COP4020 Programming Languages

Functional Programming

Prof. Robert van Engelen
Overview

- What is functional programming?
- Historical origins of functional programming
- Functional programming today
- Concepts of functional programming
- Functional programming with Scheme
- Learn (more) by example
What is Functional Programming?

- Functional programming is a declarative programming style (programming paradigm)

 - Pro: flow of computation is declarative, i.e. more implicit
 - Pro: promotes building more complex functions from other functions that serve as building blocks (component reuse)
 - Pro: behavior of functions defined by the values of input arguments only (no side-effects via global/static variables)

 - Cons: function composition is (considered to be) stateless
 - Cons: programmers prefer imperative programming constructs such as statement sequencing, while functional languages emphasize function composition
Concepts of Functional Programming

- Pure functional programming defines the outputs of a program purely as a function of the inputs with no notion of internal state (no side effects)
 - A *pure function* can be counted on to return the same output each time we invoke it with the same input parameter values
 - No global (statically allocated) variables
 - No explicit (pointer) assignments
 - Dangling pointers and un-initialized variables cannot occur!
 - Example pure functional programming languages: Miranda, Haskell, and Sisal

- Non-pure functional programming languages include “imperative features” that cause side effects (e.g. destructive assignments to global variables or assignments/changes to lists and data structures)
 - Example: Lisp, Scheme, and ML
Functional Language Constructs

- Building blocks are functions
- No statement composition
 - Function composition
- No variable assignments
 - But: can use local “variables” to hold a value assigned once
- No loops
 - Recursion
 - List comprehensions in Miranda and Haskell
 - But: “do-loops” in Scheme
- Conditional flow with if-then-else or argument patterns
- Functional languages are statically (Haskell) or dynamically (Lisp) typed

Haskell examples:

```
gcd a b
| a == b = a
| a > b = gcd (a-b) b
| a < b = gcd a (b-a)
```

```
fac 0 = 1
fac n = n * fac (n-1)
```

```
member x [] = false
member x (y:xs)
| x == y = true
| x <> y = member x xs
```
Theory and Origin of Functional Languages

- Church's thesis:
 - All models of computation are equally powerful
 - Turing's model of computation: Turing machine
 - Reading/writing of values on an infinite tape by a finite state machine
 - Church's model of computation: Lambda Calculus
 - Functional programming languages implement Lambda Calculus

- Computability theory
 - A program can be viewed as a constructive proof that some mathematical object with a desired property exists
 - A function is a mapping from inputs to output objects and computes output objects from appropriate inputs
 - For example, the proposition that every pair of nonnegative integers (the inputs) has a greatest common divisor (the output object) has a constructive proof implemented by Euclid's algorithm written as a "function"
Impact of Functional Languages on Language Design

- Useful features are found in functional languages that are often missing in procedural languages or have been adopted by modern programming languages:
 - *First-class function values*: the ability of functions to return newly constructed functions
 - *Higher-order functions*: functions that take other functions as input parameters or return functions
 - *Polymorphism*: the ability to write functions that operate on more than one type of data
 - *Aggregate constructs* for constructing structured objects: the ability to specify a structured object in-line such as a complete list or record value
 - *Garbage collection*
Functional Programming Today

- Significant improvements in theory and practice of functional programming have been made in recent years
 - Strongly typed (with type inference)
 - Modular
 - Sugaring: imperative language features that are automatically translated to functional constructs (e.g. loops by recursion)
 - Improved efficiency

- Remaining obstacles to functional programming:
 - Social: most programmers are trained in imperative programming and aren’t used to think in terms of function composition
 - Commercial: not many libraries, not very portable, and no IDEs
Applications

- Many (commercial) applications are built with functional programming languages based on the ability to manipulate symbolic data more easily

- Examples:
 - Computer algebra (e.g. Reduce system)
 - Natural language processing
 - Artificial intelligence
 - Automatic theorem proving
 - Algorithmic optimization of functional programs
LISP and Scheme

- The original functional language and implementation of Lambda Calculus
- Lisp and dialects (Scheme, common Lisp) are still the most widely used functional languages
- Simple and elegant design of Lisp:
 - Homogeneity of programs and data: a Lisp program is a list and can be manipulated in Lisp as a list
 - Self-definition: a Lisp interpreter can be written in Lisp
 - Interactive: user interaction via "read-eval-print" loop
Scheme

- Scheme is a popular Lisp dialect
- Lisp and Scheme adopt a form of prefix notation called *Cambridge Polish* notation
- Scheme is case insensitive
- A Scheme expression is composed of
 - Atoms, e.g. a literal number, string, or identifier name,
 - Lists, e.g. '(a b c)
 - Function invocations written in list notation: the first list element is the *function* (or operator) followed by the arguments to which it is applied:

\[
(function \ arg_1 \ arg_2 \ arg_3 \ ... \ arg_n)
\]

- For example, \(\sin(x^2+1) \) is written as \((\sin (+ (* x x) 1)) \)
The "Read-eval-print" loop provides user interaction in Scheme.

An expression is read, evaluated, and the result printed:
- Input: 9
 Output: 9
- Input: (+ 3 4)
 Output: 7
- Input: (+ (* 2 3) 1)
 Output: 7

User can load a program from a file with the load function:

(load "my_scheme_program")

Note: a file should use the .scm extension.
Working with Data Structures

- An expression operates on values and compound data structures built from atoms and lists.
- A value is either an atom or a compound list.
- Atoms are:
 - Numbers, e.g. 7 and 3.14
 - Strings, e.g. "abc"
 - Boolean values #t (true) and #f (false)
 - Symbols, which are identifiers escaped with a single quote, e.g. 'y
 - The empty list ()

- When entering a list as a literal value, escape it with a single quote.
 - Without the quote it is a function invocation!
 - For example, '(a b c) is a list while (a b c) is a function application.
 - Lists can be nested and may contain any value, e.g. '(1 (a b) "s")
Checking the Type of a Value

- The type of a value can be checked with
 - (boolean? x) ; is x a Boolean?
 - (char? x) ; is x a character?
 - (string? x) ; is x a string?
 - (symbol? x) ; is x a symbol?
 - (number? x) ; is x a number?
 - (list? x) ; is x a list?
 - (pair? x) ; is x a non-empty list?
 - (null? x) ; is x an empty list?

- Examples
 - (list? '(2)) ⇒ #t
 - (number? "abc") ⇒ #f

- Portability note: on some systems false (#f) is replaced with ()
Working with Lists

- (car xs) returns the head (first element) of list xs
- (cdr xs) (pronounced "coulder") returns the tail of list xs
- (cons x xs) joins an element x and a list xs to construct a new list
- (list x₁ x₂ ... xₙ) generates a list from its arguments

Examples:
- (car '(2 3 4)) ⇒ 2
- (car '(2)) ⇒ 2
- (car '()) ⇒ Error
- (cdr '(2 3)) ⇒ (3)
- (car (cdr '(2 3 4))) ⇒ 3 ; also abbreviated as (cadr '(2 3 4))
- (cdr (cdr '(2 3 4))) ⇒ (4) ; also abbreviated as (cddr '(2 3 4))
- (cdr '(2)) ⇒ ()
- (cons 2 '(3)) ⇒ (2 3)
- (cons 2 '(3 4)) ⇒ (2 3 4)
- (list 1 2 3) ⇒ (1 2 3)
The “if” Special Form

- Special forms resemble functions but have special evaluation rules
 - Evaluation of arguments depends on the special construct
- The “if” special form returns the value of `thenexpr` or `elseexpr` depending on a condition

\[(\text{if } \text{condition thenexpr elseexpr})\]

- Examples
 - `(if #t 1 2) \Rightarrow 1`
 - `(if #f 1 "a") \Rightarrow "a"
 - `(if (string? "s") (+ 1 2) 4) \Rightarrow 3`
 - `(if (> 1 2) "yes" "no") \Rightarrow "no"`
The “cond” Special Form

- A more general if-then-else can be written using the “cond” special form that takes a sequence of \((condition\ value)\) pairs and returns the first value \(x_i\) for which condition \(c_i\) is true:

\[
(\text{cond } (c_1 x_1) (c_2 x_2) \ldots (\text{else } x_n))
\]

- Examples
 - \((\text{cond } (#f 1) (#t 2) (#t 3)) \Rightarrow 2\)
 - \((\text{cond } ((< 1 2) "one") ((>= 1 2) "two")) \Rightarrow "one"
 - \((\text{cond } ((< 2 1) 1) ((= 2 1) 2) (\text{else } 3)) \Rightarrow 3\)

- Note: “else” is used to return a default value
Logical Expressions

- Relations
 - Numeric comparison operators <, <=, =, >, >=

- Boolean operators
 - (and \(x_1, x_2, \ldots, x_n\)), (or \(x_1, x_2, \ldots, x_n\))

- Other test operators
 - (zero? \(x\)), (odd? \(x\)), (even? \(x\))
 - (eq? \(x_1, x_2\)) tests whether \(x_1\) and \(x_2\) refer to the same object
 (eq? 'a 'a) ⇒ #t
 (eq? '(a b) '(a b)) ⇒ #f
 - (equal? \(x_1, x_2\)) tests whether \(x_1\) and \(x_2\) are structurally equivalent
 (equal? 'a 'a) ⇒ #t
 (equal? '(a b) '(a b)) ⇒ #t
 - (member \(x\) \(xs\)) returns the sublist of \(xs\) that starts with \(x\), or returns ()
 (member 5 '(a b)) ⇒ ()
 (member 5 '(1 2 3 4 5 6)) ⇒ (5 6)
Lambda Calculus: Functions = Lambda Abstractions

- A lambda abstraction is a nameless function (a mapping) specified with the lambda special form:

```
(lambda args body)
```

where `args` is a list of formal arguments and `body` is an expression that returns the result of the function evaluation when applied to actual arguments

- A lambda expression is an unevaluated function

- Examples:
 - `(lambda (x) (+ x 1))`
 - `(lambda (x) (* x x))`
 - `(lambda (a b) (sqrt (+ (* a a) (* b b))))`
Lambda Calculus: Invocation

= Beta Reduction

- A lambda abstraction is applied to actual arguments using the familiar list notation

 \[(function \arg_1 \arg_2 \ldots \arg_n)\]

 where \(function\) is the name of a function or a lambda abstraction

- Beta reduction is the process of replacing formal arguments in the lambda abstraction’s body with actuals

Examples

- \(((\text{lambda} \ (x) \ (* \ x \ x)) \ 3) \Rightarrow (* 3 3) \Rightarrow 9\)
- \(((\text{lambda} \ (f \ a) \ ((f \ f) \ a)) \ (\text{lambda} \ (x) \ (* \ x \ x)) \ 3)
 \Rightarrow (f \ (f \ 3))\) \hspace{1cm} \text{where } f = (\text{lambda} \ (x) \ (* \ x \ x))

 \Rightarrow (f \ ((\text{lambda} \ (x) \ (* \ x \ x)) \ 3))\) \hspace{1cm} \text{where } f = (\text{lambda} \ (x) \ (* \ x \ x))

 \Rightarrow (f \ 9)\) \hspace{1cm} \text{where } f = (\text{lambda} \ (x) \ (* \ x \ x))

 \Rightarrow ((\text{lambda} \ (x) \ (* \ x \ x)) \ 9)\)

 \Rightarrow (* 9 9)\)

 \Rightarrow 81\)
Defining Global Names

- A global name is defined with the “define” special form

\[(\text{define name value})\]

- Usually the values are functions (lambda abstractions)

Examples:
- (define my-name "foo")
- (define determiners '("a" "an" "the")
- (define sqr (lambda (x) (* x x)))
- (define twice (lambda (f a) (f (f a))))
- (twice sqr 3) ⇒ ((lambda (f a) (f (f a)))) (lambda (x) (* x x)) 3) ⇒ ((lambda (x) (* x x)) ((lambda (x) (* x x)) 3)) ⇒ (lambda (x) (* x x)) (* 3 3)) ⇒ (* 9 9) ⇒ 81
Using Local Names

- The “let” special form (let-expression) provides a scope construct for local name-to-value bindings

\[
(\text{let}\ (\ (name_1\ x_1)\ (name_2\ x_2)\ \ldots\ (name_n\ x_n)\)\ \text{expression})
\]

where \(name_1, name_2, \ldots, name_n\) in expression are substituted by \(x_1, x_2, \ldots, x_n\)

- Examples
 - (let ((plus +) (two 2)) (plus two two)) \(\Rightarrow 4\)
 - (let ((a 3) (b 4)) (sqrt (+ (* a a) (* b b)))) \(\Rightarrow 5\)
 - (let ((sqr (lambda (x) (* x x))) (sqrt (+ (sqr 3) (sqr 4)))) \(\Rightarrow 5\)
Local Bindings with Self References

- A global name can simply refer to itself (for recursion)
 - (define fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1)))))
- A let-expression cannot refer to its own definitions
 - Its definitions are not in scope, only outer definitions are visible
- Use the letrec special form for recursive local definitions

(letrec ((name_1 x_1) (name_2 x_2) … (name_n x_n)) expr)

where name_i in expr refers to x_i

- Examples
 - (letrec ((fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1))))))
 (fac 5)) ⇒ 120
I/O

- (display x) prints value of x and returns an unspecified value
 - (display "Hello World!"")
 Displays: "Hello World!"
 - (display (+ 2 3))
 Displays: 5

- (newline) advances to a new line

- (read) returns a value from standard input
 - (if (member (read) '(6 3 5 9)) "You guessed it!" "No luck")
 Enter: 5
 Displays: You guessed it!
Blocks

- (begin \(x_1 \ x_2 \ldots \ x_n\)) sequences a series of expressions \(x_i\), evaluates them, and returns the value of the last one \(x_n\).

- Examples:
 - (begin
 (display "Hello World!"
 (newline)
)
 - (let ((x 1)
 (y (read))
 (plus +)
)
 (begin
 (display (plus x y))
 (newline)
)
)
Do-loops

- The “do” special form takes a list of triples and a tuple with a terminating condition and return value, and multiple expressions \(x_i \) to be evaluated in the loop

\[
\text{(do (triples) (condition ret-expr) } x_1 x_2 \ldots x_n)\]

- Each triple contains the name of an iterator, its initial value, and the update value of the iterator

- Example (displays values 0 to 9)

 \[
 \text{(do (i 0 (+ i 1))}

 ((> i 10) "done")

 (display i)

 (newline)

)
 \]
Higher-Order Functions

- A function is a *higher-order function* (also called a functional form) if
 - It takes a function as an argument, or
 - It returns a newly constructed function as a result
- For example, a function that applies a function to an argument twice is a higher-order function
 - `(define twice (lambda (f a) (f (f a))))`
- Scheme has several built-in higher-order functions
 - `(apply f xs)` takes a function `f` and a list `xs` and applies `f` to the elements of the list as its arguments
 - `(apply '+ '(3 4)) ⇒ 7`
 - `(apply (lambda (x) (* x x)) '(3))
 - `(map f xs)` takes a function `f` and a list `xs` and returns a list with the function applied to each element of `xs`
 - `(map odd? '(1 2 3 4)) ⇒ (#t #f #t #f)
 - `(map (lambda (x) (* x x)) '(1 2 3 4)) ⇒ (1 4 9 16)`
Non-Pure Constructs

- Assignments are considered non-pure in functional programming because they can change the global state of the program and possibly influence function outcomes.
- The value of a *pure function* only depends on its arguments.
- (set! name x) re-assigns x to local or global name
 - (define a 0)
 - (set! a 1) ; overwrite with 1
 - (let ((a 0))
 (begin
 (set! a (+ a 1)); increment a by 1
 (display a); shows 1
)
)
- (set-car! x xs) overwrites the head of a list xs with x
- (set-cdr! xs ys) overwrites the tail of a list xs with ys
Example 1

- Recursive factorial:
 (define fact
 (lambda (n)
 (if (zero? n) 1 (* n (fact (- n 1))))
)
)

- (fact 2) \Rightarrow (if (zero? 2) 1 (* 2 (fact (- 2 1))))
 \Rightarrow (* 2 (fact 1))
 \Rightarrow (* 2 (if (zero? 1) 1 (* 1 (fact (- 1 1)))))
 \Rightarrow (* 2 (* 1 (fact 0)))
 \Rightarrow (* 2 (* 1 (if (zero? 0) 1 (* 0 (fact (- 0 1)))))
 \Rightarrow (* 2 (* 1 1))
 \Rightarrow 2
Example 2

- Iterative factorial
 (define iterfact
 (lambda (n)
 (do ((i 1 (+ i 1))) ; i runs from 1 updated by 1
 (f 1 (* f i)) ; f from 1, multiplied by i
 (> i n) f) ; until i > n, return f
)
) ; loop body is omitted
Example 3

- Sum the elements of a list
 (define sum
 (lambda (lst)
 (if (null? lst)
 0
 (+ (car lst) (sum (cdr lst))))
)
)

- (sum '(1 2 3)) \(\Rightarrow (+ 1 (sum (2 3))) \)
 \(\Rightarrow (+ 1 (+ 2 (sum (3)))) \)
 \(\Rightarrow (+ 1 (+ 2 (+ 3 (sum ())))) \)
 \(\Rightarrow (+ 1 (+ 2 (+ 3 0))) \)
Example 4

- Generate a list of \(n \) copies of \(x \)

 (define fill
 (lambda (n x)
 (if (= n 0)
 ()
 (cons x (fill (- n 1) x)))
)
)

- (fill 2 'a) \(\Rightarrow (\text{cons} \ a \ (\text{fill} \ 1 \ a)) \)
 \(\Rightarrow (\text{cons} \ a \ (\text{cons} \ a \ (\text{fill} \ 0 \ a))) \)
 \(\Rightarrow (\text{cons} \ a \ (\text{cons} \ a \ ())) \)
 \(\Rightarrow (a \ a) \)
Example 5

- Replace x with y in list xs

$(define\, subst$

$(\lambda (x\ y\ xs)$

$(cond$

$\quad ((null?\ xs)\ ())))$

$\quad ((eq?\ (car\ xs)\ x)\ (cons\ y\ (subst\ x\ y\ (cdr\ xs))))$

$\quad (else\ (cons\ (car\ xs)\ (subst\ x\ y\ (cdr\ xs)))))$

$\quad)$

$\quad)$)

$(subst\ 3\ 0\ '(8\ 2\ 3\ 4\ 3\ 5))\ \Rightarrow\ '(8\ 2\ 0\ 4\ 0\ 5)$
Example 6

- Higher-order reductions
 (define reduce
 (lambda (op xs)
 (if (null? (cdr xs))
 (car xs)
 (op (car xs) (reduce op (cdr xs))))
)
)

- (reduce and '(#t #t #f)) ⇒ (and #t (and #t #f)) ⇒ #f
- (reduce * '(1 2 3)) ⇒ (* 1 (* 2 3)) ⇒ 6
- (reduce + '(1 2 3)) ⇒ (+ 1 (+ 2 3)) ⇒ 6
Example 7

- Higher-order filter operation: keep elements of a list for which a condition is true

 (define filter
 (lambda (op xs)
 (cond
 ((null? xs) ()
 ((op (car xs)) (cons (car xs) (filter op (cdr xs)))))
 (else (filter op (cdr xs))))
)
)

- (filter odd? '(1 2 3 4 5)) ⇒ (1 3 5)
- (filter (lambda (n) (> n 0)) '(0 1 2 3 4)) ⇒ (1 2 3 4)
Example 8

- Binary tree insertion, where () are leaves and (val left right) is a node

(define insert
 (lambda (n T)
 (cond
 ((null? T) (list n () ()))
 ((= (car T) n) T)
 ((> (car T) n) (list (car T) (insert n (cadr T)) (caddr T)))
 ((< (car T) n) (list (car T) (cadr T) (insert n (caddr T))))
)
)
)

- (insert 1 '(3 () (4 () ()))) ⇒ (3 (1 () ()) (4 () ()))
Haskell

- A lazy functional language with a static type system
 - Lazy: evaluates expressions on demand, i.e. operands and arguments are not evaluated until used in the function body
 - Static type inference: types are automatically inferred to verify expressions

- Polymorphic types
 - Type variables, e.g. * in `hd :: [*] -> *`

- Higher-order functions
 - Functions that take functions as arguments or return functions

- Modular

- Compiled
Haskell Syntax

- Syntax of function invocation:

 \[
 \text{functionname \ arg_1 \ arg_2 \ arg_3 \ldots}
 \]

 Note: parenthesis only needed for nested calls, e.g.

 \[\text{hd (tl xs)}\]

- Function definition

 \[
 \text{functionname \ arg_1 \ arg_2 \ arg_3 \ldots = expression}
 \]

- Function definition with guards

 \[
 \text{functionname \ arg_1 \ arg_2 \ arg_3 \ldots = expression} \\
 \mid \text{guard}_1 = \text{expression}_1 \\
 \mid \text{guard}_2 = \text{expression}_2 \\
 \ldots
 \]

- Lambda abstraction notation:

 \[
 \lambda \text{arg} \rightarrow \text{expression}
 \]
Haskell Syntax

- Lists and primitive list operations
 \([e_1, e_2, e_3]\)

 \(e_1 : [e_2, e_3]\) evaluates to \([e_1, e_2, e_3]\)

 \(\text{hd} [e_1, e_2, e_3]\) evaluates to \(e_1\)

 \(\text{tl} [e_1, e_2, e_3]\) evaluates to \([e_2, e_3]\)

- Common list operations

 \(\text{length} [e_1, e_2, e_3]\) evaluates to 3

 \(\text{map} f [e_1, e_2, e_3]\) evaluates to \([f e_1, f e_2, f e_3]\)

 \(\text{foldl} \bigcirc z [e_1, e_2, e_3]\) evaluates to \(((z \bigcirc e_1) \bigcirc e_2) \bigcirc e_3\)

 \(\text{foldr} \bigcirc z [e_1, e_2, e_3]\) evaluates to \(e_1 \bigcirc (e_2 \bigcirc (e_3 \bigcirc z))\)

 \(\text{filter} \ p [e_1, e_2, e_3]\) evaluates to list of \(e_i\) when \(p e_i\) is true
Haskell by Example

-- 1) using if-then-else conditional expressions
factorial n = if n > 0 then n * factorial (n-1) else 1

-- 2) using argument pattern matching
factorial 0 = 1
factorial n = n * factorial (n-1)

-- 3) using a guard
factorial 0 = 1
factorial n | n > 0 = n * factorial (n-1)

-- type of the factorial function
factorial :: Integer -> Integer
Haskell by Example (cont’d)

-- 1) list length using argument pattern
length [] = 0
length (x:xs) = 1 + length xs

-- 2) using “where”
length [] = 0
length (x:xs) = 1 + rest
 where
 rest = length xs

-- 3) using “let”
length [] = 0
length (x:xs) = { let rest = length xs } in 1 + rest

-- type of the length function (polymorphic)
length :: [*] -> Integer
Haskell by Example (cont’d)

-- using “Currying”, which gives: inc x = add 1 x
add a b = a + b
inc = add 1

-- 1) higher-order, apply function to each list element
plus1 xs = map inc xs

-- 2) using Currying
plus1 = map inc