
Floating Point
Operations and
Streaming SIMD

Extensions

Advanced Topics Spring 2009
Prof. Robert van Engelen

HPC II Spring 2009 2 3/18/09

Overview

  IEEE 754 Floating point
  IEEE 754 Exceptions
  FPU control and status registers
  Language and compiler issues with IEEE floating point
  FP tricks
  FP error analysis
  SIMD short vector extensions
  Programming with SSE
  GNU multi-precision library (GMP)
  GPU programming (next topic)

HPC II Spring 2009 3 3/18/09

Floating Point

  Definitions
  Notation: s d.dd…d × re

  Sign: s (+ or -)
  Significand: d.d…d with p digits (precision p)
  Radix: r (typically 2 or 10)
  Signed exponent: e where emin < e < emax

  Represents a floating point value (really a rational value!)

 ± (d0 + d1r -1 + d2r -2 + … + dp-1r -(p-1)) r e

where 0 < di < r

HPC II Spring 2009 4 3/18/09

IEEE 754 Floating Point

  The IEEE 754 standard specifies
  Binary floating point format (r = 2)
  Single, double, extended, and double extended precision
  Representations for indefinite values (NaN) and infinity (INF)
  Signed zero and denormalized numbers
  Masked exceptions
  Roundoff control
  Standardized algorithms for arithmetic to ensure accuracy and

bit-precise portability

HPC II Spring 2009 5 3/18/09

IEEE 754 Floating Point

  Standardized algorithms for arithmetic to ensure
accuracy and bit-precise portability

  But programs that rely on IEEE 754 may still not be bit-
precise portable, because many math function libraries
are not identical across systems

  Unless you write your own libraries

IEEE 754 Floating Point versus
Binary Coded Decimal (BCD)

  Binary floating point (radix r = 2) with limited precision p
cannot represent decimal values accurately
  0.10000 ≈ 2-4 + 2-5 + 2-8 + …
  for (float x = 0.0; x < 1.0; x += 0.01) { … }

will not work correctly! (x = 0.999999 < 1.0)
  DO X = 0.0, 1.0, 0.01

will work: Fortran determines number of iter’s from loop bounds
  Use if (fabs(x-y) < 0.0001) instead of if (x == y)

  Packed binary coded decimal (BCD) encodes decimal
digits in groups of 4 bits (nibbles): 0000 (0) … 1001 (9)
  351.20 = 0011 0101 0001 . 0010 0000
  Used by calculators, some spreadsheet programs (not Excel!),

and many business/financial data processing systems, COBOL

HPC II Spring 2009 6 3/18/09

HPC II Spring 2009 7 3/18/09

IEEE 754 Floating Point
Formats

  Four formats:

Parameter
Format

Single Single-
Extended Double Double-

Extended
p 24 >32 53 >64

emax +127 >+1023 +1023 >16383

emin -126 <-1022 -1022 <16382
Exponent
width 8 bits >11 bits 11 bits >15 bits

Format
width 32 bits >43 bits 64 bits >79 bits

HPC II Spring 2009 8 3/18/09

IEEE 754 Floating Point

  Most significant bit of the significand d0 not stored
  Normalized numbers: ±1.dd…d 2e

  Denormalized numbers: ±0.dd…d 2emin-1

denormalized
numbers

HPC II Spring 2009 9 3/18/09

IEEE 754 Floating Point
Overflow and Underflow

  Arithmetic operations can overflow or underflow
  Overflow: result value requires e > emax

  Raise exception or return ±infinity
  Infinity (INF) represented by zero significand and e = emax+1

  1/0.0 gives INF, -1/0.0 gives –INF, 3/INF gives 0

  Underflow: result value requires e < emin
  Raise exception or return denorm or return signed zero
  Denorm represented by with e = emin-1

  Why bother returning a denorm? Consider:

  Why bother distinguishing +0 from -0? Consider:
if (a != b) then x = a/(a-b);

if (a > b) then x = log(a-b);

HPC II Spring 2009 10 3/18/09

IEEE 754 Floating Point NaN

  Not-a-number (NaN) represented by all 1 bits in
exponent e = emax+1 (e is biased by +2exp_width-1-1)

  Sign and significand>0 are irrelevant (but may carry info)
  Generated by indeterminate and other operations

  0/0
  sqrt(-1)
  INF-INF, INF/INF, 0*INF

  Two kinds of NaN
  Quiet: propagates NaN through operations without raising

exception
  Signaling: raise an exception when touched

  Fortran initializes reals to NaN by default
  Signaling NaN automatically detects uninitialized data

HPC II Spring 2009 11 3/18/09

IEEE 754 Floating Point
Exceptions

  Exceptions
  Invalid operation: raised by a signaling NaN or illegal operation

on infinity
  Divide by zero
  Denormal operand: indicates loss of precision
  Numeric overflow or underflow
  Inexact result or precision: result of operation cannot be

accurately represented, e.g. 3.5 x 4.3 = 15.0 for r=10 and p=3

  Exceptions can be masked using hardware control
registers of an FPU
  Masking means that quiet NaN and INF are returned and

propagated

HPC II Spring 2009 12 3/18/09

Intel x87 FPU FPCW

  Masking exceptions on the Intel x87 FPU using the
FPCW control word

X RC PC
P
M

U
M

O
M

Z
M

D
M

I
M

Infinity control
Rounding control
Precision control

Precision mask
Underflow mask
Overflow mask

Zero divide mask
Denormal operand mask

Invalid operation mask

0 1 2 3 4 5 8 9 10 11 12
uint16_t setmask = …;
uint16_t oldctrl, newctrl;
_asm {
 FSTCW oldctrl
 mov ax, oldctrl
 and ax, 0ffc0h
 or ax, setmask
 mov newctrl,ax
 FLDCW newctrl
}

HPC II Spring 2009 13 3/18/09

Intel x87 FPU FPCW

uint16_t prec = 0x0000; // 0x0000=sgl, 0x0200=dbl, 0x0300=ext
uint16_t oldctrl, newctrl;
_asm {
 FSTCW oldctrl
 mov ax, oldctrl
 and ax, 0fcffh
 or ax, prec
 mov newctrl,ax
 FLDCW newctrl
}

  The Intel x87 FPU uses a pre-specified precision for all
internal floating point operations
  Extended double (80 bits) for Linux
  Double (64 bits) for Windows

  Using float and double in C only affects storage, not
the internal arithmetic precision
  Changing the FPU precision can speed up div, rem, and sqrt

HPC II Spring 2009 14 3/18/09

Language and Compiler Issues
with IEEE Floating Point

  Associative rule does not hold: (x + y) + z ≠ x + (y + z)
  Take x = 1030, y = -1030, and z = 1 then result is 1 or 0,

respectively
  Cannot replace division by multiplication: x/10.0 ≠ 0.1*x

  0.1 is not accurately represented
  But x/2.0 == 0.5*x is okay

  Distributive rule does no hold: x*y + x*z ≠ x*(y + z)
  Take for example y ≈ -z

  Negation is not subtraction, since zero is signed: -x ≠ 0-x
  Take x = 0, then -x == -0 and 0-x == +0
  Note: FP hardware returns true when comparing -0 == +0

  IEEE rounding modes may differ from language’s
rounding

HPC II Spring 2009 15 3/18/09

Language and Compiler Issues
with IEEE Floating Point

  NaN is unordered, which affects comparisons
  Any comparison to NaN returns false, thus when x < NaN fails

this does not imply x >= NaN
  Cannot sort array of floats that includes NaNs
  !(x < y) is not identical to x >= y
  x == x is not true when x = NaN

  Preserving the evaluation of comparisons matters,
similar to preserving parenthesis
eps = 1;
do eps = 0.5*eps;
while (eps + 1 > 1);

eps = 1;
do eps = 0.5*eps;
while (eps > 0);

Correct Incorrect
(eps + 1)= 1

when eps is small

HPC II Spring 2009 16 3/18/09

Language and Compiler Issues
with IEEE Floating Point (cont)

  Exceptions (e.g. signaling NaN) disallow expression
optimization
  These two instructions have no dependence and can potentially

be reordered:
 x = y*z;
 a = b+c;
but each may trigger an exception and the reorder destroys
relationship (what if b+c triggers exception and exception
handler wants to read x?)

  A change in rounding mode affects common sub-
expressions
  The expression a*b is not common in this code:

 x = a*b;
 set_round_mode = UP;
 y = a*b;

HPC II Spring 2009 17 3/18/09

Language and Compiler Issues
with IEEE Floating Point (cont)

  Programming languages differ in narrowing and
widening type conversions
  Use the type of the destination of the assignment to evaluate

operands
float x = n/m; // causes n and m to be widened to float first

  Obey type of operands, widen intermediate values when
necessary, and then narrow final value to destination type

  More common, e.g. C, Java

  IEEE ensures the following are valid for all values of x
and y:
  x+y = y+x
  x+x = 2*x
  1.0*x = x
  0.5*x = x/2.0

HPC II Spring 2009 18 3/18/09

IEEE 754 Floating Point
Manipulation Tricks

  Fast FP-to-integer conversion (rounds towards -∞)

#define FLOAT_FTOI_MAGIC_NUM (float)(3<<21)
#define IT_FTOI_MAGIC_NUM (0x4ac00000)
inline int FastFloatToInt(float f)
{
 f += FLOAT_FTOI_MAGIC_NUM;
 return (*((int*)&f) - IT_FTOI_MAGIC_NUM)>>1;
}

HPC II Spring 2009 19 3/18/09

IEEE 754 Floating Point
Manipulation Tricks

  Fast square root approximation with only <5% error

inline float FastSqrt(float x)
{
 int t = *(int*)&x;
 t -= 0x3f800000;
 t >>= 1;
 t += 0x3f800000;
 return *(float*)&t;
}

HPC II Spring 2009 20 3/18/09

IEEE 754 Floating Point
Manipulation Tricks

  Fast reciprocal square root approximation for x > 0.25
with only <0.6% error

inline float FastInvSqrt(float x)
{
 int tmp = ((0x3f800000 << 1) +
 0x3f800000 - *(long*)&x) >> 1;
 float y = *(float*)&tmp;
 return y * (1.47f – 0.47f * x * y * y);
}

HPC II Spring 2009 21 3/18/09

Floating Point Error Analysis

  Error analysis formula
  fl(a op b) = (a op b)*(1 + ε)
  op is +, -, *, /
  | ε | < machine eps = 2#significant bits = relative error in each op
  Assumes no overflow, underflow, or divide by zero occurs
  Really a worst-case upper bound, no error cancellation

  Example
  fl(x + y + z)

= fl(fl(x + y) + z)
= ((x + y)*(1+ε) + z)*(1+ε)
= x + 2εx + ε2x + y + 2εy + ε2y + z + εz
≈ x*(1+2ε) + y*(1+2ε) + z*(1+ε)

  Series of n operations: result*(1+nε)

HPC II Spring 2009 22 3/18/09

Numerical Stability

  Numerical stability is an algorithm design goal
  Backward error analysis is applied to determine if

algorithm gives the exact result for slightly changed input
values

  Extensive literature, not further discussed here…

HPC II Spring 2009 23 3/18/09

Conditioning

  An algorithm is well conditioned (or insensitive) if
relative change in input causes commensurate relative
change in result
 Cond = | relative change in solution | / | relative change in input |
 = | (f(x+h) - f(x)) / f(x) | / | h/x |
if the derivative f’ of f is known:
 Cond = | x | | f’(x) | / | f(x) |

  Problem is sensitive or ill-conditioned if Cond >> 1

  Other definitions
  Absolute error = f(x+h) - f(x) ≈ h f’(x)
  Relative error = (f(x+h) - f(x)) / f(x) ≈ h f’(x) / f(x)

Conditioning Examples

HPC II Spring 2009 24 3/18/09

f x f(x) f’(x) cond log10(cond)
exp 1 e e 1 0
exp 0 1 1 0 -∞
exp -1 1/e 1/e 1 0
log e 1 1/e 1 0
log 1 0 1 ∞ ∞
log 1/e -1 e 1 0
sin π 0 -1 ∞ ∞
sin π/2 1 0 0 -∞
sin 0 0 1 NaN NaN

HPC II Spring 2009 25 3/18/09

Example

  Let x = π/2 and let h be a small perturbation to x
  Absolute error = cos(x+h) - cos(x) ≈ -h sin(x) ≈ -h
  Relative error = (cos(x+h) - cos(x)) / cos(x) ≈ -h tan(x) ≈ -∞

  Small change in x near π/2 causes relative large change
in cos(x)
  cos(1.57078) = 1.63268 10-5
  cos(1.57079) = 0.63268 10-5

  Cond = |π/2|*|sin(π/2)|/|cos(π/2)|
 = π/2 * 1/0 = ∞

x ≈ π/2

cos(x)

1.63268 10-5

0.63268 10-5

HPC II Spring 2009 26 3/18/09

SIMD Short Vector Extensions

  Using SIMD short vector extensions can result in large
performance gains
  Instruction set extensions execute fast
  New wide registers to hold short vectors of ints, floats, doubles
  Parallel operations on short vectors
  Typical vector length is 128 bit

  Vector of 4 floats, 2 doubles, or 1 to 16 ints (128 bit to 8 bit ints)

  Technologies:
  MMX and SSE (Intel)
  3DNow! (AMD)
  AltiVec (PowerPC)
  PA-RISC MAX (HP)

SSE SIMD Technology History

HPC II Spring 2009 27 3/18/09

Technology First appeared Description

MMX Pentium with MMX Introduced 8-byte packed integers
SSE Pentium III Added 16-byte packed single precision

floating point numbers
SSE2 Pentium 4 Added 16-byte packed double precision

floating point numbers and integers
SSE3 Pentium 4 with HT Added horizontal operations on packed

single and double precision floating point
SSE4 P4 & Core i7 Added various instructions not specifically

intended for multimedia
SSE5 AMD Added fused/accumulate and permutation

instructions, and precision control

SSE Instruction Set

  Eight 128 bit registers xmm0 … xmm7
  Each register packs

  16 bytes (8 bit int)
  8 words (16 bit int)
  4 doublewords (32 bit int)
  2 quadwords (64 bit int)
  4 floats (IEEE 754 single precision)
  2 doubles (IEEE 754 double precision)

  Note: integer operations are signed or unsigned

HPC II Spring 2009 28 3/18/09

SSE Instruction Set

  Instruction format:
 instruction<suffix> xmm, xmm/m128, [imm8/r32]
m128 is a 128-bit memory location (16-byte aligned address), imm8
is an 8-bit immediate operand, r32 a 32-bit register operand

  Instruction suffix for floating-point operations:
  ps: packed single precision float
  pd: packed double precision float
  ss: scalar (applies to lower data element) single precision float
  sd: scalar (applies to lower data element) double precision float

  Instruction suffix for integer operations:
  b: byte
  w: word
  d: doubleword
  q: quadword
  dq: double quadword

HPC II Spring 2009 29 3/18/09

SSE Data Movement

  Little endian order

HPC II Spring 2009 30 3/18/09

…
W7
W6
W5
W4
W3
W2
W1
W0
…

a+14
a+14
a+10

a+8
a+6
a+4
a+2

a

W7 W6 W5 W4 W3 W2 W1 W0 xmm0:

movdqa xmm0, [a]

movdqu xmm0, [a]

Use when a is 16-byte aligned

Use when a is not aligned
(expensive!)

SSE Data Movement

HPC II Spring 2009 31 3/18/09

Instruction Suffix Description
movdqa
movdqu

Move double quadword aligned
Move double quadword unaligned

mova
movu

ps,pd Move single/double precision float aligned
Move single/double precision float unaligned

movhl
movlh

ps
ps

Move packed float high to low
Move packed float low to high

moveh
movel

ps,pd
ps,pd

Move high packed float (single/double)
Move low packed float (single/double)

mov d,q,ss,sd Move scalar data
lddqu
movddup
movshdup
movsldup

Load double quadword unaligned
Move quadword and duplicate
Move doubleword and duplicate into high position
Move doubleword and duplicate into low position

SSE Data Movement

HPC II Spring 2009 32 3/18/09

Instruction Suffix Description
pextr
pinsr

w
w

Extract word to r32
Insert word from r32

pmovmsk b Move mask

movmsk ps,pd Move mask

Note:
Instructions that start with ‘p’ historically operate on 64-bit MM registers
Some of these are upgraded by SSE to operate on 128-bit XMM registers

SSE Integer Arithmetic

HPC II Spring 2009 33 3/18/09

Instruction Suffix Description
padd
psub

b,w,d,q
b,w,d,q

Packed addition (signed/unsigned)
Packed subtraction (signed/unsigned)

padds
paddus
psubs
psubus

b,w
b,w
b,w
b,w

Packed addition with saturation (signed)
Packed addition with saturation (unsigned)
Packed subtraction with saturation (signed)
Packed subtraction with saturation (unsigned)

pmins
pminu
pmaxs
pmaxu

w
b
w
b

Packed minimum (signed)
Packed minimum (unsigned)
Packed maximum (signed)
Packed maximum (unsigned)

SSE Floating-Point Arithmetic

HPC II Spring 2009 34 3/18/09

Instruction Suffix Description
add ss,ps,sd,pd Addition (scalar/packed, single/double)
sub ss,ps,sd,pd Subtraction (scalar/packed, single/double)
mul ss,ps,sd,pd Multiplication (scalar/packed, single/double)
div ss,ps,sd,pd Division (scalar/packed, single/double)
min ss,ps,sd,pd Minimum (scalar/packed, single/double)
max ss,ps,sd,pd Maximum (scalar/packed, single/double)
sqrt ss,ps,sd,pd Square root (scalar/packed, single/double)
rcp ss,ps Approximate reciprocal
rsqrt ss,ps Approximate reciprocal square root

SSE Idiomatic Arithmetic

HPC II Spring 2009 35 3/18/09

Instruction Suffix Description
pavg b,w Packed average with rounding (unsigned)
pmulh
pmulhu
pmull

w
w
w

Packed multiplication high (signed)
Packed multiplication high (unsigned)
Packed multiplication low (signed/unsigned)

psad
pmadd

bw
wd

Packed sum of absolute differences (unsigned)
Packed multiplication and addition (signed)

addsub
hadd
hsub

ps,pd
ps,pd
ps,pd

Floating point addition and subtraction
Floating point horizontal addition
Floating point horizontal subtraction

SSE Logical Instructions

HPC II Spring 2009 36 3/18/09

Instruction Suffix Description
pand
pandn
por
pxor

Bitwise logical AND
Bitwise logical AND-NOT
Bitwise logical OR
Bitwise logical XOR

and
andn
or
xor

ps,pd
ps,pd
ps,pd
ps,pd

Bitwise logical AND
Bitwise logical AND-NOT
Bitwise logical OR
Bitwise logical XOR

SSE Comparison Instructions

HPC II Spring 2009 37 3/18/09

Instruction Suffix Description
pcmpeq
pcmpgt

b,w,d
b,w,d

Packed compare equal
Packed compare greater than

cmp ss,ps,sd,pd Floating-point compare
imm8 field is eq, lt, le, unord, neq, nlt, nle, ord
Use intrinsic _mm_cmp<cc>_x

SSE Conversion Instructions

HPC II Spring 2009 38 3/18/09

Instruction Suffix Description
packss
packus

wb,dw
wb

Pack with saturation (signed)
Pack with saturation (unsigned)

cvt<c>
cvtt<c>

Conversion
Conversion with truncation
c = dq2pd two signed doublewords to two double FP
c = pd2dq (vice versa)
c = dq2ps four signed doublewords to four single FP
c = ps2dq (vice versa)
c = pd2ps two double FP to two single FP
c = ps2pd (vice versa)
c = sd2ss one double FP to one single FP
c = ss2sd (vice versa)

SSE Shift and Shuffle
Instructions

HPC II Spring 2009 39 3/18/09

Instruction Suffix Description
psll
psra
psrl

w,d,q,dq
w,d
w,d,q,dq

Shift left logical (zero in)
Shift right arithmetic (sign in)
Shift right logical (zero in)

pshuf
pshufh
pshufl

w,d
w
w

Packed shuffle
Packed shuffle high
Packed shuffle low

shuf ps,pd Shuffle, imm8 contains sequence of two (pd) or
four (ps) 2-bit encodings of which source
operand is stored in the destination operand

SSE Unpack Instructions

HPC II Spring 2009 40 3/18/09

Instruction Suffix Description
punpckh
punpckl

bw,wd,dq,qdq
bw,wd,dq,qdq

Unpack high
Unpack low

unpckh
unpckl

ps,pd
ps,pd

Unpack high
Unpack low

MXCSR Control/Status Register

HPC II Spring 2009 41 3/18/09

uint32_t setmask = …;
uint32_t oldctrl, newctrl;
_asm {
 STMXCSR oldctrl
 mov eax, oldctrl
 and eax, 0ffffe07fh
 or eax, setmask
 mov newctrl,eax
 LDMXCSR newctrl
}

F
Z

R
C

P
M

U
M

O
M

Z
M

D
M

I
M

D
A
Z

P
E

U
E

O
E

Z
E

D
E

I
E

0 1 2 3 4 5 8 9 10 11 12 6 7 13 14 15

Denormals are zeros
Precision flag

Underflow flag
Overflow flag

Zero divide flag
Denormal flag

Invalid operation flag

Flush to zero
Rounding control
Precision mask
Underflow mask
Overflow mask
Divide-byz-zero mask
Denormal operation mask
Invalid operation mask

Note: FZ and DAZ improve
performance but are not IEEE
754 compatible

HPC II Spring 2009 42 3/18/09

Intel SSE Programming

  Programming languages such as C, C++, and Fortran do
not natively support SIMD instructions

  The Intel compiler supports four methods to use SSE,
from hard (top) to easy (bottom) they are:
  Assembly: direct control, but hard to use and processor-specific
  Intrinsics: similar to assembly instructions with operands that

are C expressions, but may be processor-specific
  C++ class libraries: easier to use and portable, but limited

support for instructions and gives lower performance
  Automatic vectorization: no source code changes needed,

new instruction sets automatically used, but compiler may fail to
automatically vectorize code when dependences cannot be
disproved

HPC II Spring 2009 43 3/18/09

SSE Instruction Intrinsics

  Use #include <emmintrin.h> (SSE2) or <pmmintrin.h>
(SSE3)

  Data types:
 __m64 MM register
 __m128 packed single precision (XMM register)
 __m128d packed double precision (XMM register)
 __m128i packed integer (XMM register)

  Intrinsics operate on these types and have the format:
 _mm_instruction_suffix(…)
where op is an operation and suffix
 ss,ps scalar/packed single precision
 sd,pd scalar/packed double precision
 si# scalar integer (8, 16, 32, 64, 128 bits)
 su# scalar unsigned integer (8, 16, 32, 64, 128 bits)
 [e]pi# packed integer (8, 16, 32, 64, 128 bits)
 [e]pu# packed unsigned integer (8, 16, 32, 64, 128 bits)

SSE Instruction Intrinsics

  Intrinsics add a number of shorthands for common
composite instructions

HPC II Spring 2009 44 3/18/09

Instruction Suffix Description
_mm_setzero_
_mm_set1_

_mm_set_
_mm_setr_

si64,si128,ps,pd
pi8,pi16,pi32,ps,pd
epi8,epi16,epi32,epi64
(as above)
(as above)

Set to zero
Set all elements to a value

Set elements from scalars
Set in reverse order

_mm_load_
_mm_loadu_
_mm_loadr_
_mm_loadh_
_mm_loadl_
_mm_load1_

MOVA (aligned)
MOVU (unaligned)
MOVA and shuffles to rev
MOVH
MOVL
MOV and shuffles

HPC II Spring 2009 45 3/18/09

SIMD Instruction Intrinsics
Examples

  Load (movapd) two 16-byte aligned doubles in a vector:
double a[2] = {1.0, 2.0}; // a must be 16-byte aligned
__m128d x = _mm_load_pd(a);

  Add two vectors containing two doubles:
__m128d a, b;
__m128d x = _mm_add_pd(a, b);

  Multiply two vectors containing four floats:
__m128 a, b;
__m128 x = _mm_mul_ps(a, b);

  Add two vectors of 8 16-bit signed ints using saturating arithmetic
__m128i a, b;
__m128i x = _mm_adds_epi16(a, b);

  Compare two vectors of 16 8-bit signed integers
__m128i a, b;
__m128i x = _mm_cmpgt_epi8(a, b);

  Note: rounding modes and exception handling are set by masking
the MXCSR register

HPC II Spring 2009 46 3/18/09

Intrinsics Example 1

#include <emmintrin.h> // SSE2
…
// array of ints, 16-byte aligned
__declspec(align(16)) int array[len];
…
__m128i ones4 = _mm_set1_epi32(1);
__m128i *array4 = (__m128i*)array;
for (int i = 0; i < len/4; i++)
 array4[i] = _mm_add_epi32(array4[i], ones4);

int array[len];
…
for (int i = 0; i < len; i++)
 array[i] = array[i] + 1;

HPC II Spring 2009 47 3/18/09

Memory Alignment

  Memory operands must be aligned for maximum
performance
  8-byte aligned for MMX
  16-byte aligned for SSE
  Use _declspec(align(8)) and _declspec(align(16))

  Aligned memory load/store operations segfault on
unaligned memory operands
  __m128d x = _mm_load_pd(aligned_address);

  Unaligned memory load/store operations are safe to use
but incur high cost
  __m128d x = _mm_loadu_pd(unaligned_address);

  Use _mm_malloc(len, 16) for dynamic allocation

HPC II Spring 2009 48 3/18/09

Data Layout

  Application’s data layout may need to be reconsidered to
use SIMD instructions effectively

  Vector operations require consecutively stored operands
in memory
  Cannot vectorize row-wise with row-major matrix layout
  Cannot vectorize column-wise with column-major matrix layout

  Aligned structs may have members that are unaligned
  struct node {
 int x[7];
 int dummy; // padding to make a[] aligned
 float a[4];
}

HPC II Spring 2009 49 3/18/09

C++ Class Libraries for SSE

  Integer class types of the form Ibvecn
I8vec8 (8 8bit) I8vec16 (16 8bit)
I16vec4 (4 16bit) I16vec8 (8 16bit)
I32vec2 (2 32bit) I32vec4 (4 32bit)
I64vec1 (1 64bit) I64vec2 (2 64bit)
I128vec1(1 128bit)

Note: place an ‘s’ or ‘u’ after ‘I’ for packed signed or
packed unsigned integers, e.g. Is32vec4

  Floating point class types of the form Fbvecn
F32vec4 (4 32bit) F64vec2 (2 64bit)

HPC II Spring 2009 50 3/18/09

C++ Class Library Example

#include <dvec.h> // SSE2
…
// array of ints, 16-byte aligned
__declspec(align(16)) int array[len];
…
Is32vec4 *array4 = (Is32vec4*)array;
for (int i = 0; i < len/4; i++)
 array4[i] = array4[i] + 1; // increment 4 ints

HPC II Spring 2009 51 3/18/09

GMP:
GNU Multi-Precision Library

  GMP is a portable library written in C for arbitrary
precision arithmetic on integers, rational numbers, and
floating-point numbers

  GMP aims to provide the fastest possible arithmetic for
all applications that need higher precision than is directly
supported by the basic C types

  Used by many projects, including computer algebra
systems

  Programming language bindings: C, C++, Fortran, Java,
Prolog, Lisp, ML, Perl, …

  License: LGPL

HPC II Spring 2009 52 3/18/09

GMP Usage

  Introduces three types (C language binding):
 mpz_t bigint
 mpq_t big rational
 mpf_t bignum

  Use (similar for mpq and mpf):
 #include <gmp.h>
 mpz_t n;
 mpz_init(n);
 mpz_init2(n, 123);
 mpz_init_set_str(n, “6”, 10);
 …
 mpz_clear(n);

  Link with -lgmp

Use one of these to
initialize.
Note: mpf_init2
sets precision

base

HPC II Spring 2009 53 3/18/09

GMP

  Dynamic memory allocation
  Efficient implementation limits the need for frequent resizing
  Configurable

  150 integer operations on unlimited length bigint
  Arithmetic
  Comparison
  Logic and bit-wise operations
  Number theoretic functions
  Random numbers

  60 floating point operations on high-precision bignum
  Arithmetic
  Comparison

HPC II Spring 2009 54 3/18/09

GMP C Example
void myfunction(mpz_t result, mpz_t param, unsigned long n)
{
 unsigned long i;

 mpz_mul_ui(result, param, n);
 for (i = 1; i < n; i++)
 mpz_add_ui(result, result, i*7);
}

int main(void)
{
 mpz_t r, n;
 mpz_init(r);
 mpz_init_set_str(n, "123456", 0);

 myfunction(r, n, 20L);
 mpz_out_str(stdout, 10, r); printf("\n");

 return 0;
}

HPC II Spring 2009 55 3/18/09

GMP C++ Bindings

  Defines three classes:
 mpz_class for bigint
 mpq_class for big rationals
 mpf_class for bignum

  Most GMP functions have C++ wrappers, but not all
  Root of 0.2 in 1000 bit precision:

 mpf_class x(0.2, 1000), y(sqrt(x));
  GCD of two bigints:

 mpz_class a, b, c;
 …
 mpz_gcd(a.get_mpz_t(), b.get_mpz_t(), c.get_mpz_t());

  Use #include <gmpxx.h> and link -lgmpxx -lgmp

HPC II Spring 2009 56 3/18/09

GMP C++ Example

#include <gmpxx.h>

mpz_class a, b, c; // integers

a = 1234;
b = "-5678";
c = a+b;
cout << "sum is " << c << "\n";
cout << "absolute value is " << abs(c) << "\n";

Expression like a=b+c results in a single call to the corresponding mpz_add,
without using a temporary for the b+c part.

The classes can be freely intermixed in float, double, int/long, expressions.

HPC II Spring 2009 57 3/18/09

Further Reading

  “What Every Computer Scientist Should Know About
Floating Point Arithmetic” by D. Goldberg, Computing
Surveys, 1991
http://docs.sun.com/source/806-3568/ncg_goldberg.html

  Chapters 11 and 12 of “The Software Optimization
Cookbook” 2nd ed by R. Gerber, A. Bik, K, Smith, and X.
Tian, Intel Press.

  “The Software Vectorization Handbook”, A. Bik, Intel
Press.

  Intel Compiler intrinsics reference:
http://download.intel.com/support/performancetools/c/linux/v9/intref_cls.pdf

  GNU GMP: http://gmplib.org

