Algorithms PART I: Embarrassingly Parallel

HPC Fall 2012
Prof. Robert van Engelen
Overview

- Ideal parallelism
- Master-worker paradigm
- Processor farms
- Examples
 - Geometrical transformations of images
 - Mandelbrot set
 - Monte Carlo methods
- Load balancing of independent tasks
- Further reading
Ideal Parallelism

- An *ideal parallel computation* can be immediately divided into completely independent parts
 - “Embarrassingly parallel”
 - “Naturally parallel”
- No special techniques or algorithms required
Ideal Parallelism and the Master-Worker Paradigm

- Ideally there is no communication
 - Maximum speedup
- Practical embarrassingly parallel applications have initial communication and (sometimes) a final communication
 - Master-worker paradigm where master submits jobs to workers
 - No communications between workers

![Diagram of Master-Worker Paradigm]

- Send initial data
- Collect results

Master

P_0, P_1, P_2, P_3
Parallel Tradeoffs

- Embarrassingly parallel with perfect load balancing:
 \[t_{\text{comp}} = \frac{t_s}{P} \]
 assuming \(P \) workers and sequential execution time \(t_s \)

- Master-worker paradigm gives speedup only if workers have to perform a reasonable amount of work
 - Sequential time > total communication time + one workers’ time
 \[t_s > t_p = t_{\text{comm}} + t_{\text{comp}} \]
 - Speedup
 \[S_P = \frac{t_s}{t_p} = P \frac{t_{\text{comp}}}{(t_{\text{comm}} + t_{\text{comp}})} = \frac{P}{(r^{-1} + 1)} \]
 where \(r = \frac{t_{\text{comp}}}{t_{\text{comm}}} \)
 - Thus \(S_P \rightarrow P \) when \(r \rightarrow \infty \)

- However, communication \(t_{\text{comm}} \) can be expensive
 - Typically \(t_s < t_{\text{comm}} \) for small tasks, that is, the time to send/recv data to the workers is more expensive than doing all the work
 - Try to overlap computation with communication to hide \(t_{\text{comm}} \) latency
Example 1: Geometrical Transformations of Images

- Partition *pixmap* into regions
 - By block (row & col block)
 - By row

- Pixmap operations
 - **Shift**
 \[
 x' = x + \Delta x
 \]
 \[
 y' = y + \Delta y
 \]
 - **Scale**
 \[
 x' = S_x x
 \]
 \[
 y' = S_y y
 \]
 - **Rotation**
 \[
 x' = x \cos \theta + y \sin \theta
 \]
 \[
 y' = -x \sin \theta + y \cos \theta
 \]
 - **Clip**
 \[
 x_l \leq x' = x \leq x_h
 \]
 \[
 y_l \leq y' = y \leq y_h
 \]
Example 1: Master and Worker Naïve Implementation

```
row = 0;
for (p = 0; p < P; p++)
{ send(row, p);
  row += 480/P;
}
for (i = 0; i < 480; i++)
  for (j = 0; j < 640; j++)
    temp_map[i][j] = 0;
for (i = 0; i < 480; i++)
  { recv(&oldrow, &oldcol, &newrow, &newcol, anyP);
    if (!(newrow < 0 || newrow >= 480 || newcol < 0 || newcol >= 640))
      temp_map[newrow][newcol] = map[oldrow][oldcol];
  }
for (i = 0; i < 480; i++)
  for (j = 0; j < 640; j++)
    map[i][j] = temp_map[i][j];
```
Example 1: Geometrical Transformation Speedups?

- Assume in the general case the pixmap has n^2 points
- Sequential time of pixmap shift $t_s = 2n^2$
- Communication

 \[t_{comm} = P(t_{startup} + t_{data}) + n^2(t_{startup} + 4t_{data}) = O(P + n^2) \]
- Computation

 \[t_{comp} = \frac{2n^2}{P} = O(\frac{n^2}{P}) \]
- Computation/communication ratio

 \[r = O((\frac{n^2}{P}) / (P + n^2)) = O(\frac{n^2}{P^2 + n^2P}) \]

- This is not good!

 - The asymptotic computation time should be an order higher than the asymptotic communication time, e.g. $O(n^2)$ versus $O(n)$
 - … or there must be a very large constant in the computation time
- Performance on shared memory machine can be good

 - No communication time
Example 2: Mandelbrot Set

- A pixmap is generated by iterating the complex-valued recurrence
 \[z_{k+1} = z_k^2 + c \]
 with \(z_0 = 0 \) and \(c = x + yi \) until \(|z| \geq 2 \)

- The Mandelbrot set is shifted and scaled for display:
 \[x = x_{\text{min}} + x_{\text{scale}} \times \text{row} \]
 \[y = y_{\text{min}} + y_{\text{scale}} \times \text{col} \]
 for each of the pixmap’s pixels at \(\text{row} \) and \(\text{col} \) location

The number of iterations it takes for \(z \) to end up at a point outside the complex circle with radius 2 determines the pixmap color.
Example 2: Mandelbrot Set
Color Computation

int pix_color(float x0, float y0)
{
 float x = x0, y = y0;
 int i = 0;

 while (x*x + y*y < (2*2) && i < maxiter)
 {
 float xtemp = x*x - y*y + x0;
 float ytemp = 2*x*y + y0;

 x = xtemp;
 y = ytemp;

 i++;
 }

 return i;
}
Example 2: Mandelbrot Set
Simple Master and Worker

Master

```c
row = 0;
for (p = 0; p < P; p++)
{ send(row, p);
  row += 480/P;
}
for (i = 0; i < 480 * 640; i++)
{ recv(&x, &y, &color, anyP);
  display(x, y, color);
}
```

Worker

```c
recv(&row, master);
for (y = row; y < row + 480/P; y++)
{ for (x = 0; x < 640; x++)
  { x0 = xMin + x * xscale;
    y0 = ymin + y *yscale;
    color = pix_color(x0, y0);
    send(x, y, color, master);
  }
}
```

Send/recv (x,y) pixel colors
Example 2: Mandelbrot Set
Better Master and Worker

Master

```c
row = 0;
for (p = 0; p < P; p++)
{
    send(row, p);
    row += 480/P;
}
for (i = 0; i < 480; i++)
{
    recv(&y, &color, anyP);
    for (x = 0; x < 640; x++)
        display(x, y, color[x]);
}
recv(&row, master);
for (y = row; y < row + 480/P; y++)
{
    for (x = 0; x < 640; x++)
    {
        x0 = xmin + x * xscale;
        y0 = ymin + y * yscale;
        color[x] = pix_color(x0, y0);
    }
    send(y, color, master);
}
```

Worker

```c
recv(&row, master);
for (y = row; y < row + 480/P; y++)
{
    for (x = 0; x < 640; x++)
    {
        x0 = xmin + x * xscale;
        y0 = ymin + y * yscale;
        color[x] = pix_color(x0, y0);
    }
    send(y, color, master);
}
```

Assume nxn pixmap, n iterations on average per pixel, and P workers:
Communication time?
Computation time?
Computation/communication ratio?
Speedup?
Processor Farms

- **Processor farms** (also called the *work-pool approach*)
- A collection of workers, where each worker repeats:
 - Take new task from pool
 - Compute task
 - Return results into pool
- Achieves *load balancing*
 - Tasks differ in amount of work
 - Workers can differ in execution speed (viz. heterogeneous cluster)
Example 2: Mandelbrot Set with Processor Farm

Master

```c
count = 0;
row = 0;
for (p = 0; p < P; p++)
{ send(row, p);
  count++;
  row++;
}
do
{ recv(&y, &color, anyP);
  count--;
  if (row < 480)
  { send(row, anyP);
    row++;
    count++;
  }
else
  send(-1, anyP);
  for (x = 0; x < 640; x++)
    display(x, y, color[x]);
} while (count > 0);
```

Worker

```c
recv(&y, master);
while (y != -1)
{ for (x = 0; x < 640; x++)
    { x0 = xmin + x * xscale;
      y0 = ymin + y * yscale;
      color[x] = pix_color(x0, y0);
    }
  send(y, color, master);
  recv(&y, master);
}
```
Example 2: Mandelbrot Set with Processor Farm

Master

count = 0;
row = 0;
for (p = 0; p < P; p++)
{ send(row, p);
 count++;
 row++;
}
do
{ recv(&rank, &y, &color, anyP);
 count--;
 if (row < 480)
 { send(row, rank);
 row++;
 count++;
 }
else
 send(-1, rank);
for (x = 0; x < 640; x++)
 display(x, y, color[x]);
} while (count > 0);

Worker

recv(&y, master);
while (y != -1)
{ for (x = 0; x < 640; x++)
 { x0 = xmin + x * xscale;
 y0 = ymin + y *yscale;
 color[x] = pix_color(x0, y0);
 }
 send(myrank, y, color, master);
 recv(&y, master);
}
Example 3: Monte Carlo Methods

- Perform random selections to sample the solution
- Each sample is independent
- Example
 - Compute π by sampling the [-1..1,-1..1] square that contains a circle with radius 1
 - The probability of hitting the circle is $\pi/4$

![Diagram showing a circle inside a square with area calculation]
Example 3: Monte Carlo Methods

- General Monte Carlo methods sample inside and outside the solution space.
- Many Monte Carlo methods do not sample outside solution space.
- Function integration by sampling the function values over the integration domain.

\[\int_{x_1}^{x_2} f(x) \, dx = \lim_{N \to \infty} \frac{x_2 - x_1}{N} \sum_{r=1}^{N} f(x_r) \]
Example 3: Monte Carlo Methods and Parallel RNGs

- **Approach 1**: master sends random number sequences to the workers
 - Uses one random number generator (RNG)
 - Lots of communication

- **Approach 2**: workers produce independent random number sequences
 - Communication of sample parameters only
 - Cannot use standard pseudo RNG (sequences are the same)
 - Needs parallel RNG

- **Parallel RNGs** (e.g. SPRNG library)
 - Parallel pseudo RNG
 - Parallel quasi-random RNG
Example 3: Monte Carlo Methods and Parallel RNGs

- **Linear congruential generator** (pseudo RNG):
 \[x_{i+1} = (a \, x_i + c) \mod m \]
 with a choice of \(a, c, \) and \(m \)

 - Good choice of \(a, c, \) and \(m \) is crucial!
 - Cannot easily segment the sequence (for processors)

- A parallel pseudo RNG with a “jump” constant \(k \)
 \[x_{i+k} = (A \, x_i + C) \mod m \]
 where \(A=a^k \mod m, \ C=c(a^{k-1}+a^{k-2}+\ldots+a^1+a^0) \mod m \)

Parallel computation of sequence

The sequences per processor
Load Balancing

- Load balancing attempts to spread tasks evenly across processors
- Load imbalance is caused by
 - Tasks of different execution cost, e.g. Mandelbrot example
 - Processors operate with different execution speeds or are busy
- When tasks and processors are not load balanced:
 - Some processes finish early and sit idle waiting
 - Global computation is finished when the slowest processor(s) completes its task

![Load balanced diagram](chart1)

![Not load balanced diagram](chart2)
Static Load Balancing

- Load balancing can be viewed as a form of "bin packing"
- Static scheduling of tasks amounts to optimal bin packing
 - Round robin algorithm
 - Randomized algorithms
 - Recursive bisection
 - Optimized scheduling with simulated annealing and genetic algorithms
- Problem: difficult to estimate amount of work per task, deal with changes in processor utilization and communication latencies

![Diagram of load balancing](image)
Centralized Dynamic Load Balancing

- Centralized: work pool with replicated workers
- Master process or central queue holds incomplete tasks
 - First-in-first-out or priority queue (e.g. priority based on task size)
- Terminates when queue is empty or workers receive termination signal

![Diagram of Centralized Dynamic Load Balancing]

- Work pool
- Task queue
- Get task
- Return result or add new task
Decentralized Dynamic Load Balancing

- Disadvantage of centralized approach is the central queue through which tasks move one by one
- Decentralized: distributed work pools
Fully Distributed Work Pool

- **Receiver-initiated poll method**: (an idle) worker process requests a task from another worker process.
- **Sender-initiated push method**: (an overloaded) worker process sends a task to another (idle) worker.
- Workers maintain local task queues.
- Process selection:
 - Topology-based: select nearest neighbors.
 - Round-robin: try each of the other workers in turn.
 - Random polling/pushing: pick an arbitrary worker.

Absence of starvation: assume ∞ tasks, how can we guarantee each one is eventually executed?
Worker Pipeline

- Workers are organized in an array (or ring) with the master on one end (or middle)
 - Master feeds the pipeline
 - When the buffer of a worker is idle, it sends a request to the left
 - When the buffer of a worker is full, incoming tasks are shifted to the worker on the right (passing task along until an empty slot)
Further Reading

- [PP2] pages 79-99, 201-210