Introduction

HPC Fall 2010
Prof. Robert van Engelen

Title: “High Performance Computing” (ISC5318 and CIS5930-1)
Classes: Monday and Wednesday 12:30PM to 1:45PM in 103 LOV
Evaluation: projects (40%), homework (20%), midterm exam (20%), and final exam (20%)
Prerequisites: experience programming in either Java, C, C++, or Fortran
Accounts: you need an SCS account to access machines
Instructor: Prof. Robert van Engelen, office hour Tuesday from 12:30PM to 1:30PM in 160 LOV and upon request

http://www.cs.fsu.edu/~engelen/courses/HPC
Books

- [SRC] "Sourcebook of Parallel Programming" by J. Dongara, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White (eds), Morgan Kaufmann.
Course Outline

- Introduction
- Architecture and Compilers
 - E.g. levels of parallelism, CPU and memory resources, types of (parallel) computers, compilation techniques to improve CPU and memory access
- Performance Analysis
 - E.g. timing code, finding hotspots, profiling, measuring message latency
- Programming Models
 - Programming with Shared Memory
 - E.g. threads, openMP, locks, barriers, automatic parallelization
 - Programming with Message Passing
 - E.g. MPI, communications, MPE and jumpshot, debugging
- Algorithms
 - E.g. embarrassingly parallel, synchronous, pipelined, partitioning and divide and conquer strategies, parallel numerical algorithms
- High-Performance Libraries, Programming Languages and Tools
Introduction

- Why parallel?
- … and why not!
- Speedup, efficiency, and scalability of parallel algorithms
- Laws
- Limitations to speedup
- The future of computing
- Lessons Learned
- Further reading
Why Parallel?

A programmer should first ask “why parallel?”

It is not always obvious that a parallel algorithm has benefits, unless we want to do things …

- faster: doing the same amount of work in less time
- bigger: doing more work in the same amount of time

Both of these reasons can be argued to produce better results, which is the only meaningful outcome of program parallelization.
Why Parallel? Faster, Bigger!

- There is an ever increasing demand for computational power to improve the speed or accuracy of solutions to real-world problems through *faster* computations and/or *bigger* simulations.

- Computations must be completed in acceptable time (real-time computation), hence must be “fast enough”
Why Parallel? Faster, Bigger!

- An illustrative example: a weather prediction simulation should not take more time than the real event.

- Suppose the atmosphere of the earth is divided into 5×10^8 cubes, each $1 \times 1 \times 1$ mile and stacked 10 miles high.

- It takes 200 floating point operations per cube to complete one time step.

- 10^4 time steps are needed for a 7 day forecast.

- Then 10^{15} floating point operations must be performed.

- This takes 10^6 seconds (= 10 days) on a 1 GFLOP machine.
Why Parallel?

Grand Challenge Problems

- Big problems
 - A “Grand Challenge” problem is a problem that cannot be solved in a reasonable amount of time with today’s computers
 - Examples of Grand Challenge problems:
 - Applied Fluid Dynamics
 - Meso- to Macro-Scale Environmental Modeling
 - Ecosystem Simulations
 - Biomedical Imaging and Biomechanics
 - Molecular Biology
 - Molecular Design and Process Optimization
 - Fundamental Computational Sciences
 - Nuclear power and weapons simulations
Why Parallel?
Physical Limits

- Which tasks are fundamentally too big to compute with one CPU?
- Suppose we have to calculate in one second:

  ```c
  for (i = 0; i < ONE_TRILLION; i++)
    z[i] = x[i] + y[i];
  ```

- Then we have to perform 3×10^{12} memory moves per second.
- If data travels at the speed of light (3×10^8 m/s) between the CPU and memory and r is the average distance between the CPU and memory, then r must satisfy:

 $3 \times 10^{12} r = 3 \times 10^8$ m/s \times 1 s

 which gives $r = 10^{-4}$ meters.

- To fit the data into a square so that the average distance from the CPU in the middle is r, then the length of each memory cell will be:

 2×10^{-4} m / $(\sqrt{3} \times 10^6) = 10^{-10}$ m

 which is the size of a relatively small atom.
Why Parallel?
Important Factors

Important considerations in parallel computing

- *Physical limitations*: the speed of light, CPU heat dissipation
- *Economic factors*: cheaper components can be used to achieve comparable levels of aggregate performance
- *Scalability*: allow problem sizes to be subdivided to obtain a better match between algorithms and resources (CPU, memory) to increase performance
- *Memory*: allow aggregate memory bandwidth to be increased together with processing power at a reasonable cost
... and Why not Parallel?

- Bad parallel programs can be worse than their sequential counterparts
 - Slower: because of communication overhead
 - Scalability: some parallel algorithms are only faster when the problem size is very large

- Understand the problem and use common sense

- Not all problems are amenable to parallelism

- In this course we will focus a significant part on non-parallel optimizations
... and Why not Parallel?

- Some algorithms are inherently sequential
- Consider for example the Collatz conjecture, implemented by
  ```
  int Collatz(int n)
  {
      int step;
      for (step = 1; n != 1; step++)
      {
          if (n % 2 == 0) // is n is even?
              n = n / 2;
          else
              n = 3*n + 1;
      }
      return step;
  }
  ```
- Given n, Collatz returns the number of steps to reach $n = 1$
- Conjecture: algorithm terminates for any integer $n > 0$
- This algorithm is clearly sequential
- Note: given a vector of k values, we can compute k Collatz numbers in parallel

Speedup

- Suppose we want to compute in parallel

  ```
  for (i = 0; i < N; i++)
    z[i] = x[i] + y[i];
  ```

- Then the obvious choice is to split the iteration space in P equal-sized N/P chunks and let each processor share the work (*worksharing*) of the loop:

  ```
  for each processor $p$ from 0 to $P-1$ do:
    for (i = p*N/P; i < (p+1)*(N/P); i++)
      z[i] = x[i] + y[i];
  ```

- We would assume that this parallel version runs P times faster, that is, we hope for *linear speedup*

- Unfortunately, in practice this is not the case because of processor overhead, communication, and synchronization
Speedup

- **Definition**: the *speedup* of an algorithm using P processors is defined as

$$S_P = \frac{t_s}{t_P}$$

where t_s is the execution time of the *best available sequential algorithm* and t_P is the execution time of the parallel algorithm.

- The speedup is linear (*perfect* or *ideal speedup*) if $S_P \approx P$

- The speedup is *superlinear* when $S_P > P$
Relative Speedup

- **Definition**: The *relative speedup* is defined as
 \[S^1_P = \frac{t_1}{t_P} \]
 where \(t_1 \) is the execution time of the parallel algorithm on one processor.

- Similarly, \(S^k_P = \frac{t_k}{t_P} \) is the relative speedup with respect to \(k \) processors, where \(k < P \).

- The relative speedup \(S^k_P \) is used when \(k \) is the smallest number of processors on which the problem will run.
An Example

Parallel search

- Search in parallel by partitioning the search space into P chunks
- $S_P = ((x \times t_s/P) + \Delta t) / \Delta t$
- Worst case for sequential search (item in last chunk): $S_P \to \infty$ as Δt tends to zero
- Best case for sequential search (item in first chunk): $S_P = 1$

Sequential search

Δt

Start Time

Sub-space search

Solution found

t_s

t_s/p

Solution found
Effects that can Cause Superlinear Speedup

- *Cache effects*: when data is partitioned and distributed over \(P \) processors, then the individual data items are (much) smaller and may fit entirely in the data cache of each processor.

- For an algorithm with linear speedup, the extra reduction in cache misses may lead to superlinear speedup.
Efficiency

- **Definition**: the efficiency of an algorithm using P processors is

$$E_P = S_P / P$$

- Efficiency estimates how well-utilized the processors are in solving the problem, compared to how much effort is lost in communication and synchronization.

- Algorithms with ideal speedup and algorithms running on a single processor have $E_P = 1$.

- Many difficult-to-parallelize algorithms have efficiency that approaches zero as P increases.
Scalability

- Speedup describes how the parallel algorithm’s performance changes with increasing P.

- Scalability concerns the efficiency of the algorithm with changing problem size N by choosing P dependent on N so that the efficiency of the algorithm is bounded below.

- Definition: an algorithm is scalable if there is minimal efficiency $\varepsilon > 0$ such that given any problem size N there is a number of processors $P(N)$ which tends to infinity as N tends to infinity, such that the efficiency $E_{P(N)} \geq \varepsilon > 0$ as N is made arbitrarily large.
Amdahl’s Law

- Several factors can limit the speedup
 - Processors may be idle
 - Extra computations are performed in the parallel version
 - Communication and synchronization overhead

- Let f be the fraction of the computation that is sequential and cannot be divided into concurrent tasks

\[\text{Speedup} = \frac{1}{f + (1-f) \frac{1}{p}} \]
Amdahl’s Law

- Amdahl’s law states that the speedup given P processors is
 \[S_P = \frac{t_s}{f \times t_s + (1-f) t_s / P} = \frac{P}{1 + (P-1)f} \]
- As a consequence, the maximum speedup is limited by
 \[S_P = f^{-1} \]
as $P \to \infty$
Gustafson’s Law

- Amdahl's law is based on a fixed workload or fixed problem size.

- **Gustafson’s law** defines the *scaled speedup* by keeping the parallel execution time constant by adjusting P as the problem size N changes.

 $$S_{P,N} = P + (1-P)\alpha(N)$$

 where $\alpha(N)$ is the non-parallelizable fraction of the normalized parallel time $t_{P,N} = 1$ given problem size N.

- To see this, let $\beta(N) = 1 - \alpha(N)$ be the parallelizable fraction.

 $$t_{P,N} = \alpha(N) + \beta(N) = 1$$

 then, the scaled sequential time is

 $$t_{s,N} = \alpha(N) + P \beta(N)$$

 giving

 $$S_{P,N} = \alpha(N) + P (1 - \alpha(N)) = P + (1-P)\alpha(N)$$
Limitations to Speedup: Data Dependences

- The Collatz iteration loop has a *loop-carried dependence*
 - The value of \(n \) is carried over to the next iteration
 - Therefore, the algorithm is inherently sequential

- Loops with loop-carried dependences cannot be parallelized

- To find parallelism in an application
 - Change the loops to remove dependences (if possible!)
 - Apply algorithmic changes by rewriting the algorithm (this may change the result of the output)
Limitations to Speedup: Data Dependences

Consider for example the update step in a *Gauss-Seidel iteration* for solving a two-point boundary-value problem:

```plaintext
do i=1,n
   soln(i)=(f(i)-soln(i+1)*offdiag(i)
            -soln(i-1)*offdiag(i-1))/diag(i)
endo
```

By contrast, the *Jacobi iteration* for solving a two-point boundary-value problem does not exhibit loop-carried dependences:

```plaintext
do i=1,n
   snew(i)=(f(i)-soln(i+1)*offdiag(i)
            -soln(i-1)*offdiag(i-1))/diag(i)
endo
do i=1,n
   soln(i)=snew(i)
endo
```

In this case the iteration space of the loops can be partitioned and each processor given a chunk of the iteration space.
Limitations to Speedup: Data Dependences

1. do i=1,n
 diag(i)=(1.0/h(i))+(1.0/h(i+1))
 offdiag(i)=-(1.0/h(i+1))
enddo

2. do i=1,n
 dxo=1.0/h(i)
 dxi=1.0/h(i+1)
 diag(i)=dxo+dx
 offdiag(i)=-dx
enddo

3. dx=1.0/h(1)
do i=1,n
 dxo=dx
 dx=1.0/h(i+1)
 diag(i)=dxo+dx
 offdiag(i)=-dx
endo
Efficient Parallel Execution

- Trying to construct a parallel version of an algorithm is not the end-all do-all of high-performance computing
 - Recall Amdahl’s law: the maximum speedup is bounded by
 \[S_P = f^{-1} \] as \(P \to \infty \)
 - Thus, efficient execution of the non-parallel fraction \(f \) is extremely important
 - We can reduce \(f \) by improving the sequential code execution (e.g. algorithm initialization parts), I/O, communication, and synchronization

- To achieve high performance, we should highly optimize the per-node sequential code and use profiling techniques to analyze the performance of our code to investigate the causes of overhead
Efficient Sequential Execution

- Memory effects are the greatest concern for optimal sequential execution
 - Store-load dependences, where data has to flow through memory
 - Cache misses
 - TLB misses
 - Page faults
- CPU resource effects can limit performance
 - Limited number of floating point units
 - Unpredictable branching (if-then-else, loops, etc) in the program
- Use common sense when allocating and accessing data
- Use compiler optimizations effectively
- Execution best analyzed with performance analyzers
Lessons Learned from the Past

- Applications
 - Parallel computing can transform science and engineering and answer challenges in society
 - To port or not to port is NOT the question: a complete redesign of an application may be necessary
 - The problem is not the hardware: hardware can be significantly underutilized when software and applications are suboptimal

- Software and algorithms
 - Portability remains elusive
 - Parallelism isn’t everything
 - Community acceptance is essential to the success of software
 - Good commercial software is rare at the high end
Future of Computing

- **Moore’s law** tells us that we will continue to enjoy improvements of transistor cost and speed (but not CPU clock frequency!) for another decade.
Future of Computing

- The peak performance of supercomputers follows Moore’s law
Future of Computing

- Performance growth at fixed Top500 rankings

![Graph showing performance growth over time with different growth rates for specific categories such as N = 1, N = 10, N = 100, and N = 500.](Image)
Future of Computing

With increased transistor density we face huge CPU energy consumption and heat dissipation issues

- This puts fundamental limits on CPU clock frequencies
- Therefore, single CPU performance will be relatively flat

This will mean that

- Computers will get a lot cheaper but not faster
- On-chip parallelism will increase with multiple cores to sustain continued performance improvement

High-performance computing power will be available on the desktop, requiring parallel algorithms to utilize the full potential of these machines
Writing Efficient Programs

- How to program *multiprocessor* systems that employ multiple processors (often with multiple memory banks)
 - Understand the **problem** to be solved
 - Understand the **machine architecture constraints**
 - **Redesign** the algorithm when needed
 - **Partition the data** when applicable
 - Use **parallel programming languages**
 - … or programming language extensions to support parallelism
 - **Debugging** is much more complicated
 - **Performance analysis** is no longer optional
Further Reading

- [PP2] pages 3-12
- [SRC] pages 3-13
- Optional:
 - More on Moore’s law
 - http://en.wikipedia.org/wiki/Moore%27s_law
 - Grand Challenge problems
 - Collatz conjecture and implementation on the Cell BE: