
Toward Remote Object Coherence with
Compiled Object Serialization for Distributed

Computing with XML Web Services?

Robert van Engelen1, Wei Zhang1, and Madhusudhan Govindaraju2

1 Dept. of Computer Science, Florida State University
2 Dept. of Computer Science, State University of New York (SUNY) at Binghamton

engelen@cs.fsu.edu

wzhang@cs.fsu.edu

mgovinda@binghamton.edu

Abstract. Cross-platform object-level coherence in Web services-based
distributed systems and grids requires lossless serialization to ensure
programming-language specific objects are safely transmitted, manipu-
lated, and stored. However, Web services development tools often suffer
from lossy forms of XML serialization, which diminishes the usefulness
of XML Web services as a competitive approach to binary protocols.
The difficulty mainly originates from the impedance mismatch between
programming language data types and XML schema types. To overcome
this obstacle, we propose hybrid static/dynamic algorithms to support
lossless serialization of programming-language specific binary-encoded
object graphs to text-based XML trees, while staying within the lim-
its imposed by XML schema validation and the XSD type system. This
paper presents a compiler-based approach to automatically emit seri-
alization routines for C and C++ data types to XML. Experimental
results show that the presented compiler-based serialization is efficient
and performance is comparable to systems that use binary protocols.

1 Introduction

XML Web services architectures support the service-oriented computing (SOA)
paradigm, which is loosely defined as a services-based distributed computing
approach to achieve interoperability between distributed applications deployed
by disparate organizations across the Internet. Web services in essence provide
platform-neutral distributed computing environments by using W3C-approved
open XML standards. However, the technology has received limited success in
certain application areas that require strong object-level coherence due to the
impedance mismatch between programming language types and XML schema
types (XSD types) [18]. Current XML document-centric Web services imple-
mentations avoid this issue by supporting loosely-coupled data exchanges in
semi-structured XML documents. This tends to work well for business-oriented
? This work is supported in part by the US Department of Energy DEFG02-02ER25543



hierarchical data structures, but is far too simplistic for science and engineering
applications deployed on computational grids. Application-centric Web service
implementations must use carefully crafted bijective mappings to serialize in-
ternal application data to XML and vice versa using structurally precise and
semantically safe translations. In practice this has proven to be difficult given
that serialization must take place within the limits imposed by XML schema
standards and the XSD type system. This is especially hard to achieve with
XML Web services in heterogeneous distributed systems with platform-specific
nodes that may adopt different and non-standard XML serialization methods. To
avoid these issues, current Web services implementations of computational grids
often advocate the use of a single programming language with a select choice of
Web services toolkits. This severely limits the applicability of the approach to
heterogeneous systems and negates the benefits of XML Web services in general.

To address these shortcomings we developed compiler-based techniques to
generate serialization algorithms to safely translate C and C++ data structures
to XML and vice versa. Because standard C and C++ runtime environments
do not implicitly carry runtime type information on data structures and ob-
ject instantiations needed to perform the translation to XML, we used a hybrid
form of static and dynamic type analysis. Static analysis is used to build a
plausible data model at compile time for representing the possible instances of
object graphs by tracking down object relationships. This analysis is compara-
ble to static shape analysis [5] and related to points-to analysis [11]. We then
use the model to generate type-specific serialization algorithms. The generated
serialization algorithms analyze the actual runtime object graph instances using
compile-time hints to effectively serialize them in XML, and vice versa, using a
mapping that guarantees object-level coherence. We implemented the approach
in the gSOAP [13, 14] toolkit for C and C++ and tested the approach against
other toolkits such as Apache Axis for Java and .NET. Performance results are
shown for a gSOAP benchmark application on a variety of machines.

The remainder of this paper is organized as follows. Section 2 presents a
brief overview of some of the most widely used systems and protocols for data
exchange in distributed applications. The mapping of types to XML schema
is discussed in Section 3 and applied to C and C++. XML serialization for
object-level coherence is introduced in Section 4 followed by a presentation of the
serialization algorithms in Section 5. Section 6 presents performance results to
verify the efficiency of the approach on various platforms. The paper summarizes
the conclusions in Section 7.

2 Motivation and Related Work

While object serialization in binary protocols such as the Java RMI object seri-
alization protocol, XDR for Sun RPC, CORBA’s IIOP, and Microsoft’s DCOM
have been around for years, serializing objects in XML is relatively new. XML
serialization is gaining traction in Web services applications to achieve interop-
erability across programming language domains and disparate organizations. An



advantage is that XML schemas are platform-neutral in contrast to RMI and
DCOM, more expressive compared to CORBA’s IDL, and enables a wider use
of tools and systems for XML processing, storage, and retrieval.

Large-scale distributed systems require strong object coherence guarantees [2]
to ensure that objects moved, cached, and copied across a set of nodes in a dis-
tributed system preserve their structure and state. Platform-specific approaches
achieve this goal through, mostly proprietary, binary serialization protocols.
Modern programming languages such as Java and C# are intrinsically equipped
with object serialization capabilities to support remote object invocation, persis-
tent object storage, and message passing in distributed systems. The program-
ming languages support an explicit form of object-level coherence in which sep-
arately compiled applications must meet minimum requirements for consistency
by sharing object definitions (e.g. class files). Implicit object-level coherence can
be found in programming languages for distributed systems, e.g. Orca [3].

Several systems and protocols have been proposed and developed since the
early 1980s for inter- and intra-application data exchange. This section briefly re-
views some of the most widely used systems and protocols. Because the security
mechanisms of these systems is poor or at least require additional transport-
level security, they operate mostly on LANs behind firewalls. In contrast, XML
Web services consist of a set of firewall-friendly open standards for (mostly syn-
chronous) data exchange across the Internet, message-level security and authen-
tication, message routing, resource management, peer notification, etc.

Sun Microsystems’ RPC (Remote Procedure Call) compiler generates stub
and skeleton code for marshaling simple data structures between client and server
applications. The marshaling process convert application data into XDR (Ex-
ternal Data Representation) [7] for transmission. XDR is an IETF (Internet
Engineering Task Force) standard [7] for the description and encoding of data.
XDR supports a subset of C types and cannot be used to serialize pointer-based
data structures.

CORBA is a platform-independent architecture ORB (Object Request Bro-
kerage) architecture [10]. CORBA’s IIOP (Internet Inter ORB Protocol) is used
to transmit objects between CORBA applications. IIOP supports a wide variety
of data types that can be specified in IDL (Interface Description Language).
CORBA is a proprietary heavy-weight product.

Microsoft’s DCOM protocol is similar to IIOP and enables COM objects
on different Windows-based systems to communicate. Although DCOM is a
platform-independent protocol, it is mainly used within Windows environments.

Sun Microsystems’ Java RMI (Remote Method Invocation) [12] serializes
objects between Java applications. There is no limit on the type of data objects
that can be exchanged. Entire object graphs can be serialized. Associated class
bytecodes are loaded on demand.

The Message Passing Interface (MPI) library [6] is a platform-independent
lower-level message passing architecture for efficient communication of numerical
data among communicating groups of nodes in a cluster or SMP machine. The
Parallel Virtual Machine (PVM) library [4] is similar to MPI.



Several Web services toolkits for SOAP/XML [15] are available for various
programming languages, such as Apache Axis for Java and C++ [1], SOAP
Lite for Perl [8], and gSOAP for C and C++ [13]. The Microsoft .NET frame-
work [9] provides a platform-dependent Web services framework for C#. The
.NET framework supports serialization of data objects managed by the CLR
(Common Language Runtime). The .NET framework includes the IIS (Internet
Information Services) Web server to deploy .NET applications as Web services.

3 Mapping C and C++ Types to XML Schema

The XML Web services standard supports two XML encoding styles: SOAP-
RPC encoding style and document literal style [15]. The choice of encoding style
is fixed in the WSDL (Web Services Definition Language) [16] interface definition
of a service. However, the two styles differ significantly in the expressiveness of
the serialized XML representation of application data, and consequently the
algorithms for mapping application data to XML.

3.1 RPC Encoding Style

The SOAP-RPC (Remote Procedure Calling) encoding style is a standard SOAP
1.1/1.2 [15] serialization format that can be viewed as the greatest common
denominator of types among programming-language type systems. The encoding
supports types that have equal counterparts in many programming languages,
which greatly simplifies interoperability. To this end, SOAP-RPC encoding uses a
subset of the XSD type system by limiting the choice of XML schema components
to an orthogonal subset of structures to represent primitive types, records, and
arrays. In addition, a mechanism for multi-referenced objects is available to
support the serialization of object graphs. However, there are two problems with
RPC encoding. The first is that the multiref serialization with href and id
attributes violates XML schema validation constraints, because these attributes
are not part of the schema of a typical data structure. The second problem
is that the serialization of nil references, multi-referenced objects, and (sparse)
multi-dimensional arrays is not precisely defined which leads to interoperability
problems that are often related to the use of id and href references. For example,
every object in the graph is serialized with id and href by Apache Axis [1] rather
than the multi-referenced objects alone, making it difficult to achieve object-level
coherence across programming language domains.

Table 1 shows the mapping of primitive and compound C/C++ types to
XSD types and XML schema components for SOAP-RPC encoding with gSOAP.
Mappings for Java, C#, and other mainstream languages are similar. Note that
the full set of primitive XSD types is not shown in Table 1. Additional XSD
types, such as xsd:decimal, can be represented by other types, e.g. strings. The
encoding is consequently controlled at the application layer. With gSOAP, users
can bind these XSD types to C/C++ types using a typedef, for example:

typedef char *xsd decimal;



C/C++ Type T Target XML Schema Type

primitive bool xsd:boolean

char xsd:byte

short xsd:short

int32 t xsd:int

int64 t xsd:long

float xsd:float

double xsd:double

size t xsd:unsignedLong

time t xsd:dateTime

char* xsd:string

wchar t* xsd:string

std::string xsd:string

enum xs:simpleType/restriction/enumeration

typedef T xs:simpleType/extension

compound struct xs:complexType/sequence

class xs:complexType/complexContent/extension

typedef T xs:complexType/complexContent/extension

T [nnn] SOAP-encoded array of T
T * the schema type of T

Table 1. Mapping C/C++ Types to Schema Types for SOAP-RPC Encoding

Each struct or class data member is mapped to a local xs:element of the
xs:complexType for the struct or class. See Figure 1 for an example. SOAP-
RPC encoding requires arrays to be encoded as ”SOAP encoded arrays” [15],
where each SOAP array is a type restriction of the generic SOAP array schema.
Another disadvantage of mapping C arrays to XML is the absence of a true ar-
ray type in C (arrays in C are pointers). Arrays are either declared as fixed-size
arrays or have to be declared as a struct with a pointer ptr and size field to
store the runtime array size, for example:

struct floatarray { float * ptr; int size; };

Languages that support arrays as first-class citizens, such as Java and C#, can
map arrays to SOAP arrays without forcing users to adopt mapping structures.

The XML schema standard adopted by the Web services architecture requires
support for XML namespaces. XML namespaces bind user-defined types to one
or more type spaces, similar to C++ namespaces. However, C does not support
namespaces. Therefore, an alternative mechanism is used by optionally qualifying
type names with a namespace prefix:

enum prefix name { . . . };
struct prefix name { . . . };
class prefix name { . . . };
typedef T prefix name;



C Source Declarations Target XML Schema

typedef char *xsd decimal;

enum State {OFF, ON};

struct Example
{

char *name;
xsd decimal value;
enum State state;
struct Example *list;

};

<simpleType name="State">

<restriction base="xsd:string">

<enumeration value="OFF"/>

<enumeration value="ON"/>

</restriction>

</simpleType>

<complexType name="Example">

<sequence>

<element name="name" type="xsd:string"/>

<element name="value" type="xsd:decimal"/>

<element name="state" type="tns:State"/>

<element name="list" type="tns:Example"

minOccurs="0" nillable="true"/>

</sequence>

</complexType>

Fig. 1. Example Mapping of C Type Declarations to XML Schema

Suppose for example two distinct List data structures are used by two different
services. One service uses the ’x’ namespace while the other uses ’y’, bound to
namespace URIs http://www.x.org and http://www.y.org, respectively:

//gsoap x schema namespace: http://www.x.org
struct x List { char *key, *val; struct x List *next; };
//gsoap y schema namespace: http://www.y.org
typedef xsd NMTOKENS y List;

where the latter list is a space-separated list of tokens. Namespace bindings are
used in RPC encoding and document literal styles.

3.2 Document Literal Style

A unique feature of the gSOAP toolkit is the full support for document literal
style for XML serialization, which covers the entire XML schema component
definition space. Document literal style encoding is a significant departure from
RPC encoding by promoting expressiveness as opposed to the simplicity of an
orthogonal type system. On the one hand, the expressiveness allows variant
records (unions) to be serialized and arrays can be serialized in-line instead
of separately using the SOAP array encoding format. On the other hand, the
absence of a standard out-of-band mechanism for object referencing, such as the
SOAP-RPC multi-ref encoding with href and id attributes, is a concern. This
poses additional challenges for object-level coherent serialization guarantees.

The liberation from the SOAP-RPC encoding constraints mainly affects the
mapping of structs and classes to the xs:complexType schema component. With-
out loss of generalization, the differences can be summarized as follows:



– Enables the use of XML attribute definitions within a xs:complexType,
where XML attributes can be instances of primitive XSD types and instances
of xs:simpleType;

– Allows repetitions of an xs:element in a xs:complexType sequence, i.e. el-
ements that may have multiple occurrences indicated by xs:maxOccurs>1;

– Allows the use of xs:choice and xs:any;
– Allows the use of xs:group and xs:attributeGroup. However, these macro

structures have no effect on the mapping since they can be expanded within
the schema and only serve as syntactic conveniences.

These content definitions are enabled in gSOAP using the declarations of struct
and class members as is shown in Table 2. In addition, the document literal style
supports xs:complexType extensions, i.e. a simple form of inheritance that is
accomplished with C++ class inheritance.

Attributes are declared with a special qualifier ’@’, STL containers such as
vectors are mapped to (potentially) unbounded sequences of elements, members
that point to dynamic arrays must be preceded by a int size field that holds the
runtime array size information. The use of STL containers and pointers to arrays
as shown in Table 2 is preferred over SOAP-RPC encoded arrays, see also WS-I
Basic Profile [19]. A union must be preceded by a variant record discriminator int
union that holds the index to the union field to be serialized, and void pointers

must be preceded by int type field that holds the runtime type tag value of
the object pointed to. Note that the source-code level changes are all ANSI C
compliant, except for the use of ’@’ to annotate data members for attribute
serialization.

4 XML Serialization for Object-Level Coherence

To ensure object-level coherence of serialized object graphs in XML, a referencing
mechanism in XML must be used to represent graph edges. Any explicit repre-
sentation of edges in XML will preserve the logical structure of object graphs,

Struct/Class Member m Change Target XML Schema Type

T m; @ T m; xs:attribute/@type="T"

std::vector〈T 〉 m; none xs:element/@maxOccurs="unbounded"

xs:element/@type="T"

T *m; (points to int size; xs:element/@maxOccurs="unbounded"

multiple elements) T *m; xs:element/@type="T"

union U m; int union; xs:choice
union U m;

void *m; int type; xs:element/@type="xs:anyType"

void *m;

Table 2. Data Member Changes to Support Document Literal Style Serialization



Tree DAG DAG

Shape

X

Y Z

X X

Y

X X

X

Schema

<complexType name="X">
<sequence>

<element name="y"
type="tns:Y"/>

<element name="z"
type="tns:Z"/>

...
</sequence>

</complexType>

<complexType name="X">
<sequence> ... </sequence>
<attribute name="ref"

type="REF"/>
</complexType>
<complexType name="Y">

<sequence>...</sequence>
<attribute name="id"

type="ID"/>
</complexType>

<complexType name="X">
<sequence>...</sequence>
<attribute name="id"

type="ID"/>
<attribute name="ref"

type="REF"/>
</complexType>

XML

<x>
<y>...</y>
<z>...</z>
...

</x>

<x ref="123">...</x>
...
<x ref="123">...</x>
...
<y id="123">...</y>

<x ref="456">...</x>
...
<x ref="456">...</x>
...
<x id="456">...</x>

Fig. 2. Three Different Object Referencing Graph Examples

such as DAGs and cyclic graphs. While SOAP-RPC implicitly relies on multi-
reference encoding with id and href attributes to represent edges, document
literal does not support this mechanism and the schemas must, in principle,
explicitly define xsd:ID and xsd:REF attributes for each XML component that
resembles an application data type that can be referenced.

Consider the three different object referencing graphs shown in Figure 2.
Regular tree-based XML document configurations do not require an explicit ref-
erencing mechanism, because graph nodes are simply nested in XML. DAGs and
cyclic graphs must be serialized using explicit references to preserve their logical
structure, e.g. using id and ref attributes. This requires additional declarations
of these attributes to the schema components of the objects, assuming document
literal style is used.

Suppose that organization A defines a schema for an object and organization
B wants to define object graphs where A’s object can be multi-referenced, e.g. in
a DAG. Then, A’s schema must be changed to include id and ref attributes,
assuming document literal encoding style is used. This is problematic, because
after A’s schema is published it is usually detrimental to interoperability to
change it. Note that SOAP-RPC style with implicit referencing can only be
used if A’s schema conforms to the RPC style restrictions.

It is quite common that object referencing is either completely enabled or dis-
abled depending on the application’s requirements. Therefore, explicitly adding
referencing attributes to each xs:complexType is cumbersome and introduces an
unnecessary layer of complexity. The approach is rarely (if ever) implemented. A
meta-level binding mechanism to classify pointers as reference (non-nil pointer),
unique (can be nil and is the single reference to an object), or full (to shared and



aliased objects) as in DCE IDL is only partially possible (i.e. reference or full
using the xs:nillable attribute). A default referencing mechanism with well-
defined semantics for serialization is essential to simplify cooperation between
organizations and to ultimately improve interoperability. Web services standards
have to consider implicit referencing mechanisms to support object-level coher-
ence. A first step in this direction is the publication of XML ID [17].

Another problem is the loss of floating point precision by representing numer-
ical data in XML. We can avoid this by using hexadecimal or base64-encoded
IEEE 754 floating point values. Encoding and decoding must be performed by
a pre-processor prior to XML validation to avoid flagging the values as invalid.

We consider the following issues critical for achieving object-level coherence:

– For document literal encoding the biggest problem is the absence of a de-
fault referencing mechanism in XML. We suggest using id (or xml:id from
the XML ID [17]) and ref similar to SOAP 1.2 RPC encoding instead of
explicitly adding xsd:ID and xsd:REF attribute declarations to schemas;

– To prevent loss of precision, avoid serializing floats and doubles as XSD
types. We suggest using IEEE 754 floats encoded in hexadecimal or base64 by
defining a simpleType restriction of xsd:hexBinary or xsd:base64Binary,
respectively.

Furthermore, SOAP/XML processors must be aware of the referencing mech-
anism and obey the serialization rules to preserve the logical structure of an
object graph.

5 A Static-Dynamic Approach to XML Serialization

Based on the requirements for object-level coherence, we implemented serial-
ization techniques that preserve the logical structure and state of C/C++ data
structures serialized in XML. The serialization of object graphs in gSOAP is au-
tomatic and relies on a static-dynamic approach. The gSOAP soapcpp2 compiler
generates stubs and skeletons for remote procedure calling. The server applica-
tion development and deployment is shown in Figure 3a. A client application

Specification of
remote procedures

and data types

RPC skeleton code

Service application
with RPC

implementations

gSOAP
communications

module

gSOAP RPC
compiler

C/C++
compilerData type serialization code

WSDL service
description

marshal
demarshal

Client

Service

invokereturn

Development Deployment

WSDL service
description

Automated

skeleton

response

request

Provided
by User by User

Automated

Development Deployment

gSOAP RPC
compiler

WSDL service
description

RPC stub code

Data type serialization code
C/C++

compiler

Client application
invokes RPC stub

gSOAP
communications

module

marshal
demarshal

Client

Service

returninvoke stub

Specification of
remote procedures

and data types

response

request

Provided

a) Server Configuration b) Client Configuration

Fig. 3. Developing and Deploying Server and Client Applications with gSOAP



can be build from a WSDL (using the gSOAP wsdl2h preprocessor) or directly
from the service specification, as is shown in Figure 3b (shaded box). In both
server and client application development, C/C++ type definitions are parsed
by the soapcpp2 gSOAP RPC compiler to generate the serialization routines for
each type.

5.1 Static Analysis

The soapcpp2 compiler builds a plausible data model at compile time using
static analysis by tracking down object relationships. The model represents the
possible instances of object graphs. The model is then used to generate type-
specific serialization algorithms that analyze the actual runtime object graph
instances to effectively serialize them in XML, and vice versa, using a mapping
that guarantees object-level coherence. In terms of runtime storage overhead
of the approach, every runtime pointer in a graph is stored in a hash table for
comparison to detect multi-referenced objects and graph cycles. The serialization
approach does not require the augmentation of application types with meta
information such as tags or run-time type references.

Consider for example the type declarations shown in Figure 4 and the data
model derived from it. The model shows the pointer edges necessitating the
placement of pointer-checking code in the serializer and deserializer routines.
For example, when serializing a Node instance, two addresses have to be checked
for pointer references: the Node instance address and the val member address.
Since these could be identical, type disambiguation is necessary to distinguish
the references by keeping track of pointer’s target types at run time. Also all
integer nodes must be checked in this case for inbound pointer edges, e.g. the val
member and the SSN nodes. However, no pointer checks are required for floats,
e.g. the num member. Note that val is embedded within Node, which means that
it must be annotated with an XML id attribute in the serialized stream.

The soapcpp2 compiler generates optimized serialization code based on the
model. These runtime serialization algorithms use two phases. The first phase
determines which data components belong to the data structure and which point-
ers are used to reference them. This phase is only relevant for pointer-based data

Source Code Data Model

typedef int SSN;
struct Node
{

int val;
int *ptr;
float num;
struct Node *next;

};

Node

val ptr nextnum

SSN

Fig. 4. Data Structure Declarations and Plausible Data Model



structures. The second phase emits the XML encoded form of the entire data
structure, with all sub-components of the structure serialized recursively.

5.2 Serialization Phase 1

Phase 1 traverses the runtime data structure graph by visiting each node and
by following the pointer references to all sub-nodes recursively. For each pointer
that was followed to a sub-node, it stores the pointer’s target address in a hash
table together with an identification of the data type referenced by the pointer.
The hash table key is a triple of 〈PtrLoc,PtrType,PtrSize〉, where PtrLoc is the
pointer’s target address, PtrType is the type of data referenced by the pointer,
and PtrSize is the size of the object in bytes, which is statically determined
with sizeof. The PtrSize of dynamic arrays is computed from the array size and
element size, where dynamic arrays are defined with a struct/class containing
a pointer field and size field. Node pointers are only followed through to visit
sub-nodes when the key 〈PtrLoc,PtrType,PtrSize〉 is not already contained in the
hash table. When the key is already contained in the hash table, then the hash
table entry is marked RefType=multi to indicate that a multi-referenced sub-
node has been found. Entries in the hash table are marked RefType=embedded
when a data element that is pointed to is embedded in larger structure, such
as a field of a struct or class, or an element of an array. It is noteworthy to
mention that a hash table entry is created at run time only for each pointer
in a pointer-based data structure. No additional space is required to serialize
non-pointer-based structures.

5.3 Serialization Phase 2

Phase 2 emits the data in XML by visiting each node in the data structure
graph and by following the pointer references to the sub-nodes for recursive
serialization. Multi-referenced nodes (those whose hash table entry is marked
RefType=multi) are serialized as multi-referenced objects referenced with id and
ref in the XML stream. The serialization settings can be set to SOAP 1.1/1.2
RPC encoding. Special care is taken to serialize data elements that are embedded
within structs or arrays (that is, the hash table entry for these elements are
marked RefType=embedded) to preserve object graph coherence. The embedded
property of data elements affects the placement of id and ref attributes in the
encoded form of XML.

The two-phase serialization is illustrated with the example data structure
shown in Figure 5 based on the data type declarations shown in Figure 4. The
structure consists of three nodes, two structs A and B, and a node C that contains
a single integer value. The serialization starts at the root struct stored at address
A. The first phase consists of a pass over the entire data structure to collect the
properties of the pointers used in the data structure graph and to store these in
the runtime points-to table shown in Table 3.

Each entry has a unique index ID, a hash table key 〈PtrLoc,PtrType,PtrSize〉
consisting of a target pointer address PtrLoc, pointer type PtrType, and size



Source Code Runtime Object Graph Serialized XML

struct Node A, B;
SSN C;
C = 789;
A.val = 123;
A.ptr = &B.val;
A.num = 1.4;
A.next = &B;
B.val = 456;
B.ptr = &C;
B.num = 2.3;
B.next = &A;

456

A B

val ptr next val ptr next

ACB

789
C

123 B
num

1.4
num

2.3

<Node id=" 1">

<val>123</val>

<ptr ref="# 2"/>

<num>1.4</num>

<next>

<val id=" 2">456</val>

<ptr>789</ptr>

<num>2.3</ptr>

<next ref="# 1"/>

</next>

</Node>

Fig. 5. Source Code and Resulting Object Graph in XML

PtrSize of the object pointed to, an indication of the number of references Ptr-
Count made to this target address and the type of the reference RefType, which
is either “single”, “multi”, or “embedded”.

The serialized XML output is shown in Figure 5. The root node is serialized
with id=" 1", because it is multi-referenced. The second struct at location B is
serialized in XML as a nested element of the first node struct, because it has
only a single reference. Note that the ptr field in the first struct points to the val
field in the second struct, which is stored at B. Because the val field is embedded
within a struct, the ptr is serialized with a forward pointing ref="# 2" attribute.
This ensures that the receiving side can decode the XML and backpatch the ptr
pointer field to point to the val field after the contents of the second struct are
decoded. The ptr field in the second struct points to a single-referenced integer
located at C. The XML serialized value is placed directly in an ptr element
without an ref attribute, because it is a single reference.

The gSOAP soapcpp2-generated deserialization routines decode the contents
to reconstruct the original data structure graph. The parser takes special care
in handling the id and ref attributes that resemble pointers. When the data
structure is reconstructed, temporarily unresolved references are kept in a hash
table. When the target objects of the references have been parsed and the data
is allocated in memory, the unresolved references are replaced by pointers. In

ID PtrLoc PtrType PtrSize PtrCount RefType

1 A Node 16 2 multi
2 B int 4 1 embedded
3 B Node 16 1 single
4 C int 4 1 single

Table 3. Runtime Table for Points-To Analysis



effect, the unresolved pointers in the Node structures are back-patched with
pointer values to link the separate parts of the (cyclic) graph structure together.

5.4 Handling Polymorphism

Pointers to polymorphic objects, i.e. instances of derived classes, are serialized
using C++ dynamic binding of the objects pointed to. The gSOAP soapcpp2
compiler augments classes with virtual serializers to enable pointer-based poly-
morphism based on single inheritance. The static analysis determines whether
pointers to instances need to be treated differently. If so, serialization and dese-
rialization routines are generated for runtime encoding and decoding of object
graphs that have pointers to derived instances, which requires the XML serializa-
tion of these instances with schema-compliant xsi:type attributes to hold type
information so that the decoders can accurately reconstruct the object graphs.

6 Results

The use of XML as a data transport protocol comes at a price and the seri-
alization of internal application data to XML can be subject to performance
degradation. However, our compiled approach exploits the well-formed proper-
ties of XML to construct schema-specific predictive XML parsers to decode XML
directly into application data without the need for an additional XML conver-
sion layer. This technique effectively compresses the Web services communication
stack, as shown in Figure 6 by combining XML parsing, XML validation, and
data conversion into one stage. This is made possible by the fact that XML
schemas describe context-free languages on tokens that are XML elements, at-
tributes, and character data content.

The performance in the number of roundtrip messages achieved per second
of a gSOAP benchmark client and server application is shown in Figure 7. The
performance of a round-trip message containing a struct of size 1.2K is shown
over HTTP 1.1 without using keep-alive connection persistence. The serialization

XML parsing

XML validation

XML to application
data conversion

Transport

Web services
application

XML
parsing

XML
validation

XML data
conversion

Transport

Web services application

a) Conventional Deep Stack b) gSOAP Shallow Stack

Fig. 6. Compressing the Web Services Stack



webservice SOAP test with gSOAP

calls per second Operating system gSOAP, compiler CPU

3241 Linux 2.6.5 64-bit gSOAP 2.5, gcc 3.3.3 -O2 64-bit 1x AMD FX-53 2.4GHz

2990 Linux 2.6.5 64-bit gSOAP 2.7.0c, gcc 3.3.3 -O2 64-bit 1x AMD Opteron 148 2.2GHz

2907 Linux 2.6.5 64-bit gSOAP 2.5, gcc 3.3.3 -O2 64-bit 1x AMD Opteron 148 2.2GHz

2903 Linux 2.6.5 64-bit gSOAP 2.6.2, gcc 3.3.3 -O2 64-bit 1x AMD Opteron 148 2.2GHz

2604 Linux 2.6.5 64-bit gSOAP 2.7.0c, gcc 3.3.3 -O2 32-bit 1x AMD Opteron 148 2.2GHz

2570 Linux 2.6.5 64-bit gSOAP 2.6.2, gcc 3.3.3 -O2 32-bit 1x AMD Opteron 148 2.2GHz

1988 Linux 2.6.5 64-bit gSOAP 2.5, gcc 3.3.3 64-bit 1x AMD Opteron 148 2.2GHz

2340 Linux 2.4.21 64-
bit

gSOAP 2.5, gcc 3.2.2 -O2 64-bit 2x AMD Opteron 244 1.8GHz

2130 Linux 2.4.21 64-
bit

gSOAP 2.5, gcc 2.95.4 -O2 32-bit 2x AMD Opteron 244 1.8GHz

2265 Linux 2.6.9 IA-64 gSOAP 2.5, Intel icc 8.1 -O2 2x Itanium2 1.4GHz

2070 Linux 2.6.9 IA-64 gSOAP 2.5, gcc 3.3.5 -O2 2x Itanium2 1.4GHz

1936 Linux 2.6.5 gSOAP 2.5, gcc 3.4.0 -O3 1x Pentium4 3GHz (w/o HT)

1835 Linux 2.6.8 gSOAP 2.5, gcc 3.3.3 -O2 1x Pentium4 3GHz (w/o HT)

1765 Linux 2.4.23 gSOAP 2.5, gcc 2.95.4 -O2 2x Xeon P4 3.06GHz HT

1750 Linux 2.4.23 gSOAP 2.5, gcc 3.3.1 -O2 2x Xeon P4 3.06GHz HT

1600 Linux 2.4.23 gSOAP 2.5, gcc 2.95.4 2x Xeon P4 3.06GHz HT

1530 Linux 2.4.23 gSOAP 2.5, gcc 3.3.1 2x Xeon P4 3.06GHz HT

1590 Linux 2.4.19 IA-64 gSOAP 2.5, Intel ecc 7.0 -O2 2x Itanium2 1GHz

1514 Linux 2.4.19 IA-64 gSOAP 2.5, gcc 2.96 -O2 2x Itanium2 1GHz

1540 Linux 2.4.23 gSOAP 2.5, gcc 2.95.4 -O2 1x Pentium4 2.5GHz

1430 Linux 2.4.23 gSOAP 2.5, gcc 2.95.4 1x Pentium4 2.5GHz

703 AIX 5.2 gSOAP 2.5, gcc 2.9-aix51 -O2 2x Power4+ 1.2GHz

530 SunOS 5.8 gSOAP 2.5, gcc 2.8.1 -O2 2x UltraSPARC-III 750MHz

Back to .main page

Fig. 7. Performance Results in Number of Roundtrip Messages per Second of a Bench-
mark Client/Server Application on Various Platforms

algorithms are efficient, because runtime pointer checks for serializing object
graphs are restricted to pointer-based objects only as determined from the static
data model.

7 Conclusions

Object-level coherence can be achieved with specialized serialization algorithms
to ensure data structures and object graphs preserve their structure when passed
from one XML Web service application to another or when stored and retrieved
in XML format. This paper discussed the mapping issues and presented al-
gorithms for serializing C and C++ data structures in XML, while providing
object-level coherence and performance guarantees. Object graphs are serial-
ized using carefully placed id and ref attributes. This approach works well for
SOAP RPC encoding but is less suitable for the more expressive document literal
style. Unless the Web services community converges on the XML ID standard
and a universal reference mechanism, coherence problems cannot be adequately
addressed.

8 Acknowledgments

The authors would like to thank Martin Kuba from the Supercomputing Center,
Institute of Computer Science, Masaryk University, Brno, Czechoslovakia, for
testing the performance of gSOAP on a wide range of machines.



References

1. Apache Foundation. Apache axis project. Available from
http://ws.apache.org/axis.

2. A. Bakker, M. van Steen, and A. S. Tanenbaum. From remote objects to physically
distributed objects. In Proceedings of the 7th IEEE Workshop on Future Trends
of Distributed Computing Systems, 1999.

3. H. E. Bal and M. F. Kaashoek. Object distribution in orca using compile-time
and run-time techniques. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), volume 28, pages
162–177, New York, NY, 1993. ACM Press.

4. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, and V. Sunderam.
PVM3 users’s guide and referential manual. Technical Report ORNL/TM-12187,
Oak Ridge National Laboratory, Sept. 1994.

5. R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a cyclic graph? a shape analysis
for heap-directed pointers in C. In Symposium on Principles of Programming
Languages, pages 1–15, 1996.

6. W. Gropp, R. Lusk, and A. Skjellum. Using MPI, 1994.
7. IETF. XDR specification. www.ietf.org/rfc/rfc1014.txt.
8. P. Kulchenko. SOAP::Lite for Perl. Available from http://www.soaplite.com.
9. Microsoft. .NET framework. Available from http://www.microsoft.com/net.

10. OMG. CORBA component model. http://www.omg.org.
11. B. Steensgaard. Points-to analysis in almost linear time. In Symposium on Prin-

ciples of Programming Languages, pages 32–41, 1996.
12. Sun Microsystems. Java programming language. Available from

http://java.sun.com.
13. R. van Engelen and K. Gallivan. The gSOAP toolkit for web services and peer-to-

peer computing networks. In proceedings of the 2nd IEEE International Symposium
on Cluster Computing and the Grid, pages 128–135, Berlin, Germany, May 2002.

14. R. van Engelen, G. Gupta, and S. Pant. Developing web services for C and C++.
IEEE Internet Computing, pages 53–61, March 2003.

15. W3C. SOAP 1.1 and 1.2 specifications. Available from www.w3c.org.
16. W3C. WSDL web services description language specification. Available from

www.w3c.org.
17. W3C. XML ID 1.0 specification. Available from www.w3c.org.
18. W3C. XML schema specification. Available from www.w3c.org.
19. WS-I. Basic profile bp1.0a. Available from www.ws-i.org.


