. 1) or index +1 (in
the case of decrementation). Technically, in Alg. 2, it is realized by taking the
index variable from cs, through which cells of the array can be observed (e.g., n
in example in Fig. 1) and finding such a term index ′, that would be transitioned
by OpC to index . Thus, the resulting csr is composed from the same ingredients
as cs where index ′ replaces index .

If the consuming operation is picked (line 4), then we proceed in the reverse
direction and find index ′ that is a result of transitioning of index through OpC .

Alg. 3 for this recipe relies on the output of Alg. 2. Interestingly, it is sup-
ported even if csr is computed using the producer, but ψ in Alg. 3 is computed
using the consumer. Our particular strategy for the consumers in this recipe is 1)
to use the precondition for OpC , and 2) to bridge the outputs of OpA and OpC

via an equality. Alternatively, the inference via producer in line 1, in comparison,
misses important constraint in the example, as the precondition of push is trivial.
Such a situation can be mitigated by the discovery of a loop invariant (line 2)
over index , i.e., usually just using Linear Integer Arithmetic (LIA), adding it,
and blocking the initial state (to distinguish from the base case of the definition
of R) in the inductive case of the interpretation of R being synthesized. Loop
invariants are generated as follows as interpretations of predicate inv satisfying
the following two implications:

InitC(cs) =⇒ inv(cs)

inv(cs) ∧

(∨
n∈N

OpC
n (in, cs, cs

′, out)

)
=⇒ inv(cs ′)

Note that these CHCs (over LIA) can be solved by numerous existing ap-
proaches. Without a query, ideally the strongest loop invariant is desirable; how-
ever in practice it suffices to apply lightweight techniques based on forward-
propagation of initial states using quantifier elimination, followed by its inductive
subset computation [20]. This often finds an adequately-strong invariant.

Example 2. Recall the stack example in Fig. 1. Let the index ′ term be computed
by Alg. 2 via inverting the increment operation in push. Thus, it is used as an
argument of the nested call to R in the inductive case of the definition of R.
By construction, the a[index ′] cell contains a value of in, i.e., the argument of
push. At the same time, in is the argument of cons in OpA representing push,
which lets us bridge the array and ADT in the proof. To allow this, Alg. 3
takes argument y of cons from the inductive definition of R, and equates it with
a[index ′], producing y = a[n − 1]. Combining it all together, we get the final
solution, as shown in (2).

34 G. Fedyukovich and G. Ernst

class ListSet:

def init():

xs = nil

def hasElement(in):

return contains(xs, in)

def insert(in):

xs = cons(in, xs)

def erase(in):

xs = removeall(xs, in)

class ArraySet:

def init():

a = [false, false, ...]

def hasElement(in):

return a[in]

def insert(in):

a[in] = true

def erase(in):

a[in] = false

Fig. 3: Two implementations of a set, where the list is not necessarily duplicate-free.

5 Recipe 2: Noop-based synthesis

In this subsection we present a recipe that suits sets, multisets, and maps, that
are in some sense non-linear. That is, data structures do not maintain any index
variable, which is usually used to access elements. Instead, arrays are viewed as
maps, and the corresponding ADTs are equipped with recursive functions that
traverse the data structure over and over again for each input. Oftentimes, these
objects have noop operations, and our synthesis procedure makes use of them.

5.1 Motivating Example

Fig. 3 shows two implementations of a set. The list-based implementation stores
elements in the order of their insert-ions. The elements are not removed unless
erase is called explicitly. Thus, duplicate entries of the same elements are al-
lowed. The implementation uses the recursive contains and removeall functions
that both traverse the list and search for a specific element:

contains(xs , a) =

{
false if xs = nil

(a = y) ∨ contains(ys , a), if xs = cons(y, ys)

removeall(xs , a) =

nil if xs = nil

ite(a = y, removeall(ys , a),
cons(y, removeall(ys , a))) if xs = cons(y, ys)

The array-based implementation handles a map a from elements to Booleans.
Initially, all cells in a are false. Inserting and removing an element is implemented
by storing true and false to the corresponding cell respectively. The difficulty
here is to support the shown implementation of insert and erase in Fig. 3, as
well as possible variants that e.g., eagerly prune duplicate entries in the list-based
implementation (see Sect. 6).

The expected output of our synthesis procedure is as follows:

R(xs , a) =

{
∀z. ¬a[z] if xs = nil

a[y] ∧R(ys , a[y := contains(ys , x)]), if xs = cons(y, ys)
(3)

Bridging Arrays and ADTs in Recursive Proofs 35

Algorithm 4: Update (recipe 2)
Input: Operations OpA and OpC such that isNo(OpA) holds,

as[xs := cons(y, ys)] the shape of the state of A,
cs the state variables of C

Output: Updated arguments csr
1 let cs ′ be fresh variables;
2 φ← OpA(y, as[xs := ys], as[xs := ys], out) ∧OpC(y, cs ′,_, out);
3 ψ ← ∀z . z 6= y =⇒ ∃out ′ .OpC(z, cs,_, out ′) ∧OpC(z, cs ′,_, out ′);
4 assume QE(∃out . φ ∧ ψ) simplifies to (cs ′ = csr);
5 return csr;

Algorithm 5: Match (recipe 2)
Input: Operations OpA and OpC such that isNo(OpA) holds,

as[xs := cons(y, ys)] the shape of the state of A, denoted as0 below,
cs the state variables of C,
csr the updated state of C

Output: Formula φr

1 φ← OpA(y, as0, as0, out) ∧OpC(y, cs, csr, out);
2 return simplify(QE(∃out . φ));

5.2 Algorithm details

Alg. 4 and Alg. 5 show the implementations of Update and Match, respectively,
for this recipe. The arguments csr of the nested call to R in the inductive case of
the definition of R are computed in Alg. 4 using the symbolic encoding of noop.
In the set example, noop is the hasElement operation, which allows observing
the status of the internal state and does not modify it. We furthermore assume
that the input of Opn coincides with the type of elements stored in the list, i.e.,
it is meaningful to call Opn(y, · · ·) with the list head y from the recursive case
of (1) where xs = cons(y, ys).

The key idea behind Alg. 4 is to make necessary adjustments to cs to con-
struct csr that mirror any changes that can be observed via OpA when tran-
sitioning from list xs to ys in (1). This update is determined in terms of an
auxiliary variables cs ′ that are constrained to satisfy certain input/output pairs
for the corresponding OpC , by case analysis whether the input is this partic-
ular y that is removed by the recurrence. The primary intention is to reassign
a[y] appropriately. We do this by collecting constraints φ such that the output
observed for OpC for y and cs ′ matches that of the corresponding OpA on the
smaller state with ys . This is also the key difference to Sect. 4, where we heuris-
tically keep a unchanged in the recursive call in (1). The outputs for all other
inputs z, however, are enforced to be unchanged w.r.t. the original cs, which is
expressed by the constraint ψ. We then eliminate the quantifier for out (which
is straightforward as the operations are deterministic) and rewrite the formula
to closed expressions csr for variables cs ′ as result.

36 G. Fedyukovich and G. Ernst

Example 3. Specifically for the example in Sect. 5.1, the algorithm proceeds by
symbolic execution of hasElement, yielding formulas the following constituents:

OpA = (out = contains(ys , y))

OpC = (out = a[y])

φ = (out = contains(ys , y) ∧ out = a′[y])

ψ = (∀z . y 6= z =⇒ ∃out ′ . out ′ = a′[z] ∧ out ′ = a[z])

The result ∃out . φ∧ψ of Alg. 4 is now solved for a′. The only free variables refer
to the states of the systems. Bound variables out and out ′ can be eliminated by
merging equalities over out and out ′:

a′[y] = contains(ys , y) ∧ (∀z . y 6= z =⇒ a′[z] = a[z])

The first conjunct therefore provides the update for a′[y], whereas the second
conjunct of φ states that a′[z] should not be changed at indices other than y.
After applying the axioms over the theory of arrays we get as result the following
equality, which pattern matches the expected shape in line 4:

QE(∃out . φ) ⇐⇒ (a′ = a[x := contains(ys , x)])

This transformation requires to “reverse-apply” the axiom of extensionality,
i.e., switch from the pointwise comparison of a and a′ to an equality between
the entire arrays. Note that while in general quantifier elimination is difficult,
our current implementation has a limited, but often sufficient, support that can
be extended by supplying rules to the underlying SMT-based theorem prover.

While OpA Alg. 4 predict future outputs of OpA for input y, Alg. 5 exe-
cutes OpA on the state where xs = cons(y, ys) to obtain the current output of
OpA for the same y. The generated constraint simply expresses that the output
of OpC has to match. For hasElement we obtain the following formula:

∃out . (contains(cons(y, ys), y) = out) ∧ (a[y] = out)

Unfolding the definition of contains and simplification produces true = a[x],
which is then used as the “body” of the inductive case of R in (3).

6 Evaluation

We have implemented the approach in a prototype CHC solver called AdtChc3,
relying on AdtInd [55] as an inductive prover, which in turn uses the Z3 [40]
SMT solver to quickly perform the satisfiability checks over uninterpreted func-
tions and linear arithmetic that are needed at various solving stages. AdtChc
automatically determines the appropriate synthesis recipe through analyzing the
3 The tool and benchmarks are available at https://github.com/grigoryfedyukovich/

aeval/tree/adt-chc.

https://github.com/grigoryfedyukovich/aeval/tree/adt-chc
https://github.com/grigoryfedyukovich/aeval/tree/adt-chc

Bridging Arrays and ADTs in Recursive Proofs 37

syntax of the program (i.e., presence of index variables) and is able to successfully
find relational invariants and prove them valid for all considered benchmarks.

We have evaluated the approach from Sect. 3 on different realizations of
text-book data structures. The evaluation aims at answering two questions. Is
the approach effective in the first place to discover suitable relational invariants,
and how well can the necessary induction proofs be automated? The latter is
relevant since Alg. 1 crucially depends on Validate in its refinement loop.

All our benchmarks require recursive invariants. They fall into two cate-
gories. First, stacks and queues from Sect. 4 (with variations that store values
only to even indexes of the array) are solved based on linear scan. Second,
sets, multisets, and maps, (that differ in whether, e.g., duplicate elements are
stored in the respective lists) are solved with the approach in Sect. 5. We in-
clude such variations to reflect different trade-offs when designing specifications,
and to demonstrate that our technique is reasonably flexible. The only user-
provided lemma was required for the multiset benchmark (marked ∗ in Table 1):
∀ a, xs. num(a, xs) = 0 =⇒ remove(a, xs) = xs.

Table 1: Invariant synthesis timings.

Benchmark Variant Time (s)

Stack Fig. 1 2.81
Stack even cells 2.79
Queue ordinary 40.61
Queue even cells 42.18

Set Fig. 3 2.12
Set no duplicates 19.24
Multiset∗ with remove 32.62
Multiset with clear 3.59
Map duplicates 1.95
Map no duplicates 5.83

The results from the evalua-
tion4 of both groups of benchmarks
(resp., recipes used) are shown in
Table 1. The choice which recipe to
use was made by the tool itself at
synthesis time. Total time (in sec-
onds wall-clock) is entirely domi-
nated by proof search in AdtInd,
and includes the time for SMT
queries. We remark that the time
to synthesize the relational invari-
ant is negligible in comparison to
the proof time (and the proof time
is often proportional to the number
of internal SMT calls).

Most proofs are found using the default proof strategy (the same for every
benchmark) within 20s. This is caused by the large proof search space created
by a combination of array simplification and forward rewriting. We have also
tested our tool of buggy implementations, e.g., in which the consumer opera-
tions are correct (and can be used for correct guesses of relational invariants),
but producers are not. Expectedly, the tool is unable to synthesize a relational
invariant for the whole systems in these cases.

We have already presented the relational invariants found for the stack (2),
for the stack variant that stores to even array indices only, counter n is de-
creased by 2 instead of 1 in the recursive call as expected. Relational invari-
ant R(xs ,m, n, a) for the queue benchmarks keeps two indices into the array a,
depending on the variant, the first element of the list xs is found at a[m] or a[n]

4 The evaluation was conducted on MacBook Pro, Processor: 2 GHz Intel Core i5,
Memory: 8 GB 1867 MHz LPDDR3, MacOS v10.14.6.

38 G. Fedyukovich and G. Ernst

and the recursion either increases m or decreases n. The relational invariants
for the multiset and map examples are analogous. All necessary lemmas are
automatically discovered and proved by AdtInd, as an example for the set
benchmarks: ∀ xs, s, x. R(xs, s) =⇒ contains(x, xs)=s[x].

7 Related Work

Although there exist automated techniques to synthesize relational invariants,
nothing was proposed to deal simultaneously with ADTs and arrays. Conceptu-
ally, our approach is related to SimAbs, an SMT-based algorithm to simulation
synthesis [18]. SimAbs exploits a space of possible simulations and (dis-)proves
them using an off-the-shelf decision procedure. Guesses for simulation relation
are obtained also from the source code, by matching variables from two pro-
grams. Alternatively, simulation relations can be inferred from test runs [49] or
through translation validation [41]. Our approach allows dealing with objects
(not just imperative code) and contributes several novel strategies for guessing
and proving non-trivial simulation relations.

Discovery of invariants to relate the behaviors of two programs or other ways
of establishing program equivalence is an active research area [5,14,22,23,39,44,
51]. These approaches typically reduce the relational verification problem to a
safety verification problem and rely on the existing tools—often, solvers for con-
strained Horn clauses (CHC). Currently, since ADTs and arrays are challenging
for the underlying solvers, the applicability of the approaches to our tasks are
also limited. There are decision procedures for abstraction of ADTs to lists, sets,
and multisets [52], however, these apply to certain predefined abstractions only.

Our approach can be seen as an application of Syntax-Guided Synthesis (Sy-
GuS) [2]. Strategies dependent on types of benchmarks essentially represent sets
of syntactic templates filled iteratively and checked using an SMT solver. SyGuS
is successfully used also in CHC solving [19,21] and in lemma synthesis [46,47,55].
There are only a few approaches [21, 28, 31, 55] that apply SyGuS to synthesize
formulas over ADTs or arrays/quantifier. Data-driven approaches are comple-
mentary to such syntax-based approaches, e.g., [38]. Neither deals with arrays,
quantifiers, and ADTs at the same time.

Unno et al. [53] support recursive predicates, by taking the least solution
of initialization and consecution as the definition of R, however, this may lead
to rather cumbersome inductive cases (e.g., for pop in the stack). We avoid
the problem by basing the recurrence scheme on the data structure, and infer
constraints that are well aligned to that scheme from the operations. Jennisys [34]
tackles the related problem of generating recursive implementations from an
abstract model, where the simulation relation is given.

More generally, the problem addressed in this work relates to the idea of
step-wise refinement, originally conceived by [16] and [54] as a guideline to orga-
nize software development and later studied extensively in a formal setting for
rigorous assessment of functional correctness (e.g., [1, 4, 15, 25, 29, 33, 36]). The

Bridging Arrays and ADTs in Recursive Proofs 39

standard proof technique relies on simulation relations [37] that couple the two
state spaces, which is directly reflected in the CHC system of Def. 1.

Many methods and tools support development using formal refinement [1,4,
8,17,26,29,33,45]. Large-scale verification projects that are based on refinement
include seL4 [30], FSCQ [10], Flashix [48], and CompCert [35], with high human
effort involved. Correct-by-construction correspondence between low-level code
and high-level data types helps to some extent in, e.g., [13] and Cogent [3]. Re-
cent work on “push-button” verification includes a verified TLS library [12], AWS
C Common library [11], file system [50], a hyperkernel [42], network functions [56],
where the high degree of proof automation is in part achieved by statically
bounding the state space of the systems. The latter work [56] specifically notes
how non-experts can formulate high-level correctness requirements (their speci-
fications are written in Python), as evidence that refinement-based approaches
may ultimately overcome the “specification bottleneck” [6, 43].

8 Conclusion and Outlook

We have demonstrated an approach that can fully automatically synthesize and
prove relational invariants over recursive data types and arrays. The approach
is based on introducing quantifiers and recursion into the definition of such
relations in a systematic way, and by instantiating this schema with constraints
from joint transitions of the two systems. A somewhat surprising insight was
that it is useful to view such transitions both forward and in reverse, leading to
the classification into producers and consumers as a guideline for the search.

We have presented a general synthesis algorithm and two concrete instan-
tiations for different data structures of different sorts. The approach is fully
automatic in guessing a relation and proving it correct. It relies on the recently
developed CHC solver called AdtChc which in turn is based on an SMT-based
theorem prover AdtInd featuring a support for arrays, quantifiers and structural
induction. The approach is modular and can be extended by further synthesis
strategies in the future. In particular, since based on CHC techniques, it can be
integrated with other existing CHC solvers tailored to non-ADT reasoning, and
can be used in large-scale verification frameworks such as [24] that reduce the
safety verification to CHC tasks.

Many more interesting benchmarks lend themselves for further investigation:
positional insertion and removal of lists, amortized data structures, benchmarks
based on trees or nested arrays, and ultimately some real-world software systems.
With a growing search space, it becomes more important to quickly recognize in-
correct simulation relations, e.g., by evaluation-based counter-examples (cf. [31]),
to prevent costly proof attempts. Similarly, incorporating external tools for in-
variant generation is another topic for future work.

40 G. Fedyukovich and G. Ernst

References

1. J.-R. Abrial. Modeling in Event-B: System and Software engineering. Cambridge
University Press, 2010.

2. R. Alur, R. Bodík, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-Guided Synthesis.
In FMCAD, pages 1–17. IEEE, 2013.

3. S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb, L. O’Connor, J. Beeren,
Y. Nagashima, J. Lim, T. Sewell, J. Tuong, G. Keller, T. Murray, G. Klein, and
G. Heiserer. Cogent: Verifying high-assurance file system implementations. In
ASPLOS, pages 175–188. ACM, 2016.

4. R.-J. Back and J. Wright. Refinement calculus: a systematic introduction. Springer
Science & Business Media, 2012.

5. G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product
programs. In FM, volume 6664 of LNCS, pages 200–214. Springer, 2011.

6. C. Baumann, B. Beckert, H. Blasum, and T. Bormer. Lessons learned from mi-
crokernel verification–specification is the new bottleneck. In SSV, volume 102 of
EPTCS, pages 18–32. Elsevier, 2012.

7. D. Beyer and M. E. Keremoglu. CPAchecker: A Tool for Configurable Software
Verification. In CAV, volume 6806 of LNCS, pages 184–190. Springer, 2011.

8. E. Börger. The ASM refinement method. Formal Aspects of Computing, 15(2-
3):237–257, 2003.

9. A. Champion, N. Kobayashi, and R. Sato. HoIce: An ICE-Based Non-linear Horn
Clause Solver. In APLAS, volume 11275 of LNCS, pages 146–156. Springer, 2018.

10. H. Chen, D. Ziegler, A. Chlipala, N. Zeldovich, and M. F. Kaashoek. Using Crash
Hoare Logic for certifying the FSCQ file system. In SOSP. ACM, 2015.

11. N. Chong, B. Cook, K. Kallas, K. Khazem, F. R. Monteiro, D. Schwartz-Narbonne,
S. Tasiran, M. Tautschnig, and M. R. Tuttle. Code-level model checking in the
software development workflow. In G. Rothermel and D. Bae, editors, ICSE-SEIP,
pages 11–20. ACM, 2020.

12. A. Chudnov, N. Collins, B. Cook, J. Dodds, B. Huffman, C. MacCárthaigh, S. Mag-
ill, E. Mertens, E. Mullen, S. Tasiran, et al. Continuous formal verification of
Amazon s2n. In CAV, pages 430–446. Springer, 2018.

13. C. L. Conway and C. W. Barrett. Verifying low-level implementations of high-level
datatypes. In CAV, volume 6174 of LNCS, pages 306–320. Springer, 2010.

14. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Solving Horn Clauses
on Inductive Data Types Without Induction. TPLP, 18(3-4):452–469, 2018.

15. W.-P. de Roever and K. Engelhardt. Data refinement: Model-oriented proof meth-
ods and their comparison. Cambridge University Press, 1998.

16. E. W. Dijkstra. A constructive approach to the problem of program correctness.
BIT Numerical Mathematics, 8(3):174–186, 1968.

17. G. Ernst, J. Pfähler, G. Schellhorn, D. Haneberg, and W. Reif. KIV: Overview
and VerifyThis competition. Software Tools for Technology Transfer (STTT),
17(6):677–694, 2015.

18. G. Fedyukovich, A. Gurfinkel, and N. Sharygina. Automated discovery of simula-
tion between programs. In LPAR, volume 9450 of LNCS, pages 606–621. Springer,
2015.

19. G. Fedyukovich, S. Kaufman, and R. Bodík. Sampling Invariants from Frequency
Distributions. In FMCAD, pages 100–107. IEEE, 2017.

Bridging Arrays and ADTs in Recursive Proofs 41

20. G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta. Solving Constrained
Horn Clauses Using Syntax and Data. In FMCAD, pages 170–178. IEEE, 2018.

21. G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta. Quantified Invariants via
Syntax-Guided Synthesis. In CAV, Part I, volume 11561 of LNCS, pages 259–277.
Springer, 2019.

22. D. Felsing, S. Grebing, V. Klebanov, P. Rümmer, and M. Ulbrich. Automating
regression verification. In ASE, pages 349–360. ACM, 2014.

23. B. Godlin and O. Strichman. Inference rules for proving the equivalence of recursive
procedures. Acta Informatica, 45(6):403–439, 2008.

24. A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The SeaHorn Verification
Framework. In CAV, volume 9206 of LNCS, pages 343–361. Springer, 2015.

25. J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In ESOP,
pages 187–196. Springer, 1986.

26. C. A. R. Hoare. Unified theories of programming. In Mathematical methods in
program development, pages 313–367. Springer, 1997.

27. H. Hojjat and P. Rümmer. The ELDARICA Horn Solver. In FMCAD, pages
158–164. IEEE, 2018.

28. J. P. Inala, N. Polikarpova, X. Qiu, B. S. Lerner, and A. Solar-Lezama. Synthesis
of recursive ADT transformations from reusable templates. In TACAS, Part I,
volume 10205 of LNCS, pages 247–263, 2017.

29. C. B. Jones. Systematic software development using VDM, volume 2. Prentice Hall
Englewood Cliffs, 1990.

30. G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an operating-system kernel. Communications of the ACM,
53(6):107–115, 2010.

31. E. Kneuss, I. Kuraj, V. Kuncak, and P. Suter. Synthesis modulo recursive func-
tions. In OOPSLA, pages 407–426, 2013.

32. A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-Based Model Checking for
Recursive Programs. In CAV, volume 8559 of LNCS, pages 17–34, 2014.

33. L. Lamport. Specifying systems: the TLA+ language and tools for hardware and
software engineers. Addison-Wesley, 2002.

34. K. R. M. Leino and A. Milicevic. Program extrapolation with Jennisys. In OOP-
SLA, pages 411–430, 2012.

35. X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

36. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. Transactions on
Programming Languages and Systems, 16(6):1811–1841, 1994.

37. R. Milner. An algebraic definition of simulation between programs. In IJCAI,
pages 481–489, 1971.

38. A. Miltner, S. Padhi, T. Millstein, and D. Walker. Data-driven inference of repre-
sentation invariants. In PLDI, pages 1–15, 2020.

39. D. Mordvinov and G. Fedyukovich. Property Directed Inference of Relational
Invariants. In FMCAD, pages 152–160. IEEE, 2019.

40. L. D. Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, volume
4963 of LNCS, pages 337–340. Springer, 2008.

41. K. S. Namjoshi and L. D. Zuck. Witnessing program transformations. In SAS,
volume 7935 of LNCS, pages 304–323. Springer, 2013.

42. L. Nelson, H. Sigurbjarnarson, K. Zhang, D. Johnson, J. Bornholt, E. Torlak, and
X. Wang. Hyperkernel: Push-button verification of an OS kernel. In OSDI, pages
252–269, 2017.

42 G. Fedyukovich and G. Ernst

43. P. W. O’Hearn. Continuous reasoning: scaling the impact of formal methods. In
LICS, pages 13–25. ACM, 2018.

44. L. Pick, G. Fedyukovich, and A. Gupta. Exploiting Synchrony and Symmetry in
Relational Verification. In CAV, Part I, volume 10981 of LNCS, pages 164–182.
Springer, 2018.

45. M.-L. Potet and Y. Rouzaud. Composition and refinement in the B-method. In
Proc. of the B Conference, volume 1393 of LNCS, pages 46–65. Springer, 1998.

46. A. Reynolds, H. Barbosa, A. Nötzli, C. W. Barrett, and C. Tinelli. cvc4sy: Smart
and Fast Term Enumeration for Syntax-Guided Synthesis. In CAV, Part II, volume
11562 of LNCS, pages 74–83. Springer, 2019.

47. A. Reynolds and V. Kuncak. Induction for SMT solvers. In VMCAI, volume 8931
of LNCS, pages 80–98. Springer, 2015.

48. G. Schellhorn, G. Ernst, J. Pfähler, D. Haneberg, and W. Reif. Development of a
verified Flash file system. In ABZ, volume 8477 of LNCS, pages 9–24. Springer,
2014. Invited Paper.

49. R. Sharma, E. Schkufza, B. R. Churchill, and A. Aiken. Data-driven Equivalence
Checking. In OOPSLA, pages 391–406. ACM, 2013.

50. H. Sigurbjarnarson, J. Bornholt, E. Torlak, and X. Wang. Push-button verification
of file systems via crash refinement. In OSDI, pages 1–16, 2016.

51. O. Strichman and M. Veitsman. Regression verification for unbalanced recursive
functions. In FM, pages 645–658. Springer, 2016.

52. P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types
with abstractions. SIGPLAN notices, 45(1):199–210, 2010.

53. H. Unno, S. Torii, and H. Sakamoto. Automating Induction for Solving Horn
Clauses. In CAV, volume 10427 of LNCS, pages 571–591. Springer, 2017.

54. N. Wirth. Program development by stepwise refinement. Communications of the
ACM, 14(4):221–227, 1971.

55. W. Yang, G. Fedyukovich, and A. Gupta. Lemma Synthesis for Automating In-
duction over Algebraic Data Types. In CP, volume 11802 of LNCS, pages 600–617.
Springer, 2019.

56. A. Zaostrovnykh, S. Pirelli, R. Iyer, M. Rizzo, L. Pedrosa, K. Argyraki, and G. Can-
dea. Verifying software network functions with no verification expertise. In OSDI,
pages 275–290, 2019.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/

	Bridging Arrays and ADTs in Recursive Proofs
	Introduction
	Preliminaries
	Synthesis of Recursive Relational Invariants
	Overview
	Classifying Operations

	Recipe 1: Linear Scan
	Motivating Example
	Algorithm Description

	Recipe 2: Noop-based synthesis
	Motivating Example
	Algorithm details

	Evaluation
	Related Work
	Conclusion and Outlook

