Floating Point Operations and Streaming SIMD Extensions

Advanced Topics Spring 2009
Prof. Robert van Engelen

Overview

■ IEEE 754 Floating point

- IEEE 754 Exceptions
- FPU control and status registers
- Language and compiler issues with IEEE floating point
- FP tricks
- FP error analysis
- SIMD short vector extensions
- Programming with SSE
- GNU multi-precision library (GMP)
- GPU programming (next topic)

Floating Point

- Definitions
\square Notation: s d.dd...d $\times r^{e}$
\square Sign: s (+ or -)
\square Significand: $d . d \ldots d$ with p digits (precision p)
\square Radix: r (typically 2 or 10)
\square Signed exponent: e where $e_{\min } \leq e \leq e_{\max }$
- Represents a floating point value (really a rational value!)

$$
\pm\left(d_{0}+d_{1} r^{-1}+d_{2} r^{-2}+\ldots+d_{p-1} r^{-(p-1)}\right) r^{e}
$$

where $0 \leq d_{i}<r$

IEEE 754 Floating Point

- The IEEE 754 standard specifies
\square Binary floating point format ($r=2$)
\square Single, double, extended, and double extended precision
\square Representations for indefinite values (NaN) and infinity (INF)
\square Signed zero and denormalized numbers
\square Masked exceptions
\square Roundoff control
\square Standardized algorithms for arithmetic to ensure accuracy and bit-precise portability

IEEE 754 Floating Point

- Standardized algorithms for arithmetic to ensure accuracy and bit-precise portability
- But programs that rely on IEEE 754 may still not be bitprecise portable, because many math function libraries are not identical across systems
- Unless you write your own libraries

IEEE 754 Floating Point versus Binary Coded Decimal (BCD)

- Binary floating point (radix $r=2$) with limited precision p cannot represent decimal values accurately
$\square 0.10000 \approx 2^{-4}+2^{-5}+2^{-8}+\ldots$
\square for (float $\mathbf{x}=0.0$; $\mathbf{x}<1.0$; $\mathbf{x}+=0.01$) \{ ... \} will not work correctly! $(x=0.999999<1.0)$
\square DO $\mathrm{x}=0.0,1.0,0.01$
will work: Fortran determines number of iter's from loop bounds
\square Use if (fabs (x-y) < 0.0001) instead of if (x == y)
- Packed binary coded decimal (BCD) encodes decimal digits in groups of 4 bits (nibbles): 0000 (0) ... 1001 (9)
$\square 351.20=001101010001.00100000$
\square Used by calculators, some spreadsheet programs (not Excel!), and many business/financial data processing systems, COBOL

IEEE 754 Floating Point Formats

- Four formats:

Parameter	Format			
	Single	Single- Extended	Double	Double- Extended
p	24	≥ 32	53	≥ 64
$e_{\max }$	+127	$\geq+1023$	+1023	≥ 16383
$e_{\min }$	-126	≤-1022	-1022	≤ 16382
Exponent width	8 bits	≥ 11 bits	11 bits	≥ 15 bits
Format width	32 bits	≥ 43 bits	64 bits	≥ 79 bits

IEEE 754 Floating Point

- Most significant bit of the significand d_{0} not stored
- Normalized numbers: $\pm 1 . d d$...d 2^{e}
- Denormalized numbers: $\pm 0 . d d \ldots d 2^{\text {emin-1 }}$

IEEE 754 Floating Point Overflow and Underflow

- Arithmetic operations can overflow or underflow
- Overflow: result value requires $e>e_{\max }$
\square Raise exception or return \pm infinity
\square Infinity (INF) represented by zero significand and $e=e_{\text {max }}+1$
- 1/0.0 gives INF, -1/0.0 gives -INF, 3/INF gives 0
- Underflow: result value requires $e<e_{\text {min }}$
\square Raise exception or return denorm or return signed zero
\square Denorm represented by with $e=e_{\text {min }}-1$
- Why bother returning a denorm? Consider:

$$
\text { if }(a \quad!=b) \text { then } x=a /(a-b) \text {; }
$$

- Why bother distinguishing +0 from -0 ? Consider:

$$
\text { if }(a>b) \text { then } x=\log (a-b) \text {; }
$$

IEEE 754 Floating Point NaN

- Not-a-number (NaN) represented by all 1 bits in exponent $e=e_{\max }+1$ (e is biased by $+2^{\text {exp_width }} 1-1$)
- Sign and significand>0 are irrelevant (but may carry info)
- Generated by indeterminate and other operations
\square 0/0
\square sqrt(-1)
\square INF-INF, INF/INF, 0*INF
- Two kinds of NaN
\square Quiet: propagates NaN through operations without raising exception
\square Signaling: raise an exception when touched
- Fortran initializes reals to NaN by default
\square Signaling NaN automatically detects uninitialized data

IEEE 754 Floating Point Exceptions

- Exceptions
\square Invalid operation: raised by a signaling NaN or illegal operation on infinity
\square Divide by zero
\square Denormal operand: indicates loss of precision
\square Numeric overflow or underflow
\square Inexact result or precision: result of operation cannot be accurately represented, e.g. $3.5 \times 4.3=15.0$ for $r=10$ and $p=3$
- Exceptions can be masked using hardware control registers of an FPU
\square Masking means that quiet NaN and INF are returned and propagated

Intel x87 FPU FPCW

■ Masking exceptions on the Intel x87 FPU using the FPCW control word


```
uint16 t setmask = ...;
uint16_t oldctrl, newctrl;
_asm {
    FSTCW oldctrl
    mov ax, oldctrl
    and ax, OffcOh
    or ax, setmask
    mov newctrl,ax
    FLDCW newctrl
}
```


Intel x87 FPU FPCW

- The Intel x87 FPU uses a pre-specified precision for all internal floating point operations
\square Extended double (80 bits) for Linux
\square Double (64 bits) for Windows
- Using float and double in C only affects storage, not the internal arithmetic precision
\square Changing the FPU precision can speed up div, rem, and sqrt

```
uint16_t prec = 0x0000; // 0x0000=sgl, 0x0200=dbl, 0x0300=ext
uint16_t oldctrl, newctrl;
_asm {
    FSTCW oldctrl
    mov ax, oldctrl
    and ax, Ofcffh
    or ax, prec
    mov newctrl,ax
    FLDCW newctrl
}
```


Language and Compiler Issues with IEEE Floating Point

- Associative rule does not hold: $(x+y)+z \neq x+(y+z)$
\square Take $x=10^{30}, y=-10^{30}$, and $z=1$ then result is 1 or 0 , respectively
- Cannot replace division by multiplication: $x / 10.0 \neq 0.1^{*} x$
$\square 0.1$ is not accurately represented
\square But $x / 2.0==0.5^{*} x$ is okay
- Distributive rule does no hold: $x^{*} y+x^{\star} z \neq x^{*}(y+z)$
\square Take for example $y \approx-z$
- Negation is not subtraction, since zero is signed: $-x \neq 0-x$
\square Take $x=0$, then $-x==-0$ and $0-x==+0$
\square Note: FP hardware returns true when comparing -0 $==+0$
- IEEE rounding modes may differ from language's rounding

Language and Compiler Issues with IEEE Floating Point

- NaN is unordered, which affects comparisons
\square Any comparison to NaN returns false, thus when $x<N a N$ fails this does not imply $x>=\mathrm{NaN}$
\square Cannot sort array of floats that includes NaNs
$\square!(x<y)$ is not identical to $x>=y$
$\square x=x$ is not true when $x=\mathrm{NaN}$
- Preserving the evaluation of comparisons matters, similar to preserving parenthesis

```
eps = 1;
do eps = 0.5*eps;
while (eps + 1 > 1);
```

Correct
$(\operatorname{eps}+1)=1$
when eps is small

Language and Compiler Issues with IEEE Floating Point (cont)

- Exceptions (e.g. signaling NaN) disallow expression optimization
\square These two instructions have no dependence and can potentially be reordered:

$$
\begin{aligned}
& x=y^{*} z ; \\
& a=b+c
\end{aligned}
$$

but each may trigger an exception and the reorder destroys relationship (what if b+c triggers exception and exception handler wants to read x ?)

- A change in rounding mode affects common subexpressions
\square The expression a*b is not common in this code:

```
x = a*b;
set_round_mode = UP;
y = a*b;
```


Language and Compiler Issues with IEEE Floating Point (cont)

- Programming languages differ in narrowing and widening type conversions
\square Use the type of the destination of the assignment to evaluate operands
float $\mathbf{x}=\mathrm{n} / \mathrm{m}$; // causes n and m to be widened to float first
\square Obey type of operands, widen intermediate values when necessary, and then narrow final value to destination type
- More common, e.g. C, Java
- IEEE ensures the following are valid for all values of x and y :
$\square x+y=y+x$
$\square x+x=2^{*} x$
$\square 1.0^{*} x=x$
$\square 0.5^{*} x=x / 2.0$

IEEE 754 Floating Point Manipulation Tricks

- Fast FP-to-integer conversion (rounds towards - ∞)

```
#define FLOAT_FTOI_MAGIC_NUM (float) (3<<21)
#define IT_FTOI_MAGIC_NUM (0x4ac00000)
inline int FastFloatToInt(float f)
{
    f += FLOAT_FTOI_MAGIC_NUM;
    return (*((int*)&f) - IT_FTOI_MAGIC_NUM) >>1;
}
```


IEEE 754 Floating Point Manipulation Tricks

- Fast square root approximation with only $<5 \%$ error

```
inline float FastSqrt(float x)
{
    int t = *(int*) &x;
    t -= 0x3f800000;
    t >>= 1;
    t += 0x3f800000;
    return *(float*)&t;
}
```


IEEE 754 Floating Point Manipulation Tricks

- Fast reciprocal square root approximation for $x>0.25$ with only $<0.6 \%$ error

```
inline float FastInvSqrt(float x)
{
    int tmp = ((0x3f800000 << 1) +
        0x3f800000 - *(long*) &x) >> 1;
    float y = *(float*)&tmp;
    return y * (1.47f - 0.47f * x * y * y);
}
```


Floating Point Error Analysis

- Error analysis formula
$\square f\left(\right.$ a op b) $=(\mathrm{a} \mathrm{op} \mathrm{b})^{*}(1+\varepsilon)$
\square op is,,$+-{ }^{*}$, /
$\square|\varepsilon| \leq$ machine eps $=2^{\text {\#significant bits }}=$ relative error in each op
\square Assumes no overflow, underflow, or divide by zero occurs
\square Really a worst-case upper bound, no error cancellation
- Example
$\square f(\mathrm{x}+\mathrm{y}+\mathrm{z})$

$$
\begin{aligned}
& =f((f l(x+y)+z) \\
& =\left((x+y)^{*}(1+\varepsilon)+z\right)^{*}(1+\varepsilon) \\
& =x+2 \varepsilon x+\varepsilon^{2} x+y+2 \varepsilon y+\varepsilon^{2} y+z+\varepsilon z \\
& \approx x^{*}(1+2 \varepsilon)+y^{*}(1+2 \varepsilon)+z^{*}(1+\varepsilon)
\end{aligned}
$$

- Series of n operations: result* $(1+n \varepsilon)$

Numerical Stability

- Numerical stability is an algorithm design goal
- Backward error analysis is applied to determine if algorithm gives the exact result for slightly changed input values
- Extensive literature, not further discussed here...

Conditioning

- An algorithm is well conditioned (or insensitive) if relative change in input causes commensurate relative change in result

Cond $=\mid$ relative change in solution $|/|$ relative change in input \mid

$$
=|(f(x+h)-f(x)) / f(x)| /|h / x|
$$

if the derivative f^{\prime} of f is known:
Cond $=|x|\left|f^{\prime}(x)\right| /|f(x)|$

- Problem is sensitive or ill-conditioned if Cond >> 1
- Other definitionsAbsolute error $=f(x+h)-f(x)$
$\approx h f^{\prime}(x)$Relative error $=(f(x+h)-f(x)) / f(x) \approx h f^{\prime}(x) / f(x)$

Conditioning Examples

\boldsymbol{f}	\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	cond	$\log _{10}($ cond $)$
\exp	1	e	e	1	0
\exp	0	1	1	0	$-\infty$
\exp	-1	$1 / e$	$1 / e$	1	0
\log	e	1	$1 / e$	1	0
\log	1	0	1	∞	∞
\log	$1 / e$	-1	e	1	0
\sin	π	0	-1	∞	∞
\sin	$\pi / 2$	1	0	0	$-\infty$
\sin	0	0	1	NaN	NaN

Example

- Let $x=\pi / 2$ and let h be a small perturbation to x
\square Absolute error $=\cos (x+h)-\cos (x) \approx-h \sin (x) \approx-h$
\square Relative error $=(\cos (x+h)-\cos (x)) / \cos (x) \approx-h \tan (x) \approx-\infty$
- Small change in x near $\pi / 2$ causes relative large change in $\cos (x)$
$\square \cos (1.57078)=1.6326810^{-5}$
$\square \cos (1.57079)=0.6326810^{-5}$
- Cond $=|\pi / 2|^{*}|\sin (\pi / 2)| /|\cos (\pi / 2)|$

$$
=\pi / 2 * 1 / 0=\infty
$$

SIMD Short Vector Extensions

- Using SIMD short vector extensions can result in large performance gains
\square Instruction set extensions execute fast
\square New wide registers to hold short vectors of ints, floats, doubles
\square Parallel operations on short vectors
\square Typical vector length is 128 bit
- Vector of 4 floats, 2 doubles, or 1 to 16 ints (128 bit to 8 bit ints)
- Technologies:
\square MMX and SSE (Intel)
\square 3DNow! (AMD)
\square AltiVec (PowerPC)
\square PA-RISC MAX (HP)

SSE SIMD Technology History

Technology	First appeared	Description
MMX	Pentium with MMX	Introduced 8-byte packed integers
SSE	Pentium III	Added 16-byte packed single precision floating point numbers
SSE2	Pentium 4	Added 16-byte packed double precision floating point numbers and integers
SSE3	Pentium 4 with HT	Added horizontal operations on packed single and double precision floating point
SSE4	P4 \& Core i7	Added various instructions not specifically intended for multimedia
SSE5	AMD	Added fused/accumulate and permutation instructions, and precision control

SSE Instruction Set

- Eight 128 bit registers xmm0 ... xmm7
- Each register packs
$\square 16$ bytes (8 bit int)
$\square 8$ words (16 bit int)
$\square 4$ doublewords (32 bit int)
$\square 2$ quadwords (64 bit int)
$\square 4$ floats (IEEE 754 single precision)
$\square 2$ doubles (IEEE 754 double precision)
- Note: integer operations are signed or unsigned

SSE Instruction Set

- Instruction format:
instruction<suffix> xmm, xmm/m128, [imm8/r32] m 128 is a 128-bit memory location (16-byte aligned address), imm8 is an 8-bit immediate operand, r32 a 32-bit register operand
- Instruction suffix for floating-point operations:
\square ps: packed single precision float
\square pd: packed double precision float
\square ss: scalar (applies to lower data element) single precision float
\square sd: scalar (applies to lower data element) double precision float
- Instruction suffix for integer operations:
$\square \mathrm{b}$: byte
\square w: word
$\square \mathrm{d}$: doubleword
$\square \mathrm{q}$: quadword
\square dq: double quadword

SSE Data Movement

- Little endian order

SSE Data Movement

Instruction	Suffix	Description
movdqa movdqu		Move double quadword aligned Move double quadword unaligned
mova movu	ps, pd	Move single/double precision float aligned Move single/double precision float unaligned
movhl	ps	Move packed float high to low movlh
Move packed float low to high		

SSE Data Movement

Instruction	Suffix	Description
pextr	w	Extract word to r32
pinsr	w	Insert word from r32
pmovmsk	b	Move mask
movmsk	ps,pd	Move mask

Note:
Instructions that start with 'p' historically operate on 64-bit MM registers Some of these are upgraded by SSE to operate on 128-bit XMM registers

SSE Integer Arithmetic

Instruction	Suffix	Description
padd	b,w,d,q	Packed addition (signed/unsigned)
psub	b,w,d,q	Packed subtraction (signed/unsigned)
padds	b,w	Packed addition with saturation (signed)
paddus	b,w	Packed addition with saturation (unsigned)
psubs	b,w	Packed subtraction with saturation (signed)
psubus	b,w	Packed subtraction with saturation (unsigned)
pmins	w	Packed minimum (signed)
pminu	b	Packed minimum (unsigned)
pmaxs	w	Packed maximum (signed)
pmaxu	b	Packed maximum (unsigned)

SSE Floating-Point Arithmetic

Instruction	Suffix	Description
add	ss,ps,sd,pd	Addition (scalar/packed, single/double)
sub	ss,ps,sd,pd	Subtraction (scalar/packed, single/double)
mul	ss,ps,sd,pd	Multiplication (scalar/packed, single/double)
div	ss,ps,sd,pd	Division (scalar/packed, single/double)
min	ss,ps,sd,pd	Minimum (scalar/packed, single/double)
max	ss,ps,sd,pd	Maximum (scalar/packed, single/double)
sqrt	ss,ps,sd,pd	Square root (scalar/packed, single/double)
rcp	ss,ps	Approximate reciprocal
rsqrt	ss,ps	Approximate reciprocal square root

SSE Idiomatic Arithmetic

Instruction	Suffix	Description
pavg	b,w	Packed average with rounding (unsigned)
pmulh	w	Packed multiplication high (signed)
pmulhu	w	Packed multiplication high (unsigned)
pmull	w	Packed multiplication low (signed/unsigned)
psad	bw	Packed sum of absolute differences (unsigned)
pmadd	wd	Packed multiplication and addition (signed)
addsub	ps, pd	Floating point addition and subtraction
hadd	ps, pd hsub ps,pd	Floating point horizontal addition

SSE Logical Instructions

Instruction	Suffix	Description
pand		Bitwise logical AND pandn
por		Bitwise logical AND-NOT Bitwise logical OR
pxor		Bitwise logical XOR
and	ps,pd	Bitwise logical AND
andn	ps,pd	Bitwise logical AND-NOT
or	ps,pd	Bitwise logical OR
xor	ps,pd	Bitwise logical XOR

SSE Comparison Instructions

Instruction	Suffix	Description				
pcmpeq	b,w,d	Packed compare equal pcmpgt				
b,w,d	Packed compare greater than		$	$	cmp	ss,ps,sd,pd
:---	:---		Floating-point compare			
:---						
imm8 field is eq, It, le, unord, neq, nlt, nle, ord						
Use intrinsic_mm_cmp<cc>_x						

SSE Conversion Instructions

Instruction	Suffix	Description
packss packus	wb , dw wb	Pack with saturation (signed) Pack with saturation (unsigned)
cvt<c> cvtt<c>		Conversion Conversion with truncation $c=d q 2 p d$ two signed doublewords to two double FP $\mathrm{c}=\mathrm{pd} 2 \mathrm{dq}$ (vice versa) $c=d q 2 p s$ four signed doublewords to four single FP $\mathrm{c}=\mathrm{ps} 2 \mathrm{dq}$ (vice versa) $\mathrm{c}=\mathrm{pd} 2 \mathrm{ps}$ two double FP to two single FP $\mathrm{c}=\mathrm{ps} 2 \mathrm{pd}$ (vice versa) $c=s d 2$ ss one double FP to one single FP $\mathrm{c}=\mathrm{ss} 2 \mathrm{sd}$ (vice versa)

SSE Shift and Shuffle Instructions

Instruction	Suffix	Description				
psll	w,d,q,dq	Shift left logical (zero in)				
psra	w,d	Shift right arithmetic (sign in)				
psrl	w,d,q,dq	Shift right logical (zero in)	$	$	pshuf	w,d
:---	:---					
pshufh	w		Packed shuffle			
:---						
pshufl	w \quad Packed shuffle high	whuffle low				
:---						

SSE Unpack Instructions

Instruction	Suffix	Description
punpckh	bw,wd,dq, qdq	Unpack high
punpckl	bw,wd,dq, qdq	Unpack low
unpckh	ps,pd	Unpack high
unpckl	ps,pd	Unpack low

MXCSR Control/Status Register


```
uint32_t setmask = ...;
uint32_t oldctrl, newctrl;
    _asm {
    STMXCSR oldctrl
    mov eax, oldctrl
    and eax, 0ffffe07fh
    or eax, setmask
    mov newctrl,eax
    LDMXCSR newctrl
}
```

Note: FZ and DAZ improve performance but are not IEEE 754 compatible

Intel SSE Programming

- Programming languages such as C, C++, and Fortran do not natively support SIMD instructions
- The Intel compiler supports four methods to use SSE, from hard (top) to easy (bottom) they are:
\square Assembly: direct control, but hard to use and processor-specific
\square Intrinsics: similar to assembly instructions with operands that are C expressions, but may be processor-specific
\square C++ class libraries: easier to use and portable, but limited support for instructions and gives lower performance
\square Automatic vectorization: no source code changes needed, new instruction sets automatically used, but compiler may fail to automatically vectorize code when dependences cannot be disproved

SSE Instruction Intrinsics

- Use \#include <emmintrin.h> (SSE2) or <pmmintrin.h> (SSE3)
- Data types:
_m64 MM register m128 packed single precision (XMM register)
__m128d packed double precision (XMM register) m128i packed integer (XMM register)
- Intrinsics operate on these types and have the format:
_mm_instruction_suffix(...) where op is an operation and suffix
ss,ps scalar/packed single precision sd,pd scalar/packed double precision si\# scalar integer (8, 16, 32, 64, 128 bits) su\# scalar unsigned integer ($8,16,32,64,128$ bits) [e]pi\# packed integer (8, 16, 32, 64, 128 bits) [e]pu\# packed unsigned integer (8, 16, 32, 64, 128 bits)

SSE Instruction Intrinsics

- Intrinsics add a number of shorthands for common composite instructions

Instruction	Suffix	Description
$\begin{aligned} & \text { mm_setzero_ } \\ & \text { _mm_set1_ } \\ & \text {-mm_set_ } \\ & \text { _mm_setr_ } \end{aligned}$	```si64,si128,ps,pd pi8,pi16,pi32,ps,pd epi8,epi16,epi32,epi64 (as above) (as above)```	Set to zero Set all elements to a value Set elements from scalars Set in reverse order
_mm_load_- _mm_loadu _mm_loadr_- -mm_loadh_- _mm_loadl $^{\text {mm load1 }}$		MOVA (aligned) MOVU (unaligned) MOVA and shuffles to rev MOVH MOVL MOV and shuffles

SIMD Instruction Intrinsics Examples

- Load (movapd) two 16-byte aligned doubles in a vector: double a[2] = \{1.0, 2.0\}; // a must be 16-byte aligned m128d x = _mm_load_pd(a);
- Add two vectors containing two doubles:
m128d a, b;
__m128d x = _mm_add_pd(a, b);
- Multiply two vectors containing four floats:
_m128 a, b;
m128 x = _mm_mul_ps (a, b);
- Add two vectors of 8 16-bit signed ints using saturating arithmetic m128i a, b;
_m128i x = _mm_adds_epi16(a, b);
- Compare two vectors of 168 -bit signed integers
m128i $a, b ;$
_m128i x = _mm_cmpgt_epi8(a, b);
- Note: rounding modes and exception handling are set by masking the MXCSR register

Intrinsics Example 1

```
int array[len];
for (int i = 0; i < len; i++)
    array[i] = array[i] + 1;
```

```
#include <emmintrin.h> // SSE2
// array of ints, 16-byte aligned
    declspec(align(16)) int array[len];
    m128i ones4 = _mm_set1_epi32(1);
_m128i *array4 = (__m128i*)array;
for (int i = 0; i < len/4; i++)
    array4[i] = _mm_add_epi32(array4[i], ones4);
```


Memory Alignment

- Memory operands must be aligned for maximum performance
\square 8-byte aligned for MMX
\square 16-byte aligned for SSE
\square Use _declspec (align (8)) and _declspec (align (16))
- Aligned memory load/store operations segfault on unaligned memory operands
\square __m128d x = _mm_load_pd(aligned_address);
- Unaligned memory load/store operations are safe to use but incur high cost
\square _m128d x = _mm_loadu_pd(unaligned_address);
- Use _mm_malloc (len, 16) for dynamic allocation

Data Layout

- Application's data layout may need to be reconsidered to use SIMD instructions effectively
- Vector operations require consecutively stored operands in memory
\square Cannot vectorize row-wise with row-major matrix layout
\square Cannot vectorize column-wise with column-major matrix layout
- Aligned structs may have members that are unaligned
\square struct node \{
int x[7];
int dummy; // padding to make a[] aligned float a[4];
\}

C++ Class Libraries for SSE

- Integer class types of the form Ibvecn

I8vec8	(8 8bit)	I8vec16	(16 8bit)
I16vec4	(4 16bit)	I16vec8	(8 16bit)
I32vec2	(2 32bit)	I32vec4	(4 32bit)
I64vec1	(1 64bit)	I64vec2	(2 64bit)

I128vec1(1 128bit)
Note: place an 's' or 'u' after 'I' for packed signed or packed unsigned integers, e.g. Is 32 vec 4

- Floating point class types of the form Fbvecn F32vec4 (4 32bit) F64vec2 (2 64bit)

C++ Class Library Example

```
#include <dvec.h> // SSE2
// array of ints, 16-byte aligned
__declspec(align(16)) int array[len];
...
Is32vec4 *array4 = (Is32vec4*)array;
for (int i = 0; i < len/4; i++)
    array4[i] = array4[i] + 1; // increment 4 ints
```


GMP:

GNU Multi-Precision Library

- GMP is a portable library written in C for arbitrary precision arithmetic on integers, rational numbers, and floating-point numbers
- GMP aims to provide the fastest possible arithmetic for all applications that need higher precision than is directly supported by the basic C types
- Used by many projects, including computer algebra systems
- Programming language bindings: C, C++, Fortran, Java, Prolog, Lisp, ML, Perl, ...
- License: LGPL

GMP Usage

- Introduces three types (C language binding):

mpz_t	bigint
$\mathrm{mpq}_{-} t$	big rational
mpf_t	bignum

- Use (similar for mpq and mpf): \#include <gmp.h>
mpz_t n;
mpz_init(n);

- Link with - lgmp

GMP

- Dynamic memory allocation
\square Efficient implementation limits the need for frequent resizing
\square Configurable
- 150 integer operations on unlimited length bigint
\square Arithmetic
\square Comparison
\square Logic and bit-wise operations
\square Number theoretic functions
\square Random numbers
- 60 floating point operations on high-precision bignum
\square Arithmetic
\square Comparison

GMP C Example

```
void myfunction(mpz_t result, mpz_t param, unsigned long n)
{
    unsigned long i;
    mpz_mul_ui(result, param, n);
    for (i = 1; i < n; i++)
        mpz_add_ui(result, result, i*7);
}
int main(void)
{
    mpz_t r, n;
    mpz_init(r);
    mpz_init_set_str(n, "123456", 0);
    myfunction(r, n, 20L);
    mpz_out_str(stdout, 10, r); printf("\n");
    return 0;
}
```


GMP C++ Bindings

- Defines three classes:

$$
\begin{aligned}
& \text { mpz_class } \\
& \text { mpq_class } \\
& \text { mpf_class }
\end{aligned}
$$

for bigint
for big rationals
for bignum

- Most GMP functions have C++ wrappers, but not all
\square Root of 0.2 in 1000 bit precision:

```
        mpf_class x(0.2, 1000), y(sqrt(x));
```

\square GCD of two bigints: mpz_class a, b, c;

```
mpz_gcd(a.get_mpz_t(), b.get_mpz_t(), c.get_mpz_t());
```

■ Use \#include <gmpxx.h> and link -lgmpxx -lgmp

GMP C++ Example

```
#include <gmpxx.h>
mpz_class a, b, c; // integers
a = 1234;
b = "-5678";
c = a+b;
cout << "sum is " << c << "\n";
cout << "absolute value is " << abs(c) << "\n";
```

Expression like $a=b+c$ results in a single call to the corresponding mpz_add, without using a temporary for the $b+c$ part.

The classes can be freely intermixed in float, double, int/long, expressions.

Further Reading

■ "What Every Computer Scientist Should Know About Floating Point Arithmetic" by D. Goldberg, Computing Surveys, 1991
http://docs.sun.com/source/806-3568/ncg_goldberg.htm|

- Chapters 11 and 12 of "The Software Optimization Cookbook" 2nd ed by R. Gerber, A. Bik, K, Smith, and X. Tian, Intel Press.
■ "The Software Vectorization Handbook", A. Bik, Intel Press.
- Intel Compiler intrinsics reference:
- GNU GMP: http://gmplib.org

