Lexical Analysis and Lexical Analyzer Generators

Chapter 3

The Reason Why Lexical Analysis is a Separate Phase

- Simplifies the design of the compiler
 - LL(1) or LR(1) with 1 lookahead would not be possible
- Provides efficient implementation
 - Systematic techniques to implement lexical analyzers by hand or automatically
 - Stream buffering methods to scan input
- Improves portability
 - Non-standard symbols and alternate character encodings can be more easily translated
Interaction of the Lexical Analyzer with the Parser

Source Program → Lexical Analyzer

Token, tokenval

Parser

error

Symbol Table

Error

Attributes of Tokens

y := 31 + 28*x

Lexical analyzer

<id, “y”>, <assign, >, <num, 31>, <+, >, <num, 28>, <*, >, <id, “x”>

token

tokenval (token attribute)

Parser
Tokens, Patterns, and Lexemes

• A *token* is a classification of lexical units
 – For example: *id* and *num*

• *Lexemes* are the specific character strings that make up a token
 – For example: *abc* and *123*

• *Patterns* are rules describing the set of lexemes belonging to a token
 – For example: “*letter followed by letters and digits*” and “*non-empty sequence of digits*”

Specification of Patterns for Tokens: Terminology

• An *alphabet* Σ is a finite set of symbols (characters)

• A *string* s is a finite sequence of symbols from Σ
 – $|s|$ denotes the length of string s
 – ε denotes the empty string, thus $|\varepsilon| = 0$

• A *language* is a specific set of strings over some fixed alphabet Σ
Specification of Patterns for Tokens: String Operations

- **Concatenation** of two strings x and y is denoted by xy
- **Exponentiation** of a string s is defined by
 \[
 s^0 = \varepsilon \\
 s^i = s^{i-1}s \text{ for } i > 0
 \]
 (note that $s\varepsilon = \varepsilon s = s$)

Specification of Patterns for Tokens: Language Operations

- **Union**
 \[
 L \cup M = \{s \mid s \in L \text{ or } s \in M\}
 \]
- **Concatenation**
 \[
 LM = \{xy \mid x \in L \text{ and } y \in M\}
 \]
- **Exponentiation**
 \[
 L^0 = \{\varepsilon\}; \quad L^i = L^{i-1}L
 \]
- **Kleene closure**
 \[
 L^* = \bigcup_{i=0,\ldots,\infty} L^i
 \]
- **Positive closure**
 \[
 L^+ = \bigcup_{i=1,\ldots,\infty} L^i
 \]
Specification of Patterns for Tokens: Regular Expressions

- Basis symbols:
 - ε is a regular expression denoting language $\{\varepsilon\}$
 - $a \in \Sigma$ is a regular expression denoting $\{a\}$

- If r and s are regular expressions denoting languages $L(r)$ and $M(s)$ respectively, then
 - $r \cup s$ is a regular expression denoting $L(r) \cup M(s)$
 - rs is a regular expression denoting $L(r)M(s)$
 - r^n is a regular expression denoting $L(r)^n$
 - (r) is a regular expression denoting $L(r)$

- A language defined by a regular expression is called a regular set

Specification of Patterns for Tokens: Regular Definitions

- Naming convention for regular expressions:

 $d_1 \rightarrow r_1$

 $d_2 \rightarrow r_2$

 \ldots

 $d_n \rightarrow r_n$

 where r_i is a regular expression over $
 \Sigma \cup \{d_1, d_2, \ldots, d_{i-1}\}$

- Each d_j in r_i is textually substituted in r_i
Specification of Patterns for Tokens: Regular Definitions

- Example:

 \[
 \text{letter} \rightarrow A \mid B \mid \ldots \mid Z \mid a \mid b \mid \ldots \mid z \\
 \text{digit} \rightarrow 0 \mid 1 \mid \ldots \mid 9 \\
 \text{id} \rightarrow \text{letter} (\text{letter} \mid \text{digit})^*
 \]

- Cannot use recursion, this is illegal:

 \[
 \text{digits} \rightarrow \text{digit digits} \mid \text{digit}
 \]

Specification of Patterns for Tokens: Notational Shorthands

- We frequently use the following shorthands:

 \[
 r^+ = rr^* \\
 r? = r \mid \varepsilon \\
 [a-z] = a \mid b \mid c \mid \ldots \mid z
 \]

- For example:

 \[
 \text{digit} \rightarrow [0-9] \\
 \text{num} \rightarrow \text{digit}^+ (, \text{digit}^+) \? (E (\pm))? \text{digit}^+)?
 \]

Regular Definitions and Grammars

Grammar

\[
stmt \rightarrow \text{if} \ expr \ \text{then} \ stmt \\
\quad \mid \text{if} \ expr \ \text{then} \ stmt \ \text{else} \ stmt \\
\quad \mid \varepsilon
\]

\[
expr \rightarrow \ term \ \text{relop} \ term \\
\quad \mid \ term
\]

\[
\text{term} \rightarrow \ id \\
\quad \mid \num
\]

Regular definitions

\[
\text{id} \rightarrow \text{letter} \ (\text{letter} \mid \text{digit}^+)^*
\]

\[
\text{num} \rightarrow \text{digit}^+ (\text{. digit}^+)? (\text{E} (\pm)\text{digit}^+)?
\]

Implementing a Scanner Using Transition Diagrams

\[
\text{relop} \rightarrow < | \leq | \lt | \geq | =
\]

\[\begin{align*}
\text{start} & \quad \rightarrow \quad 1 \\
1 & \quad \rightarrow \quad 2 \quad \text{return(relop, LE)} \\
1 & \quad \rightarrow \quad 3 \quad \text{return(relop, NE)} \\
1 & \quad \rightarrow \quad 4 \quad \text{return(relop, LT)} \\
1 & \quad \rightarrow \quad 5 \quad \text{return(relop, EQ)} \\
2 & \quad \rightarrow \quad 6 \quad \text{return(relop, GE)} \\
2 & \quad \rightarrow \quad 7 \quad \text{return(relop, GT)} \\
1 & \quad \rightarrow \quad 8 \quad \text{return(relop, GE)} \\
1 & \quad \rightarrow \quad 9 \quad \text{return(relop, GT)} \\
\end{align*}\]

\[
\text{id} \rightarrow \text{letter} \ (\text{letter} \mid \text{digit}^+)^*
\]

\[\begin{align*}
\text{letter or digit} & \quad \rightarrow \quad 10 \\
10 & \quad \rightarrow \quad 11 \quad \text{return(gettoken(), install_id())}
\end{align*}\]
Implementing a Scanner Using Transition Diagrams (Code)

token nexttoken()
{ while (1) {
 switch (state) {
 case 0: c = nextchar();
 if (c==blank || c==tab || c==newline) {
 state = 0;
 lexeme_beginning++;
 } else if (c=='<') state = 1;
 else if (c=='=') state = 5;
 else if (c=='>') state = 6;
 else state = fail();
 break;
 case 1: ...
 case 9: c = nextchar();
 if (isletter(c)) state = 10;
 else state = fail();
 break;
 case 10: c = nextchar();
 if (isletter(c)) state = 10;
 else if (isdigit(c)) state = 10;
 else state = 11;
 break;
 ...
 }
}

Decides what other start state is applicable

int fail()
{ forward = token_beginning;
 switch (start) {
 case 0: start = 9; break;
 case 9: start = 12; break;
 case 12: start = 20; break;
 case 20: start = 25; break;
 case 25: recover(); break;
 default: /* error */
 }
 return start;
}

The Lex and Flex Scanner Generators

- Lex and its newer cousin flex are scanner generators
- Systematically translate regular definitions into C source code for efficient scanning
- Generated code is easy to integrate in C applications
Creating a Lexical Analyzer with Lex and Flex

Lex Specification

- A *lex specification* consists of three parts:
 - regular definitions, C declarations in %{ %}
 - translation rules
 - user-defined auxiliary procedures
- The *translation rules* are of the form:

 \[
 p_1 \{ \text{action}_1 \} \\
 p_2 \{ \text{action}_2 \} \\
 \ldots \\
 p_n \{ \text{action}_n \}
 \]
Regular Expressions in Lex

- \(x \) match the character \(x \)
- \(. \) match the character \(. \)
- "string" match contents of string of characters
- . match any character except newline
- ^ match beginning of a line
- $ match the end of a line
- \([xyz]\) match one character \(x, y, \) or \(z \) (use \(\\backslash \) to escape -)
- \[^xyz]\) match any character except \(x, y, \) and \(z \)
- \([a-z]\) match one of \(a \) to \(z \)
- \(r^* \) closure (match zero or more occurrences)
- \(r^+ \) positive closure (match one or more occurrences)
- \(r? \) optional (match zero or one occurrence)
- \(r_1r_2 \) match \(r_1 \) then \(r_2 \) (concatenation)
- \(r_1|r_2 \) match \(r_1 \) or \(r_2 \) (union)
- \((r) \) grouping
- \(r_1\backslash r_2 \) match \(r_1 \) when followed by \(r_2 \)
- \(\{d\} \) match the regular expression defined by \(d \)

Example Lex Specification 1

```c
 %{ 
  #include <stdio.h>
  
  [0-9]+ { printf("%s\n", yytext); } 
  .|\n  { }
  
  main() 
  { yylex(); }
}
```

Contains the matching lexeme

Invokes the lexical analyzer

Translation rules

```
lex spec.l
gcc lex.yy.c -ll
./a.out < spec.l
```
Example Lex Specification 2

```c
{%
#include <stdio.h>
int ch = 0, wd = 0, nl = 0;
%
} delim [ \t]+ %

\n { ch++; wd++; nl++; }
^{delim} { ch+=yyleng; }
{delim} { ch+=yyleng; wd++; }
. { ch++; }
%
main()
{ yylex();
 printf("%8d%8d%8d\n", nl, wd, ch);
}%
```

Translation rules:
- `delim`: \s+ [\t]
- Regular definition:
 - `\n`: \n - `^{delim}`: ch+=yyleng;
 - `{delim}`: ch+=yyleng; wd++;
 - `.`: ch++;

Example Lex Specification 3

```c
{%
#include <stdio.h>
%
} digit [0-9]
letter [A-Za-z]
id {letter}({letter}|{digit})*
%
{digit}+ { printf("number: %s\n", yytext); }
{id} { printf("ident: %s\n", yytext); }
. { printf("other: %s\n", yytext); }
%
main()
{ yylex();
}%
```

Translation rules:
- `digit`: [0-9]
- `letter`: [A-Za-z]
- `id`: {letter}({letter}|{digit})*
- Regular definitions:
 - `{digit}+`: printf("number: %s\n", yytext);
 - `{id}`: printf("ident: %s\n", yytext);
 - `.`: printf("other: %s\n", yytext);
Example Lex Specification 4

```c
/* definitions of manifest constants */
#define LT (256)
...
%
#define LT (256)

delim [ \t\n]
ws {delim}+
letter [A-Za-z]
digit [0-9]
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?:${[+\-]?{digit}+}?

{ws} { }
if {return IF;}
then {return THEN;}
else {return ELSE;}
{id} {yyval = install_id(); return ID;}
{number} {yyval = install_num(); return NUMBER;}
"<" {yyval = LT; return RELOP;}
"<=" {yyval = LE; return RELOP;}
"=" {yyval = EQ; return RELOP;}
"<>" {yyval = NE; return RELOP;}
">" {yyval = GT; return RELOP;}
">=" {yyval = GE; return RELOP;}

int install_id()
...
```

Design of a Lexical Analyzer Generator

- Translate regular expressions to NFA
- Translate NFA to an efficient DFA

```
regular expressions → NFA → DFA
```

Optional

Simulate NFA to recognize tokens
Simulate DFA to recognize tokens
Nondeterministic Finite Automata

- Definition: an NFA is a 5-tuple \((S, \Sigma, \delta, s_0, F)\) where

 \(S\) is a finite set of states
 \(\Sigma\) is a finite set of input symbol alphabet
 \(\delta\) is a mapping from \(S \times \Sigma\) to a set of states
 \(s_0 \in S\) is the start state
 \(F \subseteq S\) is the set of accepting (or final) states

Transition Graph

- An NFA can be diagrammatically represented by a labeled directed graph called a transition graph

\[S = \{0,1,2,3\} \]
\[\Sigma = \{a,b\} \]
\[s_0 = 0 \]
\[F = \{3\} \]
Transition Table

- The mapping δ of an NFA can be represented in a *transition table*

<table>
<thead>
<tr>
<th>State</th>
<th>Input a</th>
<th>Input b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>${0, 1}$</td>
<td>${0}$</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>${2}$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>${3}$</td>
</tr>
</tbody>
</table>

$\delta(0, a) = \{0, 1\}$
$\delta(0, b) = \{0\}$
$\delta(1, b) = \{2\}$
$\delta(2, b) = \{3\}$

The Language Defined by an NFA

- An NFA *accepts* an input string x *iff* there is some path with edges labeled with symbols from x in sequence from the start state to some accepting state in the transition graph
- A state transition from one state to another on the path is called a *move*
- The *language defined by* an NFA is the set of input strings it accepts, such as $(a|b)^*abb$ for the example NFA
Design of a Lexical Analyzer Generator: RE to NFA to DFA

Lex specification with regular expressions

\[
\begin{align*}
p_1 & \{ \text{action}_1 \} \\
p_2 & \{ \text{action}_2 \} \\
\vdots \\
p_n & \{ \text{action}_n \}
\end{align*}
\]

From Regular Expression to NFA (Thompson’s Construction)

\[
\begin{align*}
\varepsilon & \quad \text{start} \xrightarrow{\varepsilon} \text{start} \\
a & \quad \text{start} \xrightarrow{a} \text{start} \\
\varepsilon \mid r_2 & \quad \text{start} \xrightarrow{\varepsilon} \text{start} \\
r_1 r_2 & \quad \text{start} \xrightarrow{\varepsilon} \text{start} \\
r_1^* & \quad \text{start} \xrightarrow{\varepsilon} \text{start}
\end{align*}
\]
Combining the NFAs of a Set of Regular Expressions

Example 1

Simulating the Combined NFA

Must find the *longest match*:
Continue until no further moves are possible
When last state is accepting: execute action
Simulating the Combined NFA
Example 2

When two or more accepting states are reached, the first action given in the Lex specification is executed.

Deterministic Finite Automata

- A deterministic finite automaton is a special case of an NFA
 - No state has an ε-transition
 - For each state s and input symbol a there is at most one edge labeled a leaving s

- Each entry in the transition table is a single state
 - At most one path exists to accept a string
 - Simulation algorithm is simple
Example DFA

A DFA that accepts $(a|b)^{*}abb$

Conversion of an NFA into a DFA

- The subset construction algorithm converts an NFA into a DFA using:
 \[\epsilon\text{-closure}(s) = \{s\} \cup \{t \mid s \xrightarrow{\epsilon} \ldots \xrightarrow{\epsilon} t\} \]
 \[\epsilon\text{-closure}(T) = \bigcup_{s \in T} \epsilon\text{-closure}(s) \]
 \[move(T,a) = \{t \mid s \xrightarrow{a} t \text{ and } s \in T\} \]

- The algorithm produces:
 - $D\text{states}$ is the set of states of the new DFA
 - consisting of sets of states of the NFA
 - $D\text{tran}$ is the transition table of the new DFA
ε-closure and move Examples

\[
\begin{align*}
\varepsilon\text{-closure}\{0\} &= \{0,1,3,7\} \\
\text{move}\{0,1,3,7\}, a &= \{2,4,7\} \\
\varepsilon\text{-closure}\{2,4,7\} &= \{2,4,7\} \\
\text{move}\{2,4,7\}, a &= \{7\} \\
\varepsilon\text{-closure}\{7\} &= \{7\} \\
\text{move}\{7\}, b &= \{8\} \\
\varepsilon\text{-closure}\{8\} &= \{8\} \\
\text{move}\{8\}, a &= \emptyset
\end{align*}
\]

Also used to simulate NFAs

Simulating an NFA using ε-closure and move

\[
\begin{align*}
S &:= \varepsilon\text{-closure}\{s_0\} \\
S_{prev} &:= \emptyset \\
a &:= \text{nextchar()} \\
\text{while } S \neq \emptyset \text{ do} \\
\quad S_{prev} &:= S \\
\quad S &:= \varepsilon\text{-closure}(\text{move}(S,a)) \\
\quad a &:= \text{nextchar()} \\
\text{end do} \\
\text{if } S_{prev} \cap F \neq \emptyset \text{ then} \\
\quad \text{execute action in } S_{prev} \\
\quad \text{return} \text{ “yes”} \\
\text{else} \\
\quad \text{return} \text{ “no”}
\end{align*}
\]
The Subset Construction Algorithm

Initially, ε-closure(s_0) is the only state in $Dstates$ and it is unmarked

while there is an unmarked state T in $Dstates$ do

mark T

for each input symbol $a \in \Sigma$ do

$U := \varepsilon$-closure(move(T,a))

if U is not in $Dstates$ then

add U as an unmarked state to $Dstates$

end if

$Dtran[T,a] := U$

end do

end do
Subset Construction Example 2

Minimizing the Number of States of a DFA
From Regular Expression to DFA Directly

- The *important states* of an NFA are those without an ε-transition, that is if
 \(\text{move}(\{s\},a) \neq \emptyset \) for some \(a \) then \(s \) is an important state
- The subset construction algorithm uses only the important states when it determines
 \(\varepsilon\text{-closure}(\text{move}(T,a)) \)

From Regular Expression to DFA Directly (Algorithm)

- Augment the regular expression \(r \) with a special end symbol \# to make accepting states important: the new expression is \(r\# \)
- Construct a syntax tree for \(r\# \)
- Traverse the tree to construct functions \(\text{nullable}, \text{firstpos}, \text{lastpos}, \) and \(\text{followpos} \)
From Regular Expression to DFA Directly: Syntax Tree of \((a|b)^*abb\#

From Regular Expression to DFA Directly: Annotating the Tree

- **nullable\(n\):** the subtree at node \(n\) generates languages including the empty string
- **firstpos\(n\):** set of positions that can match the first symbol of a string generated by the subtree at node \(n\)
- **lastpos\(n\):** the set of positions that can match the last symbol of a string generated by the subtree at node \(n\)
- **followpos\(i\):** the set of positions that can follow position \(i\) in the tree
From Regular Expression to DFA Directly: Annotating the Tree

<table>
<thead>
<tr>
<th>Node n</th>
<th>$\text{nullable}(n)$</th>
<th>$\text{firstpos}(n)$</th>
<th>$\text{lastpos}(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf ε</td>
<td>true</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Leaf i</td>
<td>false</td>
<td>${i}$</td>
<td>${i}$</td>
</tr>
<tr>
<td>$/\backslash$ c_1 , c_2</td>
<td>$\text{nullable}(c_1)$ or $\text{nullable}(c_2)$</td>
<td>$\text{firstpos}(c_1)$ \cup $\text{firstpos}(c_2)$</td>
<td>$\text{lastpos}(c_1)$ \cup $\text{lastpos}(c_2)$</td>
</tr>
<tr>
<td>\ast $/\backslash$ c_1 , c_2</td>
<td>$\text{nullable}(c_1)$ and $\text{nullable}(c_2)$</td>
<td>if $\text{nullable}(c_1)$ then $\text{firstpos}(c_1)$ \cup $\text{firstpos}(c_2)$ else $\text{firstpos}(c_1)$</td>
<td>if $\text{nullable}(c_2)$ then $\text{lastpos}(c_1)$ \cup $\text{lastpos}(c_2)$ else $\text{lastpos}(c_2)$</td>
</tr>
<tr>
<td>$/\backslash$ c_1</td>
<td>true</td>
<td>$\text{firstpos}(c_1)$</td>
<td>$\text{lastpos}(c_1)$</td>
</tr>
</tbody>
</table>

From Regular Expression to DFA Directly: Syntax Tree of $(a+b)^*abb#$

[Diagram of the syntax tree]
From Regular Expression to DFA Directly: \textit{followpos}

\begin{verbatim}
for each node \(n \) in the tree do
 if \(n \) is a cat-node with left child \(c_1 \) and right child \(c_2 \) then
 for each \(i \) in lastpos\((c_1)\) do
 followpos\((i)\) := followpos\((i)\) \(\cup \) firstpos\((c_2)\)
 end do
 else if \(n \) is a star-node
 for each \(i \) in lastpos\((n)\) do
 followpos\((i)\) := followpos\((i)\) \(\cup \) firstpos\((n)\)
 end do
 end if
end do
\end{verbatim}

From Regular Expression to DFA Directly: Algorithm

\begin{verbatim}
s_0 := firstpos(root) where root is the root of the syntax tree
Dstates := \{s_0\} and is unmarked
while there is an unmarked state \(T \) in Dstates do
 mark \(T \)
 for each input symbol \(a \in \Sigma \) do
 let \(U \) be the set of positions that are in followpos\((p)\) for some position \(p \) in \(T \),
 such that the symbol at position \(p \) is \(a \)
 if \(U \) is not empty and not in Dstates then
 add \(U \) as an unmarked state to Dstates
 end if
 Dtran\([T,a]\) := U
 end do
end do
\end{verbatim}
From Regular Expression to DFA Directly: Example

<table>
<thead>
<tr>
<th>Node</th>
<th>followpos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1, 2, 3}</td>
</tr>
<tr>
<td>2</td>
<td>{1, 2, 3}</td>
</tr>
<tr>
<td>3</td>
<td>{4}</td>
</tr>
<tr>
<td>4</td>
<td>{5}</td>
</tr>
<tr>
<td>5</td>
<td>{6}</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
</tr>
</tbody>
</table>

Time-Space Tradeoffs

<table>
<thead>
<tr>
<th>Automaton</th>
<th>Space (worst case)</th>
<th>Time (worst case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFA</td>
<td>$O(</td>
<td>r</td>
</tr>
<tr>
<td>DFA</td>
<td>$O(2^{</td>
<td>r</td>
</tr>
</tbody>
</table>