Algorithms PART II: Partitioning and Divide & Conquer

HPC Fall 2012
Prof. Robert van Engelen
Overview

- Partitioning strategies
- Divide and conquer strategies
- Further reading
Partitioning Strategies

- **Data partitioning**
 - Perform *domain decomposition* to run parallel tasks on subdomains
 - “Scatter-compute-gather” where local computation may require communication and scatter/gather may involve computations

- **Task partitioning**
 - Decompose functions into independent subfunctions and execute the subfunctions in parallel

Figure:
- Block partitioning of a 2D domain
- Example code:
  ```
  function f(x,y)
    u=g(x)
    v=h(y)
    return u+v
  end
  ```
 - Thread 1
 - `u=g(x)`
 - `return u+v`
 - Thread 2
 - `v=h(y)`
Partitioning Strategies

- **Partitioning strategy** (data partitioning):
 1. Break up a given problem into P subproblems
 2. Solve the P subproblems concurrently
 3. Collect and combine the P solutions

- Embarrassingly parallel
 - Is a simple form of data partitioning into independent subproblems without initial work and no communication between tasks (workers)
Partitioning Example 1: Summation

- Summation of n values $X = [x_1, \ldots, x_n]$

1. Divide X into P equally-sized sublists $X_p, p = 0, \ldots, P-1$ and distribute the X_p sublists to the P processors
2. The processors sum the local parts $s_p = \sum X_p$
3. Combine the local sums $s = \sum s_p$

- Algorithms:
 1. Scatter list X using a scatter-tree
 2. Serial summation of parts
 3. Reduce local sums
Partitioning Example 1: Summation

Local summations: \(\frac{n}{P} \) steps

Total amount of data transferred: \(\frac{n}{2} \log_2(P) \)

Log_2(P) steps

Total amount of data transferred: \(P-1 \)

Log_2(P) steps

scatter (divide)

reduce (combine)

\[\text{time} \]

\[\text{log} \ 2 \ (P) \text{ steps} \]

\[\text{Total amount of data transferred:} \ \frac{n}{2} \log_2(P) \]

\[\text{Local summations:} \ \frac{n}{P} \text{ steps} \]

\[\text{Log}_2(P) \text{ steps} \]

\[\text{Total amount of data transferred:} \ P-1 \]
Partitioning Example 1: Summation

- Communication time
 - Scatter:
 \[t_{comm1} = \sum_{k=1}^{\log_2(P)} (t_{startup} + 2^{-k} n \ t_{data}) = \log_2(P) t_{start} + \frac{n(P-1)}{P} t_{data} \]
 - Reduce:
 \[t_{comm2} = \log_2(P) (t_{start} + t_{data}) \]
 - Total:
 \[t_{comm} = 2 \log_2(P) t_{start} + (\frac{n(P-1)}{P} + \log_2(P)) \ t_{data} \]

- Computation time
 - Local sum:
 \[t_{comp1} = \frac{n}{P} \]
 - Global sum:
 \[t_{comp2} = \log_2(P) \]
 - Total:
 \[t_{comp} = \frac{n}{P} + \log_2(P) \]

- Speedup, assuming \(t_{startup} = 0 \)
 - Sequential time:
 \[t_s = n-1 \]
 - Parallel time:
 \[t_P = (\frac{n(P-1)}{P} + \log_2(P)) \ t_{data} + \frac{n}{P} + \log_2(P) \]
 - Speedup:
 \[S_P = t_s/t_P = O(n/ (n + \log(P))) \]
 - Best speedup w/o communication:
 \[S_P = O(P/\log(P)) \]
General M-Ary Partitioning

Example: partitioning an image, e.g. to compute histogram by parallel reductions (summations to count color pixels)

3-level 4-ary partitioning for $4^3 = 64$ processors
Partitioning Example 2: Parallel Bucket Sort

- Bucket sort of values \([x_1, \ldots, x_n]\) bounded within a range \(x_i \in [lo \ldots hi]\)

1. Partition the \(n\) values in \(n/P\) segments
2a. Sort each segment into \(P\) small buckets (local computation)
2b. Send content of small buckets to \(P\) large buckets
3. Sort \(P\) large buckets and merge lists

Unsorted values → [Diagram showing partitioning and sorting]

Sort content of buckets and merge lists

Sorted values
Partitioning Example 2: Parallel Bucket Sort

Input: list X of length n with minimum value L and maximum U
Output: sorted list X

def function bucket(x) = P*(x-L)/(U-L);

scatter list X to local X_p lists each of size n/P
for all processors p = 0,...,P-1
for i = 0,...,n/P-1
 x = X_p[i]
 put x into small bucket b_p[bucket(x)]
all-to-all of small buckets b_p into large buckets B_p
sort values in B_p[0,...,P-1] using a sequential sort algorithm
gather X from B_p into a merged sorted list
Partitioning Example 2: Parallel Bucket Sort

- Communication time (assuming uniform distribution in X)
 - Scatter: \(t_{\text{comm}1} = \log_2(P)t_{\text{startup}} + n(P-1)/P \ t_{\text{data}} \)
 - All-to-all: \(t_{\text{comm}2} = (P-1)(t_{\text{startup}} + n/P^2 \ t_{\text{data}}) \)
 - Gather: \(t_{\text{comm}3} = \log_2(P)t_{\text{startup}} + n(P-1)/P \ t_{\text{data}} \)

- Computation time (assuming uniform distribution in X)
 - Small bucket sort: \(t_{\text{comp}1} = n/P \)
 - Large bucket sort: \(t_{\text{comp}2} = n/P \log_2(n/P) \)

- Speedup
 - Sequential time: \(t_s = n \log_2(n/P) \) (with \(P \) buckets)
 - Parallel time: \(t_P = 2 \log_2(P)t_{\text{startup}} + 2 \ n(P-1)/P \ t_{\text{data}} + \ (P-1)(t_{\text{startup}} + n/P^2 \ t_{\text{data}}) + n/P \ (1 + \log_2(n/P)) \)
 - Speedup w/o communication: \(S_P = O(P) \)
Partitioning Example 3: Barnes Hut Algorithm

\[F = \frac{G m_1 m_2}{r^2} \]

Direction of the force between two bodies at points \(p \) and \(q \)

\[\vec{F} = \frac{G m_p m_q}{r^2} \left(\frac{\vec{p} - \vec{q}}{r} \right) \]

\[F = ma \]

\[\vec{F}^t = \frac{m(\vec{v}^t + \frac{1}{2} - \vec{v}^t - \frac{1}{2})}{\Delta t} \]

\[\vec{v}^t + \frac{1}{2} = \vec{v}^t - \frac{1}{2} + \frac{\vec{F}^t \Delta t}{m} \]

\[\vec{x}^{t+1} = \vec{x}^t + \vec{v}^{t+\frac{1}{2}} \Delta t \]
Partitioning Example 3: Barnes Hut Algorithm

Particles in 2D space

Quadtree

Parent computes M and C

Particle at (x,y) and mass m

A square w/o particle is deleted

Mass of parent is sum of masses of children

$$M = \sum_{i=0}^{3} m_i$$

Center of mass

$$C = \frac{1}{M} \sum_{i=0}^{3} m_i c_i$$
Partitioning Example 3: Barnes Hut Algorithm

```plaintext
for (t = 0; t < tmax; t++)
{
    Build_tree();
    Compute_Total_Mass_Center();
    Compute_Force();
    Update_Positions();
}
```

Sequential time is $O(n \log n)$

Assuming $P = n$ then $t_P = O(\log P)$

$$C = \frac{1}{M} \sum_{i=0}^{3} m_i c_i \quad (\star)$$

$$\vec{F} = \frac{G m_p m_q}{r^2} \left(\vec{p} - \vec{q} \right) \quad (\star\star)$$

```plaintext
Compute_Force()
{
    for (i = 0; i < n; i++)
        Compute_Tree_Force(i, root)
}
Compute_Tree_Force(i, node)
{
    if (box at node contains one particle)
        $F = \text{force using eq (} \star\star \text{)}$
    else
    {
        $r = \text{distance from } i \text{ to } C \ (\star) \text{ of box}$
        $D = \text{size of box at node}$
        if ($D/r < \theta$)
            $F = \text{force using eq (} \star\star \text{) with total } M$
        else
            for (all children $c$ of box)
                $F = F + \text{Compute_Tree_Force}(i, c)$;
    }
    return $F$;
}
```
Divide and Conquer

Divide and conquer strategy (definition by JáJá 1992)
1. Break up a given problem into independent subproblems
2. Solve the subproblems recursively and concurrently
3. Collect and combine the solutions into the overall solution

In contrast to the partitioning strategy, divide and conquer uses recursive partitioning with concurrent execution to divide the problem down into independent subproblems

In deeper levels of recursion the number of active processors may increase or decrease
Divide & Conquer Example 1: Parallel Recursive Matmul

- Block matrix multiplication in recursion by decomposing matrix in 2×2 submatrices and computing the submatrices recursively

```
Mat matmul(Mat A, Mat B, int s)
{
    if (s == 1)
        C = A * B;
    else
    {
        s = s/2;
        P0 = matmul(A_p,p, B_p,p, s);
        P1 = matmul(A_p,q, B_q,p, s);
        P2 = matmul(A_p,p, B_p,q, s);
        P3 = matmul(A_p,q, B_q,q, s);
        P4 = matmul(A_q,p, B_p,p, s);
        P5 = matmul(A_q,q, B_q,p, s);
        P6 = matmul(A_q,p, B_p,q, s);
        P7 = matmul(A_q,q, B_q,q, s);
        C_p,p = P0 + P1;
        C_p,q = P2 + P3;
        C_q,p = P4 + P5;
        C_q,q = P6 + P7;
    }
    return C;
}
```

- Level of parallelism increases with deepening recursion
- Suitable for shared memory systems
Divide and Conquer Example 2: Parallel Convex Hull Algorithm

- The *planar convex hull* of a set of points $S = \{p_1, p_2, \ldots, p_n\}$ of $p_i = (x, y)$ coordinates is the smallest convex polygon that encompasses all points S on the x-y plane.
Divide and Conquer Example 2: Parallel Convex Hull Algorithm

- The upper convex hull spans points \(\{q_1, \ldots, q_s\} \subseteq S \) from point \(q_1 \) with minimum \(x \) to \(q_s \) with maximum \(x \).
- The convex hull = upper convex hull + lower convex hull
- Problem:
 - Given points \(S = \{p_1, \ldots, p_n\} \) such that \(x(p_1) < x(p_2) < \ldots < x(p_n) \), construct the upper convex hull in parallel.
Divide and Conquer Example 2: Parallel Convex Hull Algorithm

- Parallel convex hull:
 1. Divide the x-sorted points S into sets S_1 and S_2 of equal size
 2. Compute upper convex hull recursively on S_1 and S_2
 3. Combine $UCH(S_1)$ and $UCH(S_2)$ by computing the upper common tangent a to b to form $UCH(S)$
Divide and Conquer Example 2: Parallel Convex Hull Algorithm

- Base case of recursion: two points, which are returned as $UCH(S)$
- The line segment (a, b) can be computed sequentially in $O(\log n)$ time with $n = |UCH(S_1) + UCH(S_2)|$ using a binary search method
- Line segments can be implemented as linked list of points, thus $UCH(S_1)$ and $UCH(S_2)$ can be connected using one pointer change of a to point to b in $O(1)$ time

- Parallel convex hull time complexity recurrence relation:
 \[
 T(n) \leq T(n/2) + a \log n
 \]
 with solution:
 \[
 T(n) = O(\log^2 n)
 \]
- Parallel convex hull operations recurrence relation:
 \[
 W(n) \leq 2W(n/2) + b n
 \]
 with solution:
 \[
 W(n) = O(n \log n)
 \]
 which is cost optimal, since sequential algorithm is $O(n \log n)$
Divide and Conquer Example 3: First-Order Linear Recurrences

- First-order linear recurrence
 \[y_1 = b_1 \]
 \[y_i = a_i y_{i-1} + b_i \quad 2 \leq i \leq n \]

- Example applications:
 - Prefix sum \(y_i = \sum_{j=1}^{i} b_j \) is a special case of a first-order linear recurrence with \(a_i = 1 \) (the multiplicative unit element)
 - n-th order polynomial evaluation using Horner’s rule
 \[p(x) = (((b_1 x + b_2) x + b_3) x + \ldots + b_{n-1}) x + b_n \]
 is a special case of a first-order linear recurrence with \(a_i = x \)
 - Solving a bi-diagonal system \(By = c \),
 let
 \[a_i = - \frac{l_i}{d_i} \]
 \[b_i = \frac{c_i}{d_i} \]
 then solve linear recurrence to obtain solution \(y \)
Divide and Conquer Example 3: First-Order Linear Recurrences

- Rewrite \(y_i = a_i y_{i-1} + b_i \) into \(y_i = a_i (a_{i-1} y_{i-2} + b_{i-1}) + b_i \)
- This equation defines a linear recurrence of size \(n/2 \) for even index \(i \)

\[
\begin{align*}
 z_1 &= b_1', \\
 z_i &= a_i' z_{i-1} + b_i', \quad 2 \leq i \leq n/2
\end{align*}
\]

1. Let
 \[
 \begin{align*}
 a_i' &= a_{2i} a_{2i-1} \\
 b_i' &= a_{2i} b_{2i-1} + b_{2i}
 \end{align*}
 \]

2. Solve \(z_i \) recursively

3. For \(1 \leq i \leq n \) set
 \[
 \begin{align*}
 y_i &= z_{i/2} & \text{if } i \text{ is even} \\
 y_i &= a_i z_{(i-1)/2} + b_i & \text{if } i \text{ is odd} > 1 \\
 y_i &= b_1 & \text{if } i = 1
 \end{align*}
 \]
Divide and Conquer Example 3: First-Order Linear Recurrences

- Parallel algorithm:

```c
linrecsolve(a[], b[], y[], n)
{
    if (n==1)
    {
        y[1] = b[1];
        return;
    }
    forall (i = 1 to n/2)
    {
        a_new[i] = a[2*i]*a[2*i-1];
        b_new[i] = a[2*i]*b[2*i-1]+b[2*i];
    }
    linrecsolve(a_new, b_new, z, n/2);
    forall (i = 1 to n)
    {
        if (i == 1)
            y[1] = b[1];
        else if (even(i))
            y[i] = z[i/2];
        else
            y[i] = a[i]*z[(i-1)/2]+b[i];
    }
}
```

\[b_1 = a_2 b_1 + b_2 \]
\[b_1' = a_2' b_1' + b_2' = ((a_2 b_1 + b_2) a_3 + b_3) a_4 + b_4 \]
\[b_1'' = a_2'' b_1'' + b_2'' = (((a_2' b_1' + b_2') a_3' + b_3') a_4' + b_4') \]
\[= ((((a_2 b_1 + b_2) a_3 + b_3) a_4 + b_4) a_5 + b_5) a_6 + b_6) a_7 + b_7) a_8 + b_8 \]

\[\log_2 n \text{ recursive steps} \]
Divide and Conquer Example 4: Triangular Matrix Inversion

- Consider $Ax = b$ with $n \times n$ triangular matrix A

$$
\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn}
\end{pmatrix}
$$

- Partition A into $(n/2) \times (n/2)$ blocks

$$
\begin{pmatrix}
A_1 \\
A_2 & A_3
\end{pmatrix}
$$

- Then A^{-1} is given by

$$
\begin{pmatrix}
A_1^{-1} & 0 \\
-A_3^{-1}A_2A_1^{-1} & A_3^{-1}
\end{pmatrix}
$$
Divide and Conquer Example 4: Triangular Matrix Inversion

- Parallel algorithm:
 1. Divide A into A_1, A_2, A_3
 2. Recursively compute inverses of A_1 and A_3 in parallel
 3. Multiply $-A_3^{-1}A_2A_1^{-1}$ and combine with A_1^{-1} and A_3^{-1} to get A^{-1}

- Time complexity is given by the recurrence relation
 $$T(n) = T(n/2) + cn$$
 with $P=n^2$ processors to compute $-A_3^{-1}A_2A_1^{-1}$ in $O(n)$ operations in parallel, thus $T(n) = O(n)$ time
Divide and Conquer Example 5: Banded Triangular Systems

Consider $Ax = b$ with banded matrix A with $m=3$

Define block diagonal D and inverse D^{-1}

$D = \begin{pmatrix} A_{11} & A_{22} & \cdots & \cdots & \cdots \\ & A_{22} & \cdots & \cdots & \cdots \\ & & \ddots & \cdots & \cdots \\ & & & \ddots & \cdots & \cdots \\ & & & & \ddots & \cdots & \cdots \\ & & & & & A_{n/m,n/m} \end{pmatrix}$

$D^{-1} = \begin{pmatrix} A_{11}^{-1} & A_{22}^{-1} & \cdots & \cdots & \cdots \\ & A_{22}^{-1} & \cdots & \cdots & \cdots \\ & & \ddots & \cdots & \cdots \\ & & & \ddots & \cdots & \cdots \\ & & & & \ddots & \cdots & \cdots \\ & & & & & A_{n/m,n/m}^{-1} \end{pmatrix}$
Divide and Conquer Example 5: Banded Triangular Systems

- Compute \(d = D^{-1}b \) and \(B = D^{-1}A \) where \(B_{i,i-1} = A_{ii}^{-1}A_{i,i-1} \)

\[
d = D^{-1}b = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ \vdots \\ d_{n/m} \end{pmatrix} \quad \quad B = D^{-1}A = \begin{pmatrix} I_m & I_m & I_m \\ B_{21} & I_m & I_m \\ \vdots & \vdots & \vdots \\ B_{n/m,n/m-1} & \cdots & I_m \end{pmatrix}
\]

- Solve first-order linear recurrence on \(m \times m \) matrices \(B_{i,i-1} \)

\[
x_1 = d_1 \\
x_i = -B_{i,i-1}x_{i-1} + d_i \quad \quad 2 \leq i \leq n/m
\]

- Parallel time \(O(m + m \log(n/m)) \) with \(P=nm \) processors
 - Compute all \(A_{ii}^{-1} \) (each requiring \(O(m) \) operations) in parallel with parallel matrix inversion algorithm
 - Compute all \(B_{i,i-1} = A_{ii}^{-1}A_{i,i-1} \) in \(O(m) \) operations in parallel
 - Recurrence depth is \(\log_2(n/m) \), each step has \(O(m) \) operations
Divide and Conquer Example 6: LU of Tridiagonal Matrix

Consider tridiagonal matrix LU decomposition

\[
\begin{pmatrix}
a_1 & c_1 \\
b_2 & a_2 & c_2 \\
 & b_3 & a_3 & c_3 \\
 & & ... & ... \\
 & & b_n & a_n
\end{pmatrix}
= \begin{pmatrix} 1 \\
l_2 & 1 \\
l_3 & 1 \\
 & ... & ... \\
 & l_n & 1
\end{pmatrix}
\begin{pmatrix} d_1 & u_1 \\
d_2 & u_2 \\
d_3 & u_3 \\
 & ... & ... \\
 & & d_n
\end{pmatrix}
\]

The LU decomposition \(A = LU \) satisfies

\[
a_1 = d_1 \\
c_i = u_i \\
a_i = d_i + l_i u_{i-1} \\
b_i = l_i d_{i-1}
\]

thus

\[
d_1 = a_1 \\
d_i = a_i - l_i u_{i-1} = a_i - u_{i-1} b_i / d_{i-1} = \left[a_i d_{i-1} - b_i c_{i-1} \right] / d_{i-1}
\]
Divide and Conquer Example 6: LU of Tridiagonal Matrix

Let

\[
R_1 = \begin{bmatrix} a_1 & 0 \\ 1 & 0 \end{bmatrix} \quad R_i = \begin{bmatrix} a_i & -b_i c_{i-1} \\ 1 & 0 \end{bmatrix} \quad T_i = R_i R_{i-1} \ldots R_1
\]

From the Möbius transformation we have

\[
d_i = \frac{\begin{bmatrix} 1 \\ 0 \end{bmatrix}^T T_i \begin{bmatrix} 1 \\ 1 \end{bmatrix}}{\begin{bmatrix} 0 \\ 1 \end{bmatrix}^T T_i \begin{bmatrix} 1 \\ 1 \end{bmatrix}}
\]

Algorithm:

- Set up matrices \(R \)
- Solve first-order linear recurrence (prefix sum) of \(T \)
- Compute \(d_i \)
- From the solution of \(d_i \) compute \(l_i = b_i / d_{i-1} \)
Further Reading

- [PP2] pages 106-131
- [PSC] pages 321-337