
Parallel 
Programming 

Models

HPC
Prof. Robert van Engelen



HPC2/7/17

Overview

n Basic concepts
n Programming models
n Multiprogramming
n Shared address space model

¨ UMA versus NUMA
¨ Distributed shared memory
¨ Task parallel
¨ Data parallel, vector and SIMD

n Message passing model
n Hybrid systems
n BSP model



HPC2/7/17

Parallel Programming:
Basic Concepts

n Control
¨ How is parallelism created, implicitly (hardwired) or explicitly?
¨ What orderings exist between operations?
¨ How do different threads of control synchronize?

n Naming data
¨ What data is private and what is shared?
¨ How is logically shared data accessed or communicated?

n Operations on data
¨ What are the basic operations on shared data?
¨ Which operations are considered atomic?

n Cost
¨ How do we account for the cost of each of the above to achieve 

parallelism (man hours spent, software/hardware cost)



HPC2/7/17

Parallel Programming Models

n Programming model is a conceptualization of the 
machine that a programmer uses for developing 
applications

¨ Multiprogramming model
n A set of independence tasks, no communication or synchronization 

at program level, e.g. web server sending pages to browsers
¨ Shared address space (shared memory) programming

n Tasks operate and communicate via shared data, like bulletin 
boards

¨ Message passing programming
n Explicit point-to-point communication, like phone calls (connection 

oriented) or email (connectionless, mailbox posts)



HPC2/7/17

Flynn’s Taxonomy

n Single instruction stream 
single data stream (SISD)
¨ Traditional PC system

n Single instruction stream 
multiple data stream (SIMD)
¨ Similar to MMX/SSE/AltiVec 

multimedia instruction sets
¨ MASPAR

n Multiple instruction stream 
multiple data stream (MIMD)
¨ Single program, multiple data

(SPMD) programming: each 
processor executes a copy of 
the program

MIMD

SISD SIMD

Data stream

In
st

ru
ct

io
n 

st
re

am

single

si
ng

le
m

ul
tip

le

multiple



HPC2/7/17

MIMD versus SIMD
n Task parallelism, MIMD

¨ Fork-join model with thread-level parallelism and shared memory
¨ Message passing model with (distributed processing) processes

n Data parallelism, SIMD
¨ Multiple processors (or units) operate on segmented data set
¨ SIMD model with vector and pipeline machines
¨ SIMD-like multi-media extensions, e.g. MMX/SSE/Altivec

X3 X2 X1 X0

Y3 Y2 Y1 Y0

X3 Å Y3 X2 Å Y2 X1 Å Y1 X0 Å Y0

Å Å Å Å

src1

src2

dest

Vector operation X[0:3] Å Y[0:3] with SSE instruction on Pentium-4



HPC2/7/17

Task versus Data Parallel

n Task parallel (maps to high-level MIMD machine model)
¨ Task differentiation, like restaurant cook, waiter, and receptionist
¨ Communication via shared address space or message passing
¨ Synchronization is explicit (via locks and barriers)
¨ Underscores operations on private data, explicit constructs for 

communication of shared data and synchronization
n Data parallel (maps to high-level SIMD machine model)

¨ Global actions on data by tasks that execute the same code
¨ Communication via shared memory or logically shared address 

space with underlying message passing
¨ Synchronization is implicit (lock-step execution)
¨ Underscores operations on shared data, private data must be 

defined explicitly or is simply mapped onto shared data space



HPC2/7/17

A Running Example: 

n Parallel decomposition
¨ Assign N/P elements to each processor

¨ Each processor computes the partial sum

¨ One processor collects the partial sums
n Determine the data placement:

¨ Logically shared: array a, global sum A
¨ Logically private: the function f(ai) evaluations
¨ Either logically shared or private: partial sums Aj



HPC2/7/17

Programming Model 1

n Shared address space (shared memory) programming
n Task parallel, thread-based MIMD

¨ Program is a collection of threads of control
n Collectively operate on a set of shared data items

¨ Global static variables, Fortran common blocks, shared heap
n Each thread has private variables

¨ Thread state data, local variables on the runtime stack
n Threads coordinate explicitly by synchronization 

operations on shared variables, which involves
¨ Thread creation and join
¨ Reading and writing flags
¨ Using locks and semaphores (e.g. to enforce mutual exclusion)



HPC2/7/17

Programming Model 1

n Uniform memory access (UMA) shared memory machine
¨ Each processor has uniform access to memory
¨ Symmetric multiprocessors (SMP)

n No local/private memory, private variables are put in shared memory
n Cache makes access to private variables seem “local”

Shared

Private

Programming model Machine model



HPC2/7/17

Programming Model 1

n Nonuniform memory access (NUMA) shared memory machine
¨ Memory access time depends on location of data relative to processor
¨ Local access is faster

n No local/private memory, private variables are put in shared memory

Shared

Private

Programming model Machine model



HPC2/7/17

Programming Model 1

n Distributed shared memory machine (DSM)
n Logically shared address space

¨ Remote memory access is more expensive (NUMA)
¨ Remote memory access requires communication, automatic either done 

in hardware or via software layer

Shared

Private

Programming model Machine model



HPC2/7/17

Programming Model 1

Thread 1 Thread 2

shared A
shared A[1..2]
private i

A[1] := 0
for i = 1..N/2
A[1] := A[1]+f(a[i])

A := A[1] + A[2]

shared A
shared A[1..2]
private i

A[2] := 0
for i = N/2+1..N
A[2] := A[2]+f(a[i])

What could go wrong?



HPC2/7/17

Programming Model 1

Thread 1 Thread 2

A[1] := A[1]+f(a[0])
A[1] := A[1]+f(a[1])
A[1] := A[1]+f(a[2])
…
A[1] := A[1]+f(a[9])
A := A[1] + A[2]

…
A[2] := A[2]+f(a[10])
A[2] := A[2]+f(a[11])
A[2] := A[2]+f(a[12])
… 
…
A[2] := A[2]+f(a[19])

Thread 2 has not 
completed in time



HPC2/7/17

Programming Model 1

Thread 1 Thread 2

shared A
shared A[1..2]
private i

A := 0
A[1] := 0
for i = 1..N/2
A[1] := A[1]+f(a[i])

A := A + A[1]

shared A
shared A[1..2]
private i

A := 0
A[2] := 0
for i = N/2+1..N
A[2] := A[2]+f(a[i])

A := A + A[2]

What could go wrong?



HPC2/7/17

Programming Model 1

Thread 1 Thread 2

A[1] := A[1]+f(a[0])
A[1] := A[1]+f(a[1])
A[1] := A[1]+f(a[2])
…
A := A + A[1]

A[2] := A[2]+f(a[10])
A[2] := A[2]+f(a[11])
A[2] := A[2]+f(a[12])
… 
A := A + A[2]

Race condition

reg1 = A
reg2 = A[1]
reg1 = reg1 + reg2
A = reg1

reg1 = A
reg2 = A[2]
reg1 = reg1 + reg2
A = reg1

Instructions from different threads can be interleaved arbitrarily: 
the resulting value of A can be A[1], A[2], or A[1]+A[2]



HPC2/7/17

Programming Model 1

Thread 1 Thread 2

shared A
shared A[1..2]
private i

A[1] := 0
for i = 1..N/2
A[1] := A[1]+f(a[i])

atomic A := A + A[1]

shared A
shared A[1..2]
private i

A[2] := 0
for i = N/2+1..N
A[2] := A[2]+f(a[i])

atomic A := A + A[2]

Solution with atomic operations to prevent race condition



HPC2/7/17

Programming Model 1

Thread 1 Thread 2

shared A
shared A[1..2]
private i

A[1] := 0
for i = 1..N/2
A[1] := A[1]+f(a[i])

lock
A := A + A[1]
unlock

shared A
shared A[1..2]
private i

A[2] := 0
for i = N/2+1..N
A[2] := A[2]+f(a[i])

lock
A := A + A[2]
unlock

Solution with locks to ensure mutual exclusion

Critical
section

(But this can still go wrong when an FP add exception is raised, 
jumping to an exception handler without unlocking)



HPC2/7/17

Programming Model 1

Thread 1 Thread 2

shared A
private Aj
private i

Aj := 0
for i = 1..N/2
Aj := Aj+f(a[i])

lock
A := A + Aj
unlock

shared A
private Aj
private i

Aj := 0
for i = N/2+1..N
Aj := Aj+f(a[i])

lock
A := A + Aj
unlock

Note that the A[1] and A[2] are just local, so make them private

Critical
section



HPC2/7/17

Programming Model 1

Thread 1 Thread 2

shared A
private Aj
private i

Aj := 0
for i = 1..N/2
Aj := Aj+f(a[i])

lock
A := A + Aj
unlock
… := A

shared A
private Aj
private i

Aj := 0
for i = N/2+1..N
Aj := Aj+f(a[i])

lock
A := A + Aj
unlock
… := A

Critical
section

What could go wrong?



HPC2/7/17

Programming Model 1

Thread 1 Thread 2

shared A
private Aj
private i

Aj := 0
for i = 1..N/2
Aj := Aj+f(a[i])

lock
A := A + Aj
unlock
barrier
… := A

shared A
private Aj
private i

Aj := 0
for i = N/2+1..N
Aj := Aj+f(a[i])

lock
A := A + Aj
unlock
barrier
… := A

With locks, private Aj, and barrier synchronization

All procs synchronize



HPC2/7/17

Programming Model 2

n Shared address space (shared memory) programming
n Data parallel programming

¨ Single thread of control consisting of parallel operations
¨ Parallel operations are applied to (a specific segment of) a data 

structure, such as an array
n Communication is implicit
n Synchronization is implicit

shared array a, x
shared A
a := array of input data
x := f(a)
A := sum(x)



HPC2/7/17

Programming Model 2

n E.g. data parallel programming with a vector machine
n One instruction executes across multiple data elements, 

typically in a pipelined fashion

shared array a, x
shared A
a := array of input data
x := f(a)
A := sum(x)

Programming model Machine model



HPC2/7/17

Programming Model 2

n Data parallel programming with a SIMD machine
n Large number of (relatively) simple processors

¨ Like multimedia extensions (MMX/SSE/AltiVec) on uniprocessors, but 
with scalable processor grids

n A control processor issues instructions to simple processors
¨ Each processor executes the same instruction (in lock-step)
¨ Processors are selectively turned off for control flow in program

Lock-step execution by an array of processors 
with some processors temporarily turned off

REAL, DIMENSION(6) :: a,b
…
WHERE b /= 0.0

a = a/b
ENDWHERE

Fortran 90 / HPF
(High-Performance Fortran)



HPC2/7/17

Programming Model 3

n Message passing programming
n Program is a set of named processes

¨ Process has thread of control and local memory with local 
address space

n Processes communicate via explicit data transfers
¨ Messages between source and destination, where source and 

destination are named processors P0…Pn (or compute nodes)
¨ Logically shared data is explicitly partitioned over local memories
¨ Communication with send/recv via standard message passing 

libraries, such as MPI and PVM



HPC2/7/17

Programming Model 3

n Message passing programming
n Each node has a network interface

¨ Communication and synchronization via network
¨ Message latency and bandwidth is dependent on network 

topology and routing algorithms

Programming model Machine model



HPC2/7/17

Programming Model 3

n Message passing programming
n Each node has a network interface

¨ Communication and synchronization via network
¨ Message latency and bandwidth is dependent on network 

topology and routing algorithms

Programming model Machine model

M
essage passing over m

esh



HPC2/7/17

Programming Model 3

n Message passing programming
n Each node has a network interface

¨ Communication and synchronization via network
¨ Message latency and bandwidth is dependent on network 

topology and routing algorithms

Programming model Machine model

M
essage passing over hypercube



HPC2/7/17

Programming Model 3

n Message passing programming
n On shared memory machine

¨ Communication and synchronization via shared memory
¨ Message passing library copies data (messages) in memory, 

less efficient (MPI call overhead) but portable

Programming model Machine model

Message passing on a shared 
memory machine

Copy data



HPC2/7/17

Programming Model 3

Processor 1 Processor 2

A1 := 0
for i = 1..N/2
A1 := A1+f(al[i])

receive A2 from P2
A := A1 + A2
send A to P2

A2 := 0
for i = 1..N/2
A2 := A2+f(al[i])

send A2 to P1
receive A from P1

Solution with message passing, where global a[1..N] is distributed 
such that each processor has a local array al[1..N/2]



HPC2/7/17

Programming Model 3

Processor 1 Processor 2

A1 := 0
for i = 1..N/2
A1 := A1+f(al[i])

send A1 to P2
receive A2 from P2
A := A1 + A2

A2 := 0
for i = 1..N/2
A2 := A2+f(al[i])

send A2 to P1
receive A1 from P1
A := A1 + A2

Alternative solution with message passing, where global a[1..N] is 
distributed such that each processor has a local array al[1..N/2]

What could go wrong?



HPC2/7/17

Programming Model 3

Processor 1 Processor 2

A1 := 0
for i = 1..N/2
A1 := A1+f(al[i])

send A1 to P2
receive A2 from P2
A := A1 + A2

A2 := 0
for i = 1..N/2
A2 := A2+f(al[i])

send A2 to P1
receive A1 from P1
A := A1 + A2

Blocking and non-blocking versions of send/recv operations are 
available in message passing libraries: compare connection-oriented 
with rendezvous (telephone) to connectionless (mailbox)

Synchronous
blocking sends

Deadlock with synchronous blocking send operations: both processors wait 
for data to be send to a receiver that is not ready to accept the message



HPC2/7/17

Programming Model 4

n Hybrid systems: clusters of SMPs
n Shared memory within SMP, message passing outside
n Programming model with three choices:

¨ Treat as “flat” system: always use message passing, even within 
an SMP

n Advantage: ease of programming and portability
n Disadvantage: ignores SMP memory hierarchy and advantage of 

UMA shared address space
¨ Program in two layers: shared memory programming and 

message passing
n Advantage: better performance (use UMA/NUMA intelligently)
n Disadvantage: harder (and ugly!) to program

¨ Program in three layers: SIMD (e.g. SSE instructions) per core, 
shared memory programming between cores on an SMP node, 
and message passing between nodes



HPC2/7/17

Programming Model 4
Interconnect

Node 1 Node 2 Node 3 Node 4

shared a[1..N/numnodes]
private n = N/numnodes/numprocs
private x[1..n]
private lo = (pid-1)*n
private hi = lo+n
x[1..n] = f(a[lo..hi])
A[pid] := sum(x[1..n])
send A[pid] to node1

A := 0
if node=1 and pid=1

for j = 1..numnodes
for i = 1..numprocs

receive Aj from node(j)
A := A + Aj

Extra code for node 1 proc 1
Vector (SIMD) part

Processor-local part

Shared part



HPC2/7/17

Programming Model 5

n Bulk synchronous processing (BSP)
n A BSP superstep consists of three phases

1. Compute phase: processes operate on local data (also read 
access to shared memory on SMP)

2. Communication phase: all processes cooperate in exchange of 
data or reduction of global data

3. Barrier synchronization
n A parallel program is composed of supersteps

¨ Ensures that computation and communication phases are 
completed before the next superstep

n Simplicity of data parallel programming, without the 
restrictions



HPC2/7/17

Programming Model 5

n The cost of a BSP superstep s
is composed of three parts
¨ ws local computation cost of s
¨ hs is the number of messages 

send in superstep s
¨ l is the barrier cost

n The total cost of a program 
with S supersteps is

where g is the communication 
cost such that it takes gh time 
to send h messages



HPC2/7/17

Summary

n Goal is to distinguish the programming model from 
underlying hardware

n Message passing, data parallel, BSP
¨ Objective is portable correct code

n Hybrid
¨ Tuning for the architecture
¨ Objective is portable fast code
¨ Algorithm design challenge (less uniformity)
¨ Implementation challenge at all levels (fine to coarse grain)

n Blocking at loop and data level (compiler and programmer)
n SIMD vectorization at loop level (compiler and programmer)
n Shared memory programming for each node (OpenMP)
n Message passing between nodes (MPI)


