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Overview 

  IEEE 754 Floating point 
  IEEE 754 Exceptions 
  FPU control and status registers 
  Language and compiler issues with IEEE floating point 
  FP tricks 
  FP error analysis 
  SIMD short vector extensions 
  Programming with SSE 
  GNU multi-precision library (GMP) 
  GPU programming (next topic) 
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Floating Point 

  Definitions 
  Notation: s d.dd…d × re 

  Sign: s (+ or -) 
  Significand: d.d…d with p digits (precision p) 
  Radix: r (typically 2 or 10) 
  Signed exponent: e where emin < e < emax 

  Represents a floating point value (really a rational value!) 

 ± (d0 + d1r -1 + d2r -2 + … + dp-1r -(p-1)) r e 

where 0 < di < r 
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IEEE 754 Floating Point 

  The IEEE 754 standard specifies 
  Binary floating point format (r = 2) 
  Single, double, extended, and double extended precision 
  Representations for indefinite values (NaN) and infinity (INF) 
  Signed zero and denormalized numbers 
  Masked exceptions 
  Roundoff control 
  Standardized algorithms for arithmetic to ensure accuracy and 

bit-precise portability 
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IEEE 754 Floating Point 

  Standardized algorithms for arithmetic to ensure 
accuracy and bit-precise portability 

  But programs that rely on IEEE 754 may still not be bit-
precise portable, because many math function libraries 
are not identical across systems 

  Unless you write your own libraries 



IEEE 754 Floating Point versus 
Binary Coded Decimal (BCD) 

  Binary floating point (radix r = 2) with limited precision p 
cannot represent decimal values accurately 
  0.10000 ≈ 2-4 + 2-5 + 2-8 + … 
  for (float x = 0.0; x < 1.0; x += 0.01) { … } 

will not work correctly! (x = 0.999999 < 1.0) 
  DO X = 0.0, 1.0, 0.01 

will work: Fortran determines number of iter’s from loop bounds 
  Use if (fabs(x-y) < 0.0001) instead of if (x == y) 

  Packed binary coded decimal (BCD) encodes decimal 
digits in groups of 4 bits (nibbles): 0000 (0) … 1001 (9) 
  351.20 = 0011 0101 0001 . 0010 0000 
  Used by calculators, some spreadsheet programs (not Excel!), 

and many business/financial data processing systems, COBOL 
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IEEE 754 Floating Point 
Formats 

  Four formats: 

Parameter 
Format 

Single Single-
Extended Double Double-

Extended 
p 24 >32 53 >64 

emax +127 >+1023 +1023 >16383 

emin -126 <-1022 -1022 <16382 
Exponent 
width 8 bits >11 bits 11 bits >15 bits 

Format 
width 32 bits >43 bits 64 bits >79 bits 
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IEEE 754 Floating Point 

  Most significant bit of the significand d0 not stored 
  Normalized numbers: ±1.dd…d 2e 

  Denormalized numbers: ±0.dd…d 2emin-1 

denormalized 
numbers 
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IEEE 754 Floating Point 
Overflow and Underflow 

  Arithmetic operations can overflow or underflow 
  Overflow: result value requires e > emax 

  Raise exception or return ±infinity 
  Infinity (INF) represented by zero significand and e = emax+1 

  1/0.0 gives INF, -1/0.0 gives –INF, 3/INF gives 0 

  Underflow: result value requires e < emin 
  Raise exception or return denorm or return signed zero 
  Denorm represented by with e = emin-1 

  Why bother returning a denorm? Consider: 

  Why bother distinguishing +0 from -0? Consider: 
if (a != b) then x = a/(a-b); 

if (a > b) then x = log(a-b); 
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IEEE 754 Floating Point NaN  

  Not-a-number (NaN) represented by all 1 bits in 
exponent e = emax+1 (e is biased by +2exp_width-1-1) 

  Sign and significand>0 are irrelevant (but may carry info) 
  Generated by indeterminate and other operations 

  0/0 
  sqrt(-1) 
  INF-INF, INF/INF, 0*INF 

  Two kinds of NaN 
  Quiet: propagates NaN through operations without raising 

exception 
  Signaling: raise an exception when touched 

  Fortran initializes reals to NaN by default 
  Signaling NaN automatically detects uninitialized data 
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IEEE 754 Floating Point 
Exceptions 

  Exceptions 
  Invalid operation: raised by a signaling NaN or illegal operation 

on infinity 
  Divide by zero 
  Denormal operand: indicates loss of precision 
  Numeric overflow or underflow 
  Inexact result or precision: result of operation cannot be 

accurately represented, e.g. 3.5 x 4.3 = 15.0 for r=10 and p=3 

  Exceptions can be masked using hardware control 
registers of an FPU 
  Masking means that quiet NaN and INF are returned and 

propagated 
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Intel x87 FPU FPCW 

  Masking exceptions on the Intel x87 FPU using the 
FPCW control word 

X RC PC 
P
M

U
M

O
M

Z
M

D
M

I
M

Infinity control 
Rounding control 
Precision control 

Precision mask 
Underflow mask 
Overflow mask 

Zero divide mask 
Denormal operand mask 

Invalid operation mask 

0 1 2 3 4 5 8 9 10 11 12 
uint16_t setmask = …; 
uint16_t oldctrl, newctrl; 
_asm { 
  FSTCW oldctrl 
  mov ax, oldctrl 
  and ax, 0ffc0h 
  or ax, setmask 
  mov newctrl,ax 
  FLDCW newctrl 
} 
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Intel x87 FPU FPCW 

uint16_t prec = 0x0000; // 0x0000=sgl, 0x0200=dbl, 0x0300=ext 
uint16_t oldctrl, newctrl; 
_asm { 
  FSTCW oldctrl 
  mov ax, oldctrl 
  and ax, 0fcffh 
  or ax, prec 
  mov newctrl,ax 
  FLDCW newctrl 
} 

  The Intel x87 FPU uses a pre-specified precision for all 
internal floating point operations 
  Extended double (80 bits) for Linux 
  Double (64 bits) for Windows 

  Using float and double in C only affects storage, not 
the internal arithmetic precision 
  Changing the FPU precision can speed up div, rem, and sqrt 
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Language and Compiler Issues 
with IEEE Floating Point 

  Associative rule does not hold: (x + y) + z ≠ x + (y + z) 
  Take x = 1030, y = -1030, and z = 1 then result is 1 or 0, 

respectively 
  Cannot replace division by multiplication: x/10.0 ≠ 0.1*x 

  0.1 is not accurately represented 
  But x/2.0 == 0.5*x is okay 

  Distributive rule does no hold: x*y + x*z ≠ x*(y + z) 
  Take for example y ≈ -z 

  Negation is not subtraction, since zero is signed: -x ≠ 0-x 
  Take x = 0, then -x == -0 and 0-x == +0 
  Note: FP hardware returns true when comparing -0 == +0 

  IEEE rounding modes may differ from language’s 
rounding 
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Language and Compiler Issues 
with IEEE Floating Point 

  NaN is unordered, which affects comparisons 
  Any comparison to NaN returns false, thus when x < NaN fails 

this does not imply x >= NaN 
  Cannot sort array of floats that includes NaNs 
  !(x < y) is not identical to x >= y 
  x == x is not true when x = NaN 

  Preserving the evaluation of comparisons matters, 
similar to preserving parenthesis 
eps = 1; 
do eps = 0.5*eps; 
while (eps + 1 > 1); 

eps = 1; 
do eps = 0.5*eps; 
while (eps > 0); 

Correct Incorrect 
(eps + 1)= 1 

when eps is small 
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Language and Compiler Issues 
with IEEE Floating Point (cont) 

  Exceptions (e.g. signaling NaN) disallow expression 
optimization 
  These two instructions have no dependence and can potentially 

be reordered: 
 x = y*z; 
 a = b+c; 
but each may trigger an exception and the reorder destroys 
relationship (what if b+c triggers exception and exception 
handler wants to read x?) 

  A change in rounding mode affects common sub-
expressions 
  The expression a*b is not common in this code: 

 x = a*b; 
 set_round_mode = UP; 
 y = a*b; 
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Language and Compiler Issues 
with IEEE Floating Point (cont) 

  Programming languages differ in narrowing and 
widening type conversions 
  Use the type of the destination of the assignment to evaluate 

operands 
float x = n/m; // causes n and m to be widened to float first 

  Obey type of operands, widen intermediate values when 
necessary, and then narrow final value to destination type 

  More common, e.g. C, Java 

  IEEE ensures the following are valid for all values of x 
and y: 
  x+y = y+x 
  x+x = 2*x 
  1.0*x = x 
  0.5*x = x/2.0 
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IEEE 754 Floating Point 
Manipulation Tricks 

  Fast FP-to-integer conversion (rounds towards -∞) 

#define FLOAT_FTOI_MAGIC_NUM (float)(3<<21) 
#define IT_FTOI_MAGIC_NUM (0x4ac00000) 
inline int FastFloatToInt(float f) 
{ 
   f += FLOAT_FTOI_MAGIC_NUM; 
   return (*((int*)&f) - IT_FTOI_MAGIC_NUM)>>1; 
} 
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IEEE 754 Floating Point 
Manipulation Tricks 

  Fast square root approximation with only <5% error 

inline float FastSqrt(float x) 
{ 
   int t = *(int*)&x; 
   t -= 0x3f800000; 
   t >>= 1; 
   t += 0x3f800000; 
   return *(float*)&t; 
} 
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IEEE 754 Floating Point 
Manipulation Tricks 

  Fast reciprocal square root approximation for x > 0.25 
with only <0.6% error 

inline float FastInvSqrt(float x) 
{ 
   int tmp = ((0x3f800000 << 1) + 
               0x3f800000 - *(long*)&x) >> 1; 
   float y = *(float*)&tmp; 
   return y * (1.47f – 0.47f * x * y * y); 
} 
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Floating Point Error Analysis 

  Error analysis formula 
  fl(a op b) = (a op b)*(1 + ε) 
  op is +, -, *, / 
  | ε | < machine eps = 2#significant bits = relative error in each op 
  Assumes no overflow, underflow, or divide by zero occurs 
  Really a worst-case upper bound, no error cancellation 

  Example 
  fl(x + y + z) 

= fl(fl(x + y) + z) 
= ((x + y)*(1+ε) + z)*(1+ε) 
= x + 2εx + ε2x + y + 2εy + ε2y + z + εz 
≈ x*(1+2ε) + y*(1+2ε) + z*(1+ε) 

  Series of n operations: result*(1+nε) 
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Numerical Stability 

  Numerical stability is an algorithm design goal 
  Backward error analysis is applied to determine if 

algorithm gives the exact result for slightly changed input 
values 

  Extensive literature, not further discussed here… 
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Conditioning 

  An algorithm is well conditioned (or insensitive) if 
relative change in input causes commensurate relative 
change in result 
  Cond = | relative change in solution | / | relative change in input | 
            = | (f(x+h) - f(x)) / f(x) | / | h/x | 
if the derivative f’ of f is known: 
   Cond = | x | | f’(x) | / | f(x) | 

  Problem is sensitive or ill-conditioned if Cond >> 1 

  Other definitions 
  Absolute error  = f(x+h) - f(x)   ≈ h f’(x) 
  Relative error  = (f(x+h) - f(x)) / f(x)  ≈ h f’(x) / f(x) 



Conditioning Examples 
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f x f(x) f’(x) cond log10(cond) 
exp 1 e e 1 0 
exp 0 1 1 0 -∞ 
exp -1 1/e 1/e 1 0 
log e 1 1/e 1 0 
log 1 0 1 ∞ ∞ 
log 1/e -1 e 1 0 
sin π 0 -1 ∞ ∞ 
sin π/2 1 0 0 -∞ 
sin 0 0 1 NaN NaN 
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Example 

  Let x = π/2 and let h be a small perturbation to x 
  Absolute error = cos(x+h) - cos(x) ≈ -h sin(x) ≈ -h 
  Relative error = (cos(x+h) - cos(x)) / cos(x) ≈ -h tan(x) ≈ -∞ 

  Small change in x near π/2 causes relative large change 
in cos(x) 
  cos(1.57078) = 1.63268 10-5 
  cos(1.57079) = 0.63268 10-5 

  Cond = |π/2|*|sin(π/2)|/|cos(π/2)| 
          = π/2 * 1/0 = ∞  

x ≈ π/2  

cos(x) 

1.63268 10-5 

0.63268 10-5 
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SIMD Short Vector Extensions 

  Using SIMD short vector extensions can result in large 
performance gains 
  Instruction set extensions execute fast 
  New wide registers to hold short vectors of ints, floats, doubles 
  Parallel operations on short vectors 
  Typical vector length is 128 bit 

  Vector of 4 floats, 2 doubles, or 1 to 16 ints (128 bit to 8 bit ints) 

  Technologies: 
  MMX and SSE (Intel) 
  3DNow! (AMD) 
  AltiVec (PowerPC) 
  PA-RISC MAX (HP) 



SSE SIMD Technology History 
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Technology First appeared Description 

MMX Pentium with MMX Introduced 8-byte packed integers 
SSE Pentium III Added 16-byte packed single precision 

floating point numbers 
SSE2 Pentium 4 Added 16-byte packed double precision 

floating point numbers and integers 
SSE3 Pentium 4 with HT Added horizontal operations on packed 

single and double precision floating point 
SSE4 P4 & Core i7 Added various instructions not specifically 

intended for multimedia 
SSE5 AMD Added fused/accumulate and permutation 

instructions, and precision control 



SSE Instruction Set 

  Eight 128 bit registers xmm0 … xmm7 
  Each register packs 

  16 bytes (8 bit int) 
  8 words (16 bit int) 
  4 doublewords (32 bit int) 
  2 quadwords (64 bit int) 
  4 floats (IEEE 754 single precision) 
  2 doubles (IEEE 754 double precision) 

  Note: integer operations are signed or unsigned 
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SSE Instruction Set 

  Instruction format: 
 instruction<suffix> xmm, xmm/m128, [imm8/r32] 
m128 is a 128-bit memory location (16-byte aligned address), imm8 
is an 8-bit immediate operand, r32 a 32-bit register operand 

  Instruction suffix for floating-point operations: 
  ps: packed single precision float 
  pd: packed double precision float 
  ss: scalar (applies to lower data element) single precision float 
  sd: scalar (applies to lower data element) double precision float 

  Instruction suffix for integer operations: 
  b: byte 
  w: word 
  d: doubleword 
  q: quadword 
  dq: double quadword 
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SSE Data Movement 

  Little endian order 
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… 
W7 
W6 
W5 
W4 
W3 
W2 
W1 
W0 
… 

a+14 
a+14 
a+10 

a+8 
a+6 
a+4 
a+2 

a 

W7 W6 W5 W4 W3 W2 W1 W0 xmm0: 

movdqa xmm0, [a] 

movdqu xmm0, [a] 

Use when a is 16-byte aligned 

Use when a is not aligned 
(expensive!) 



SSE Data Movement 

HPC II Spring 2009 31 3/18/09 

Instruction Suffix Description 
movdqa 
movdqu 

Move double quadword aligned 
Move double quadword unaligned 

mova 
movu 

ps,pd Move single/double precision float aligned 
Move single/double precision float unaligned 

movhl 
movlh 

ps 
ps 

Move packed float high to low 
Move packed float low to high 

moveh 
movel 

ps,pd 
ps,pd 

Move high packed float (single/double) 
Move low packed float (single/double) 

mov d,q,ss,sd Move scalar data 
lddqu 
movddup 
movshdup 
movsldup 

Load double quadword unaligned 
Move quadword and duplicate 
Move doubleword and duplicate into high position 
Move doubleword and duplicate into low position 



SSE Data Movement 
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Instruction Suffix Description 
pextr 
pinsr 

w 
w 

Extract word to r32 
Insert word from r32 

pmovmsk b Move mask 

movmsk ps,pd Move mask 

Note: 
Instructions that start with ‘p’ historically operate on 64-bit MM registers 
Some of these are upgraded by SSE to operate on 128-bit XMM registers 



SSE Integer Arithmetic 
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Instruction Suffix Description 
padd 
psub 

b,w,d,q 
b,w,d,q 

Packed addition (signed/unsigned) 
Packed subtraction (signed/unsigned) 

padds 
paddus 
psubs 
psubus 

b,w 
b,w 
b,w 
b,w 

Packed addition with saturation (signed) 
Packed addition with saturation (unsigned) 
Packed subtraction with saturation (signed) 
Packed subtraction with saturation (unsigned) 

pmins 
pminu 
pmaxs 
pmaxu 

w 
b 
w 
b 

Packed minimum (signed) 
Packed minimum (unsigned) 
Packed maximum (signed) 
Packed maximum (unsigned) 



SSE Floating-Point Arithmetic 
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Instruction Suffix Description 
add ss,ps,sd,pd Addition (scalar/packed, single/double) 
sub ss,ps,sd,pd Subtraction (scalar/packed, single/double) 
mul ss,ps,sd,pd Multiplication (scalar/packed, single/double) 
div ss,ps,sd,pd Division (scalar/packed, single/double) 
min ss,ps,sd,pd Minimum (scalar/packed, single/double) 
max ss,ps,sd,pd Maximum (scalar/packed, single/double) 
sqrt ss,ps,sd,pd Square root (scalar/packed, single/double) 
rcp ss,ps Approximate reciprocal 
rsqrt ss,ps Approximate reciprocal square root 



SSE Idiomatic Arithmetic 
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Instruction Suffix Description 
pavg b,w Packed average with rounding (unsigned) 
pmulh 
pmulhu 
pmull 

w 
w 
w 

Packed multiplication high (signed) 
Packed multiplication high (unsigned) 
Packed multiplication low (signed/unsigned) 

psad 
pmadd 

bw 
wd 

Packed sum of absolute differences (unsigned) 
Packed multiplication and addition (signed) 

addsub 
hadd 
hsub 

ps,pd 
ps,pd 
ps,pd 

Floating point addition and subtraction 
Floating point horizontal addition 
Floating point horizontal subtraction 



SSE Logical Instructions 
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Instruction Suffix Description 
pand 
pandn 
por 
pxor 

Bitwise logical AND 
Bitwise logical AND-NOT 
Bitwise logical OR 
Bitwise logical XOR 

and 
andn 
or 
xor 

ps,pd 
ps,pd 
ps,pd 
ps,pd 

Bitwise logical AND 
Bitwise logical AND-NOT 
Bitwise logical OR 
Bitwise logical XOR 



SSE Comparison Instructions 
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Instruction Suffix Description 
pcmpeq 
pcmpgt 

b,w,d 
b,w,d 

Packed compare equal 
Packed compare greater than 

cmp ss,ps,sd,pd Floating-point compare 
imm8 field is eq, lt, le, unord, neq, nlt, nle, ord 
Use intrinsic _mm_cmp<cc>_x 



SSE Conversion Instructions 
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Instruction Suffix Description 
packss 
packus 

wb,dw 
wb 

Pack with saturation (signed) 
Pack with saturation (unsigned) 

cvt<c> 
cvtt<c> 

Conversion 
Conversion with truncation 
c = dq2pd two signed doublewords to two double FP 
c = pd2dq (vice versa) 
c = dq2ps four signed doublewords to four single FP 
c = ps2dq (vice versa) 
c = pd2ps two double FP to two single FP 
c = ps2pd (vice versa) 
c = sd2ss one double FP to one single FP 
c = ss2sd (vice versa) 



SSE Shift and Shuffle 
Instructions 
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Instruction Suffix Description 
psll 
psra 
psrl 

w,d,q,dq 
w,d 
w,d,q,dq 

Shift left logical (zero in) 
Shift right arithmetic (sign in) 
Shift right logical (zero in) 

pshuf 
pshufh 
pshufl 

w,d 
w 
w 

Packed shuffle 
Packed shuffle high 
Packed shuffle low 

shuf ps,pd Shuffle, imm8 contains sequence of two (pd) or 
four (ps) 2-bit encodings of which source 
operand is stored in the destination operand 



SSE Unpack Instructions 
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Instruction Suffix Description 
punpckh 
punpckl 

bw,wd,dq,qdq 
bw,wd,dq,qdq 

Unpack high 
Unpack low 

unpckh 
unpckl 

ps,pd 
ps,pd 

Unpack high 
Unpack low 



MXCSR Control/Status Register 
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uint32_t setmask = …; 
uint32_t oldctrl, newctrl; 
_asm { 
  STMXCSR oldctrl 
  mov eax, oldctrl 
  and eax, 0ffffe07fh 
  or eax, setmask 
  mov newctrl,eax 
  LDMXCSR newctrl 
} 

F
Z

R 
C 

P
M

U
M

O
M

Z
M 

D
M

I
M

D
A
Z 

P
E 

U
E 

O
E 

Z
E 

D
E 

I
E 

0 1 2 3 4 5 8 9 10 11 12 6 7 13 14 15 

Denormals are zeros 
Precision flag 

Underflow flag 
Overflow flag 

Zero divide flag 
Denormal flag 

Invalid operation flag 

Flush to zero 
Rounding control 
Precision mask 
Underflow mask 
Overflow mask 
Divide-byz-zero mask 
Denormal operation mask 
Invalid operation mask 

Note: FZ and DAZ improve 
performance but are not IEEE 
754 compatible 
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Intel SSE Programming 

  Programming languages such as C, C++, and Fortran do 
not natively support SIMD instructions 

  The Intel compiler supports four methods to use SSE, 
from hard (top) to easy (bottom) they are: 
  Assembly: direct control, but hard to use and processor-specific 
  Intrinsics: similar to assembly instructions with operands that 

are C expressions, but may be processor-specific 
  C++ class libraries: easier to use and portable, but limited 

support for instructions and gives lower performance 
  Automatic vectorization: no source code changes needed, 

new instruction sets automatically used, but compiler may fail to 
automatically vectorize code when dependences cannot be 
disproved 
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SSE Instruction Intrinsics 

  Use #include <emmintrin.h> (SSE2) or <pmmintrin.h> 
(SSE3) 

  Data types: 
 __m64  MM register 
 __m128  packed single precision (XMM register) 
 __m128d  packed double precision (XMM register)  
 __m128i  packed integer (XMM register) 

  Intrinsics operate on these types and have the format: 
 _mm_instruction_suffix(…) 
where op is an operation and suffix 
 ss,ps  scalar/packed single precision 
 sd,pd  scalar/packed double precision 
 si#  scalar integer (8, 16, 32, 64, 128 bits) 
 su#  scalar unsigned integer (8, 16, 32, 64, 128 bits) 
 [e]pi#  packed integer (8, 16, 32, 64, 128 bits) 
 [e]pu#  packed unsigned integer (8, 16, 32, 64, 128 bits) 



SSE Instruction Intrinsics 

  Intrinsics add a number of shorthands for common 
composite instructions 
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Instruction Suffix Description 
_mm_setzero_ 
_mm_set1_ 

_mm_set_ 
_mm_setr_ 

si64,si128,ps,pd 
pi8,pi16,pi32,ps,pd 
epi8,epi16,epi32,epi64 
(as above) 
(as above) 

Set to zero 
Set all elements to a value 

Set elements from scalars 
Set in reverse order 

_mm_load_ 
_mm_loadu_ 
_mm_loadr_ 
_mm_loadh_ 
_mm_loadl_ 
_mm_load1_ 

MOVA (aligned) 
MOVU (unaligned) 
MOVA and shuffles to rev 
MOVH 
MOVL 
MOV and shuffles 
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SIMD Instruction Intrinsics 
Examples 

  Load (movapd) two 16-byte aligned doubles in a vector: 
double a[2] = {1.0, 2.0}; // a must be 16-byte aligned 
__m128d x = _mm_load_pd(a); 

  Add two vectors containing two doubles: 
__m128d a, b; 
__m128d x = _mm_add_pd(a, b); 

  Multiply two vectors containing four floats: 
__m128 a, b; 
__m128 x = _mm_mul_ps(a, b); 

  Add two vectors of 8 16-bit signed ints using saturating arithmetic 
__m128i a, b; 
__m128i x = _mm_adds_epi16(a, b); 

  Compare two vectors of 16 8-bit signed integers 
__m128i a, b; 
__m128i x = _mm_cmpgt_epi8(a, b); 

  Note: rounding modes and exception handling are set by masking 
the MXCSR register 
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Intrinsics Example 1 

#include <emmintrin.h> // SSE2 
… 
// array of ints, 16-byte aligned 
__declspec(align(16)) int array[len]; 
… 
__m128i ones4 = _mm_set1_epi32(1); 
__m128i *array4 = (__m128i*)array; 
for (int i = 0; i < len/4; i++) 
  array4[i] = _mm_add_epi32(array4[i], ones4); 

int array[len]; 
… 
for (int i = 0; i < len; i++) 
  array[i] = array[i] + 1; 
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Memory Alignment 

  Memory operands must be aligned for maximum 
performance 
  8-byte aligned for MMX 
  16-byte aligned for SSE 
  Use _declspec(align(8)) and _declspec(align(16)) 

  Aligned memory load/store operations segfault on 
unaligned memory operands 
  __m128d x = _mm_load_pd(aligned_address); 

  Unaligned memory load/store operations are safe to use 
but incur high cost 
  __m128d x = _mm_loadu_pd(unaligned_address); 

  Use _mm_malloc(len, 16) for dynamic allocation 
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Data Layout 

  Application’s data layout may need to be reconsidered to 
use SIMD instructions effectively 

  Vector operations require consecutively stored operands 
in memory 
  Cannot vectorize row-wise with row-major matrix layout 
  Cannot vectorize column-wise with column-major matrix layout 

  Aligned structs may have members that are unaligned 
  struct node { 
 int x[7]; 
 int dummy; // padding to make a[] aligned 
 float a[4]; 
} 
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C++ Class Libraries for SSE 

  Integer class types of the form Ibvecn 
I8vec8  (8 8bit)  I8vec16  (16 8bit) 
I16vec4 (4 16bit)  I16vec8  (8 16bit) 
I32vec2 (2 32bit)  I32vec4  (4 32bit) 
I64vec1 (1 64bit)  I64vec2  (2 64bit) 
I128vec1(1 128bit) 

Note: place an ‘s’ or ‘u’ after ‘I’ for packed signed or 
packed unsigned integers, e.g. Is32vec4 

  Floating point class types of the form Fbvecn 
F32vec4  (4 32bit)  F64vec2  (2 64bit) 
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C++ Class Library Example 

#include <dvec.h> // SSE2 
… 
// array of ints, 16-byte aligned 
__declspec(align(16)) int array[len]; 
… 
Is32vec4 *array4 = (Is32vec4*)array; 
for (int i = 0; i < len/4; i++) 
  array4[i] = array4[i] + 1; // increment 4 ints 
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GMP: 
GNU Multi-Precision Library 

  GMP is a portable library written in C for arbitrary 
precision arithmetic on integers, rational numbers, and 
floating-point numbers 

  GMP aims to provide the fastest possible arithmetic for 
all applications that need higher precision than is directly 
supported by the basic C types 

  Used by many projects, including computer algebra 
systems 

  Programming language bindings: C, C++, Fortran, Java, 
Prolog, Lisp, ML, Perl, … 

  License: LGPL 
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GMP Usage 

  Introduces three types (C language binding): 
 mpz_t   bigint 
 mpq_t   big rational 
 mpf_t   bignum 

  Use (similar for mpq and mpf): 
 #include <gmp.h> 
 mpz_t n; 
 mpz_init(n); 
 mpz_init2(n, 123); 
 mpz_init_set_str(n, “6”, 10); 
 … 
 mpz_clear(n); 

  Link with -lgmp 

Use one of these to 
initialize. 
Note: mpf_init2 
sets precision 

base 
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GMP 

  Dynamic memory allocation 
  Efficient implementation limits the need for frequent resizing 
  Configurable 

  150 integer operations on unlimited length bigint 
  Arithmetic 
  Comparison 
  Logic and bit-wise operations 
  Number theoretic functions 
  Random numbers 

  60 floating point operations on high-precision bignum 
  Arithmetic 
  Comparison 
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GMP C Example 
void myfunction(mpz_t result, mpz_t param, unsigned long n) 
{ 
  unsigned long  i; 

  mpz_mul_ui(result, param, n); 
  for (i = 1; i < n; i++) 
    mpz_add_ui(result, result, i*7); 
} 

int main(void) 
{ 
  mpz_t  r, n; 
  mpz_init(r); 
  mpz_init_set_str(n, "123456", 0); 

  myfunction(r, n, 20L); 
  mpz_out_str(stdout, 10, r); printf("\n"); 

  return 0; 
} 
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GMP C++ Bindings 

  Defines three classes: 
 mpz_class   for bigint 
 mpq_class   for big rationals 
 mpf_class   for bignum 

  Most GMP functions have C++ wrappers, but not all 
  Root of 0.2 in 1000 bit precision: 

 mpf_class x(0.2, 1000), y(sqrt(x)); 
  GCD of two bigints: 

 mpz_class a, b, c;  
 … 
 mpz_gcd(a.get_mpz_t(), b.get_mpz_t(), c.get_mpz_t()); 

  Use #include <gmpxx.h> and link -lgmpxx -lgmp 
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GMP C++ Example 

#include <gmpxx.h> 

mpz_class a, b, c; // integers 

a = 1234; 
b = "-5678"; 
c = a+b; 
cout << "sum is " << c << "\n"; 
cout << "absolute value is " << abs(c) << "\n"; 

Expression like a=b+c results in a single call to the corresponding mpz_add, 
without using a temporary for the b+c part. 

The classes can be freely intermixed in float, double, int/long, expressions. 
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Further Reading 

  “What Every Computer Scientist Should Know About 
Floating Point Arithmetic” by D. Goldberg, Computing 
Surveys, 1991 
http://docs.sun.com/source/806-3568/ncg_goldberg.html 

  Chapters 11 and 12 of “The Software Optimization 
Cookbook” 2nd ed by R. Gerber, A. Bik, K, Smith, and X. 
Tian, Intel Press. 

  “The Software Vectorization Handbook”, A. Bik, Intel 
Press. 

  Intel Compiler intrinsics reference: 
http://download.intel.com/support/performancetools/c/linux/v9/intref_cls.pdf 

  GNU GMP: http://gmplib.org 


