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Overview

n Basic concepts
n Programming models
n Multiprogramming
n Shared address space model

¨ UMA versus NUMA
¨ Distributed shared memory
¨ Task parallel
¨ Data parallel, vector and SIMD

n Message passing model
n Hybrid systems
n BSP model
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Parallel Programming:
Basic Concepts

n Control
¨ How is parallelism created, implicitly (hardwired) or explicitly?
¨ What orderings exist between operations?
¨ How do different threads of control synchronize?

n Naming data
¨ What data is private and what is shared?
¨ How is logically shared data accessed or communicated?

n Operations on data
¨ What are the basic operations on shared data?
¨ Which operations are considered atomic?

n Cost
¨ How do we account for the cost of each of the above to achieve 

parallelism (man hours spent, software/hardware cost)
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Parallel Programming Models

n Programming model is a conceptualization of the 
machine that a programmer uses for developing 
applications

¨ Multiprogramming model
n A set of independence tasks, no communication or synchronization 

at program level, e.g. web server sending pages to browsers
¨ Shared address space (shared memory) programming

n Tasks operate and communicate via shared data, like bulletin 
boards

¨ Message passing programming
n Explicit point-to-point communication, like phone calls (connection 

oriented) or email (connectionless, mailbox posts)
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Flynn’s Taxonomy

n Single instruction stream 
single data stream (SISD)
¨ Traditional PC system

n Single instruction stream 
multiple data stream (SIMD)
¨ Similar to MMX/SSE/AltiVec 

multimedia instruction sets
¨ MASPAR

n Multiple instruction stream 
multiple data stream (MIMD)
¨ Single program, multiple data

(SPMD) programming: each 
processor executes a copy of 
the program

MIMD
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MIMD versus SIMD
n Task parallelism, MIMD

¨ Fork-join model with thread-level parallelism and shared memory
¨ Message passing model with (distributed processing) processes

n Data parallelism, SIMD
¨ Multiple processors (or units) operate on segmented data set
¨ SIMD model with vector and pipeline machines
¨ SIMD-like multi-media extensions, e.g. MMX/SSE/Altivec

X3 X2 X1 X0

Y3 Y2 Y1 Y0

X3 Å Y3 X2 Å Y2 X1 Å Y1 X0 Å Y0

Å Å Å Å

src1

src2

dest

Vector operation X[0:3] Å Y[0:3] with SSE instruction on Pentium-4
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Task versus Data Parallel

n Task parallel (maps to high-level MIMD machine model)
¨ Task differentiation, like restaurant cook, waiter, and receptionist
¨ Communication via shared address space or message passing
¨ Synchronization is explicit (via locks and barriers)
¨ Underscores operations on private data, explicit constructs for 

communication of shared data and synchronization
n Data parallel (maps to high-level SIMD machine model)

¨ Global actions on data by tasks that execute the same code
¨ Communication via shared memory or logically shared address 

space with underlying message passing
¨ Synchronization is implicit (lock-step execution)
¨ Underscores operations on shared data, private data must be 

defined explicitly or is simply mapped onto shared data space
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A Running Example: 

n Parallel decomposition
¨ Assign N/P elements to each processor

¨ Each processor computes the partial sum

¨ One processor collects the partial sums
n Determine the data placement:

¨ Logically shared: array a, global sum A
¨ Logically private: the function f(ai) evaluations
¨ Either logically shared or private: partial sums Aj
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Programming Model 1

n Shared address space (shared memory) programming
n Task parallel, thread-based MIMD

¨ Program is a collection of threads of control
n Collectively operate on a set of shared data items

¨ Global static variables, Fortran common blocks, shared heap
n Each thread has private variables

¨ Thread state data, local variables on the runtime stack
n Threads coordinate explicitly by synchronization 

operations on shared variables, which involves
¨ Thread creation and join
¨ Reading and writing flags
¨ Using locks and semaphores (e.g. to enforce mutual exclusion)
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Programming Model 1

n Uniform memory access (UMA) shared memory machine
¨ Each processor has uniform access to memory
¨ Symmetric multiprocessors (SMP)

n No local/private memory, private variables are put in shared memory
n Cache makes access to private variables seem “local”

Shared

Private

Programming model Machine model
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Programming Model 1

n Nonuniform memory access (NUMA) shared memory machine
¨ Memory access time depends on location of data relative to processor
¨ Local access is faster

n No local/private memory, private variables are put in shared memory

Shared

Private

Programming model Machine model
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Programming Model 1

n Distributed shared memory machine (DSM)
n Logically shared address space

¨ Remote memory access is more expensive (NUMA)
¨ Remote memory access requires communication, automatic either done 

in hardware or via software layer

Shared

Private

Programming model Machine model
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Programming Model 1

Thread 1 Thread 2

shared A
shared A[1..2]
private i

A[1] := 0
for i = 1..N/2
A[1] := A[1]+f(a[i])

A := A[1] + A[2]

shared A
shared A[1..2]
private i

A[2] := 0
for i = N/2+1..N
A[2] := A[2]+f(a[i])

What could go wrong?
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Programming Model 1

Thread 1 Thread 2

A[1] := A[1]+f(a[0])
A[1] := A[1]+f(a[1])
A[1] := A[1]+f(a[2])
…
A[1] := A[1]+f(a[9])
A := A[1] + A[2]

…
A[2] := A[2]+f(a[10])
A[2] := A[2]+f(a[11])
A[2] := A[2]+f(a[12])
… 
…
A[2] := A[2]+f(a[19])

Thread 2 has not 
completed in time
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Programming Model 1

Thread 1 Thread 2

shared A
shared A[1..2]
private i

A := 0
A[1] := 0
for i = 1..N/2
A[1] := A[1]+f(a[i])

A := A + A[1]

shared A
shared A[1..2]
private i

A := 0
A[2] := 0
for i = N/2+1..N
A[2] := A[2]+f(a[i])

A := A + A[2]

What could go wrong?
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Programming Model 1

Thread 1 Thread 2

A[1] := A[1]+f(a[0])
A[1] := A[1]+f(a[1])
A[1] := A[1]+f(a[2])
…
A := A + A[1]

A[2] := A[2]+f(a[10])
A[2] := A[2]+f(a[11])
A[2] := A[2]+f(a[12])
… 
A := A + A[2]

Race condition

reg1 = A
reg2 = A[1]
reg1 = reg1 + reg2
A = reg1

reg1 = A
reg2 = A[2]
reg1 = reg1 + reg2
A = reg1

Instructions from different threads can be interleaved arbitrarily: 
the resulting value of A can be A[1], A[2], or A[1]+A[2]
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Programming Model 1

Thread 1 Thread 2

shared A
shared A[1..2]
private i

A[1] := 0
for i = 1..N/2
A[1] := A[1]+f(a[i])

atomic A := A + A[1]

shared A
shared A[1..2]
private i

A[2] := 0
for i = N/2+1..N
A[2] := A[2]+f(a[i])

atomic A := A + A[2]

Solution with atomic operations to prevent race condition
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Programming Model 1

Thread 1 Thread 2

shared A
shared A[1..2]
private i

A[1] := 0
for i = 1..N/2
A[1] := A[1]+f(a[i])

lock
A := A + A[1]
unlock

shared A
shared A[1..2]
private i

A[2] := 0
for i = N/2+1..N
A[2] := A[2]+f(a[i])

lock
A := A + A[2]
unlock

Solution with locks to ensure mutual exclusion

Critical
section

(But this can still go wrong when an FP add exception is raised, 
jumping to an exception handler without unlocking)
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Programming Model 1

Thread 1 Thread 2

shared A
private Aj
private i

Aj := 0
for i = 1..N/2
Aj := Aj+f(a[i])

lock
A := A + Aj
unlock

shared A
private Aj
private i

Aj := 0
for i = N/2+1..N
Aj := Aj+f(a[i])

lock
A := A + Aj
unlock

Note that the A[1] and A[2] are just local, so make them private

Critical
section
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Programming Model 1

Thread 1 Thread 2

shared A
private Aj
private i

Aj := 0
for i = 1..N/2
Aj := Aj+f(a[i])

lock
A := A + Aj
unlock
… := A

shared A
private Aj
private i

Aj := 0
for i = N/2+1..N
Aj := Aj+f(a[i])

lock
A := A + Aj
unlock
… := A

Critical
section

What could go wrong?
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Programming Model 1

Thread 1 Thread 2

shared A
private Aj
private i

Aj := 0
for i = 1..N/2
Aj := Aj+f(a[i])

lock
A := A + Aj
unlock
barrier
… := A

shared A
private Aj
private i

Aj := 0
for i = N/2+1..N
Aj := Aj+f(a[i])

lock
A := A + Aj
unlock
barrier
… := A

With locks, private Aj, and barrier synchronization

All procs synchronize
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Programming Model 2

n Shared address space (shared memory) programming
n Data parallel programming

¨ Single thread of control consisting of parallel operations
¨ Parallel operations are applied to (a specific segment of) a data 

structure, such as an array
n Communication is implicit
n Synchronization is implicit

shared array a, x
shared A
a := array of input data
x := f(a)
A := sum(x)
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Programming Model 2

n E.g. data parallel programming with a vector machine
n One instruction executes across multiple data elements, 

typically in a pipelined fashion

shared array a, x
shared A
a := array of input data
x := f(a)
A := sum(x)

Programming model Machine model
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Programming Model 2

n Data parallel programming with a SIMD machine
n Large number of (relatively) simple processors

¨ Like multimedia extensions (MMX/SSE/AltiVec) on uniprocessors, but 
with scalable processor grids

n A control processor issues instructions to simple processors
¨ Each processor executes the same instruction (in lock-step)
¨ Processors are selectively turned off for control flow in program

Lock-step execution by an array of processors 
with some processors temporarily turned off

REAL, DIMENSION(6) :: a,b
…
WHERE b /= 0.0

a = a/b
ENDWHERE

Fortran 90 / HPF
(High-Performance Fortran)
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Programming Model 3

n Message passing programming
n Program is a set of named processes

¨ Process has thread of control and local memory with local 
address space

n Processes communicate via explicit data transfers
¨ Messages between source and destination, where source and 

destination are named processors P0…Pn (or compute nodes)
¨ Logically shared data is explicitly partitioned over local memories
¨ Communication with send/recv via standard message passing 

libraries, such as MPI and PVM
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Programming Model 3

n Message passing programming
n Each node has a network interface

¨ Communication and synchronization via network
¨ Message latency and bandwidth is dependent on network 

topology and routing algorithms

Programming model Machine model
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Programming Model 3

n Message passing programming
n Each node has a network interface

¨ Communication and synchronization via network
¨ Message latency and bandwidth is dependent on network 

topology and routing algorithms

Programming model Machine model

M
essage passing over m

esh
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Programming Model 3

n Message passing programming
n Each node has a network interface

¨ Communication and synchronization via network
¨ Message latency and bandwidth is dependent on network 

topology and routing algorithms

Programming model Machine model

M
essage passing over hypercube
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Programming Model 3

n Message passing programming
n On shared memory machine

¨ Communication and synchronization via shared memory
¨ Message passing library copies data (messages) in memory, 

less efficient (MPI call overhead) but portable

Programming model Machine model

Message passing on a shared 
memory machine

Copy data
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Programming Model 3

Processor 1 Processor 2

A1 := 0
for i = 1..N/2
A1 := A1+f(al[i])

receive A2 from P2
A := A1 + A2
send A to P2

A2 := 0
for i = 1..N/2
A2 := A2+f(al[i])

send A2 to P1
receive A from P1

Solution with message passing, where global a[1..N] is distributed 
such that each processor has a local array al[1..N/2]
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Programming Model 3

Processor 1 Processor 2

A1 := 0
for i = 1..N/2
A1 := A1+f(al[i])

send A1 to P2
receive A2 from P2
A := A1 + A2

A2 := 0
for i = 1..N/2
A2 := A2+f(al[i])

send A2 to P1
receive A1 from P1
A := A1 + A2

Alternative solution with message passing, where global a[1..N] is 
distributed such that each processor has a local array al[1..N/2]

What could go wrong?
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Programming Model 3

Processor 1 Processor 2

A1 := 0
for i = 1..N/2
A1 := A1+f(al[i])

send A1 to P2
receive A2 from P2
A := A1 + A2

A2 := 0
for i = 1..N/2
A2 := A2+f(al[i])

send A2 to P1
receive A1 from P1
A := A1 + A2

Blocking and non-blocking versions of send/recv operations are 
available in message passing libraries: compare connection-oriented 
with rendezvous (telephone) to connectionless (mailbox)

Synchronous
blocking sends

Deadlock with synchronous blocking send operations: both processors wait 
for data to be send to a receiver that is not ready to accept the message
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Programming Model 4

n Hybrid systems: clusters of SMPs
n Shared memory within SMP, message passing outside
n Programming model with three choices:

¨ Treat as “flat” system: always use message passing, even within 
an SMP

n Advantage: ease of programming and portability
n Disadvantage: ignores SMP memory hierarchy and advantage of 

UMA shared address space
¨ Program in two layers: shared memory programming and 

message passing
n Advantage: better performance (use UMA/NUMA intelligently)
n Disadvantage: harder (and ugly!) to program

¨ Program in three layers: SIMD (e.g. SSE instructions) per core, 
shared memory programming between cores on an SMP node, 
and message passing between nodes
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Programming Model 4
Interconnect

Node 1 Node 2 Node 3 Node 4

shared a[1..N/numnodes]
private n = N/numnodes/numprocs
private x[1..n]
private lo = (pid-1)*n
private hi = lo+n
x[1..n] = f(a[lo..hi])
A[pid] := sum(x[1..n])
send A[pid] to node1

A := 0
if node=1 and pid=1

for j = 1..numnodes
for i = 1..numprocs

receive Aj from node(j)
A := A + Aj

Extra code for node 1 proc 1
Vector (SIMD) part

Processor-local part

Shared part
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Programming Model 5

n Bulk synchronous processing (BSP)
n A BSP superstep consists of three phases

1. Compute phase: processes operate on local data (also read 
access to shared memory on SMP)

2. Communication phase: all processes cooperate in exchange of 
data or reduction of global data

3. Barrier synchronization
n A parallel program is composed of supersteps

¨ Ensures that computation and communication phases are 
completed before the next superstep

n Simplicity of data parallel programming, without the 
restrictions
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Programming Model 5

n The cost of a BSP superstep s
is composed of three parts
¨ ws local computation cost of s
¨ hs is the number of messages 

send in superstep s
¨ l is the barrier cost

n The total cost of a program 
with S supersteps is

where g is the communication 
cost such that it takes gh time 
to send h messages
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Summary

n Goal is to distinguish the programming model from 
underlying hardware

n Message passing, data parallel, BSP
¨ Objective is portable correct code

n Hybrid
¨ Tuning for the architecture
¨ Objective is portable fast code
¨ Algorithm design challenge (less uniformity)
¨ Implementation challenge at all levels (fine to coarse grain)

n Blocking at loop and data level (compiler and programmer)
n SIMD vectorization at loop level (compiler and programmer)
n Shared memory programming for each node (OpenMP)
n Message passing between nodes (MPI)


