Efficient Symbolic Analysis for
Optimizing Compilers*

Robert A. van Engelen

Dept. of Computer Science, Florida State University, Tallahassee, FL 32306-4530
engelen@cs.fsu.edu

Abstract. Because most of the execution time of a program is typically
spend in loops, loop optimization is the main target of optimizing and re-
structuring compilers. An accurate determination of induction variables
and dependencies in loops is of paramount importance to many loop opti-
mization and parallelization techniques, such as generalized loop strength
reduction, loop parallelization by induction variable substitution, and
loop-invariant expression elimination. In this paper we present a new
method for induction variable recognition. Existing methods are either
ad-hoc and not powerful enough to recognize some types of induction
variables, or existing methods are powerful but not safe. The most pow-
erful method known is the symbolic differencing method as demonstrated
by the Parafrase-2 compiler on parallelizing the Perfect Benchmarks® .
However, symbolic differencing is inherently unsafe and a compiler that
uses this method may produce incorrectly transformed programs without
issuing a warning. In contrast, our method is safe, simpler to implement
in a compiler, better adaptable for controlling loop transformations, and
recognizes a larger class of induction variables.

1 Introduction

It is well known that the optimization and parallelization of scientific applica-
tions by restructuring compilers requires extensive analysis of induction vari-
ables and dependencies in loops in order for compilers to effectively transform
and optimize loops. Because most of the execution time of an application is
spend in loops, restructuring compilers attempt to aggressively optimize loops.
To this end, many ad-hoc techniques have been developed for loop induction
variable recognition [1, 2, 13, 20, 22] for loop restructuring transformations such
as generalized loop strength reduction, loop parallelization by induction variable
substitution (the reverse of strength reduction), and loop-invariant expression
elimination (code motion). However, these ad-hoc techniques fall short of recog-
nizing generalized induction variables (GIVs) with values that form polynomial
and geometric progressions through loop iterations [3, 7, 8, 11, 19]. The impor-
tance of GIV recognition in the parallelization of the Perfect Benchmarks®) and
other codes was recognized in an empirical study by Singh and Hennessy [14].

* This work was supported in part by NSF grant CCR-9904943

The effectiveness of GIV recognition in the actual parallelization of the Perfect
Benchmarks®) was demonstrated by the Parafrase-2 compiler [10]. Parafrase-2
uses Haghighat’s symbolic differencing method [10] to detect GIVs. Symbolic
differencing is the most powerful induction variable recognition method known.

In this paper we show that symbolic differencing is an unsafe compiler method
when not used wisely (i.e. without a user verifying the result). As a consequence,
a compiler that adopts this method may produce incorrectly transformed pro-
grams without issuing a warning. We present a new induction variable recogni-
tion method that is safe and simpler to implement in a compiler and recognizes
a larger class of induction variables.

This paper is organized as follows: Section 2 compares our approach to related
work. Section 3 presents our generalized induction variable recognition method.
Results are given in Section 4. Section 5 summarizes our conclusions.

2 Related Work

Many ad-hoc compiler analysis methods exist that are capable of recognizing
linear induction variables, see e.g. [1, 2, 13, 20, 22]. Haghighat’s symbolic dif-
ferencing method [10] recognizes generalized induction variables [3, 7, 8, 11, 19]
that form polynomial and geometric progressions through loop iterations. More
formally, a GIV is characterized by its function x defined by

x(n) = ¢(n) +ra” (1)

where n is the loop iteration number, ¢ is a polynomial of order k, and a and r
are loop-invariant expressions.

Parallelization of a loop containing GIVs with (multiple) update assignment
statements requires the removal of the updates and the substitution of GIVs in
expressions by their closed-form characteristic function x. This is also known
as induction variable substitution, which effectively removes all cross-iteration
dependencies induced by GIV updates, enabling a loop to be parallelized.

The symbolic differencing method is illustrated in Fig. 1. A compiler symbol-
ically evaluates a loop a fixed number of iterations using abstract interpretation.
The sequence of symbolic values of each variable are tabulated in difference ta-
bles from which polynomial and geometric progressions can be recognized. To
recognize polynomial GIVs of degree m, a loop is executed at most m + 2 itera-
tions. For example, for m = 3, the compiler executes the loop shown in Fig. 1(a)
five times and constructs a difference table for each variable. The difference table
of variable t is depicted in Fig. 1(b) above the dashed line. According to [10], the
compiler can determine that the polynomial degree of t is m = 3, because the
final difference is zero (bottom-most zero above the dashed line). Application of
induction variable substitution by Parafrase-2 results in the loop Fig. 1(c).

The problem with this approach is that the analysis is incorrect when m
is set too low. Six or more iterations are necessary (this includes the diagonal
below the dashed line) to find that the degree of t is actually 5. Hence, the loop
shown in Fig. 1(c) is incorrect. Fig. 1(d) depicts the correctly transformed loop.

a b 2b+c-a+2 3b+3c+d-2a+6 4b+6c+4d-3a+12 “5b+10c+10d-4a+21
DO i=0,n -

t=a b-a b+c-a+2 b+2c+d-a+4 b+3c+3d-a+6__ - E;4c-+6d—a+9
a=b c+2 ctd+2 c+2d+2 - TCh3de3
b=c+2%b-t+2 d d - “arl
c=c+d e
d=d+i 0 P
ENDDO -7
(a) (b)
DO i=0,n
DO i=0, ? .
2=;+?d:i**3 t=a+(i**x5-10%i**4
+(20%d+35) *i**3

+(3*c-3*d+6) xi**2
+(6xb-9*c+2%d-6)*1i) /6
ENDDO

+(60%c-60%d+70) ¥i**2
+(120%b-180%c+40%d-96) *i) /120
ENDDO

() (d)

Fig. 1. Example Loop (a), Difference Table of t (b), Incorrectly Transformed Loop (c),
and Correctly Transformed Loop (d)

The origin of the problem with symbolic differencing lies in the fact that dif-
ference tables form low-order approximations of higher-order polynomials and
functions. Hence, symbolic differencing requires a user of the compiler to specify
a maximum polynomial order m that is guaranteed to be the largest order among
all of the known GIVs in a program. This means that the user must be knowl-
edgeable about the type of algorithms in the program to make a wise decision.
The optimization of the Perfect Benchmarks(®) by Parafrase-2 required m = 3
to produce correctly transformed programs. Many real-world applications exist
that use higher degree polynomials such as in transfinite interpolation for grid
generation [12] for CFD and CAD applications, and in hard-coded curve plotting
and surface rendering applications, see e.g. [4].

According to [10], symbolic differencing requires extensive symbolic expres-
sion manipulation. A symbolic kernel is required with a concise set of alge-
braic/symbolic operations derived from mathematical tools such as number the-
ory and mathematical induction for performing symbolic operations. The im-
plementation is further hampered by the fact that difference tables can contain
large and complicated symbolic entries. In contrast, our method relies on the
use of a term rewriting system with 14 rules to derive normal forms for GIVs
and 21 rules to derive the closed-form functions from these forms. Our approach
requires symbolic manipulation equally powerful as classical constant-folding?.

In comparing our method to symbolic differencing we find that both meth-
ods can handle multiple assignments to induction variables, generalized induc-
tion variables in loops with symbolic bounds and strides, symbolic integer divi-
sion, conditional induction expressions, cyclic induction dependencies, symbolic
forward substitution, symbolic loop-invariant expressions, and wrap-around vari-
ables. However, our method is not capable of detecting cyclic recurrences. We
found that cyclic recurrences are very rare in the Perfect Benchmarks®).

! Assuming that symbolic manipulation by constant-folding includes associativity,
commutativity, and distributivity of product and addition.

3 Generalized Induction Variable Recognition

In this section we present our induction variable recognition method and associ-
ated compiler algorithms. First, we introduce the chains of recurrences formalism
that forms the mathematical basis of our approach.

3.1 Chains of Recurrences

Chains of recurrences (CRs) are developed by Bachmann, Zima, and Wang [5] to
expedite the evaluation of closed-form functions and expressions on regular grids.
The CR algebra enables the construction and simplification of recurrence rela-
tions by a computer algebra system. An elementary (scalar) expression can be
symbolically transformed into its mathematically equivalent CR [4]. The CR pro-
vides a representation that allows it to be translated into a loop construct which
efficiently evaluates the expression on a regular grid, similar to loop strength
reduction of the original single elementary expression.

Basic Formulation A closed-form function f evaluated in a loop with loop
counter variable i can be rewritten into a mathematical equivalent System of
Recurrence Relations (SSR) [21] fo(2), f1(2), ..., fx(7), where the functions f;(¢)

for j =0,...,k — 1 are linear recurrences of the form
) oy ifi=0
i(i) = . . e 2
£3(0) {fj(l—l) Ojt1 fi+1(t—1)if i >0 2)

with ®;41 € {+,%}, j = 0,...,k — 1, and coefficients ¢; are loop-invariant

expressions (i.e. induction variables do not occur in ¢;). Expression fi is loop

invariant or a similar recurrence system. When the loop is normalized, i.e. i =

0,...,n for some n > 0, it can be shown that f(i) = fo(¢) for alli =0,...,n.
A shorthand notation for Eq. (2) is a Basic Recurrence (BR) [5]:

[i(@) = {b5, Ojt1, fiv1}i 3)
The BR notation allows the system (2) to be written as
Qi = {¢0, ©1,{b1, O2, ** , {Pr—1, Ok, fr}i}i}i (4)
When flattened to a single tuple
D = {0, ©1, 91,02, +, Ok, fr }i (5)

it is a Chain of Recurrences (CR) [4, 5] with k = L(®;) the length of the CR.

A CR &; is called polynomial if ®; = +, for all j = 1,..., k. A polynomial
CR has a closed-form function that is a k-order polynomial in variable . The
sequence ¢q, @1, ..., Pp_1, fr forms the lower-left diagonal of a difference table
of the polynomial. CR @; is called exponential if ©; = x, forall j =1,...,k. CR
®; = {¢o, *, b1, +, f2}: is called factorial if 1 > 1 and fo =1, or ¢ < —1 and
Ja=—1

CR Construction Fig. 2 depicts CR rewrite rules adapted from the CR algebra
presented in [4, 5]. The proof of correctness of the algebra can be found in [4]. CR
construction proceeds by replacing every occurrence of the loop counter variable
i (i.e. the basic induction variable) in an expression by the CR {a,+, s};, where
a is i’s symbolic initial value and s is the stride. Then, CR rules are exhaustively
applied to the expression?. In [15] we proved that CR is complete (i.e. confluent
and terminating) and, hence, CRs are normal forms for polynomials, exponen-
tials, and factorials.

The exhaustive application of CR results in so-called CR-expressions, which
are expressions that contain CRs as subexpressions®. The normalized CR ex-
pression of a GIV with characteristic function Eq. (1) is the sum of a polynomial
CR and the exponential CR {r, x,a},.

3.2 The Algorithms

We developed a compiler algorithm for induction variable recognition. The al-
gorithm is capable of detecting multiple induction variables in loop hierarchies
by exploiting the CR algebra in an entirely novel way. The induction variable
recognition method forms the basis of our induction variable substitution al-
gorithm. Induction variable substitution amounts to the removal of induction
variable update operations and the replacement of the induction variables by
their closed-forms. This requires the inverse rules CR ™" shown in Fig. 3 which
we developed to translate CRs back to closed-form functions.

The principle of our algorithm is illustrated in the program fragment below,
which demonstrates the key idea to our induction variable recognition method
and induction variable substitution:

L . L jo=j; ko=k
DO i=0,n DO i=0,n DO i=0,n DOALL i=0,n
L L j=jo+h*i
j=j*h = j=j+h = j={jo, +h} o tiici
Kk=k+2%1i k=k+{0, +, 2}, k={ko, +, 0, +, 2}; TRoTTL
ENDDO ENDDO ENDDO

ENDDO

First, loop counter variable i is replaced by its CR representation {0,+,1};
upon which rule 2 of CR Fig. 2 translates 2*i into the CR {0, +,2};. Then,
linear induction variable j and non-linear induction variable k are recognized
by our algorithm from their update operations and replaced by CRs {jo,+,h};
and {ko,+,0,+,2};, where jo and ko are initial values of j and k before the
loop. Finally, the CR™" rules are applied to substitute the CR of j and k with
their closed-forms, enabling the loop to be parallelized. The advantage of our
approach is that simple algebraic rules are exploited to modify the code from
one form into another.

2 Applied together with constant folding to simplify CR coefficients.
3 When CRs are mentioned in this text we refer to pure CRs of the form Eq. (5).
CR-expressions will be indicated explicitly.

LHS RHS

HE + {o, +, f1}i ={E+ o, +, f1}i when F is loop invariant

2|E * {¢o,+, fr}: = {E % ¢o,+,E * f1}; when E is loop invariant

3|E x {0, *, f1}: = {E * ¢o, *, f1}4 when FE is loop invariant

4|pléotif1ti = {E%, x BN}, when F is loop invariant

5{¢o, *, fl}F = {¢§7 *, flE}Z when F is loop invariant

6({o,+, fr}i + {0, +,91}i = {po+ Yo, +, /1 + g1 }:

{0, +, fr}i * {0, +,91}s = {bovo,+,{do,+, fiti* g1 + {0, +,91}i*x fr + fr*x g1}

8|{do,*, fi}i * {tho,*, g1} = {do o, *, f1g1}s

0| {0, *, fr}{rortods = (90", x, {o, %, fi}{ + f{POT s iy

{¢0!7*,(;1:1{050 +j,+7fl}i>}i if f1 >0
10{{o, +, f1}:! -1
{¢o!, %, (HLE{% +J,+ fl}z') b iff1 <0
11|log{¢o, *, f1 }i = {log ¢o,+,log f1}:
12|{¢0,+,0}: = ¢o
13 {¢07*71}’i = ¢0
14/{0, %, f1}: =0
Fig.2.CR
LHS RHS

{0, +, fi}i = ¢o+{0,+ fili when ¢o # 0

2/{¢o,*, fr}i = ¢o*x{1,%, f1}: when ¢g # 1

3 {07+,_f1}i = _{07+7f1}i

40,4+, fr+9g1}i = {0,+, fi}i + {0, +,91 }:

5{0,+, fi*q1}i = f1*x{0,+,91}: when 4 does not occur in f;

6 {O,—|—,10g fl}z = lo_g{llf*vfl}i

7140, +, fi}s = f;;? when i does not occur in fi and f1 # 1
80, +, 7" s = {0+, f7 + M)

91{0, +, 7"} = {0, 4, (ff)"i) when ¢ does not occur in fi and g1
10/{0, +, f1}: =ixf1 when i does not occur in f;

—_
—_

D) == = e e e e
O © 00 3 O Ut = W N

[\V)
[y

2

{0,+,i}: = (
{0,+,i"}s = o

n+1

n+1)

k) B "kt form e N, By is k"™ Bernoulli number

{17*7 _fl}i = (_1)i{17*7f1}i

{17*7 %}l = {17*7.]01}1'71

{Lx, fixgiti = {Lx fiti«{l,%x, a1}t

{1, ') = fibmorki when i does not occur in fi

{1, *,g{l}i = {1,*,g1}if1 when 4 does not occur in fi

{1,%, f1}: = fi when ¢ does not occur in f;

{1,*,1:}1' =0

{L,x,i4+ fr}s = % when 7 does not occur in f1 and f; > 1
{1,%,f1—i}i = (=1)%x % when 4 does not occur in fi and f; < —1

IV S(S)

- input: statement list S

- output: Induction Variable Substitution applied to S

CALL IV Strans(S)

Use reaching flow information to propagate initial variable values to the CRs in S

Apply CR™? to every CR in S

For every left-over CR @, in S, create an index array ia and code K to initialize the
array using algorithm CRGEN (®;,b, ia, K), where b is the upper bound of the index array
which is the maximum value of the induction variable ¢ of the loop in which &; occurs

IV Strans(S)
- input: statement list S
- output: Induction Variable Substitution applied to S, where CR expressions
in S represent the induction expressions of loops in S
FOR each do-loop L in statement list S DO
Let S(L) denote the body statement list of loop L, let I denote the basic induction variable
of the loop with initial value expression a, bound expression b, and stride expression s
CALL IV Strans(S(L))
TRY
CALL SSA*(S(L),A)
CALL CR(I,a,s,S(L), A)
CALL HOIST(I,a,b,s,S(L),A)
CATCH FAIL:
Continue with next do-loop L in S

Fig. 4. Algorithm IV S

Algorithm IV'S shown in Fig. 4 applies induction variable substitution to a
set of nested loops in a statement list. The programming model supported by
IV'S includes sequences, assignments, if-then-elses, do-loops, and while-loops.
IV S analyzes a do-loop nest (not necessarily perfectly nested) from the inner-
most loops, which are the primary candidates for optimization, to the outermost
loops. For every loop in the nest, the body is converted to a single-static assign-
ment (SSA) form with assignments to scalar variables separated from the loop
body and stored in set A. Next, algorithm C'R converts the expressions in A
to CR-expressions to detect induction variables. Algorithm HOIST hoists the
induction variable update assignments out of the loop and replaces induction
expressions in the loop by closed-forms. If an induction variable has no closed-
form, algorithm CRGEN is used to create an index array that will serve as a
closed-form. This enables IVS for a larger class of induction variables compared
to GIVs defined by Eq. (1). FAIL indicates failure of the algorithm to apply IVS,
which can only be due to failure of SSA* (see SSA* description later).

The worst-case computational complexity of IV S is O(kn log(n) m?), where
k is the maximum loop nesting level, n is the length of the source code fragment,
and m is the maximum polynomial order of the GIVs in the fragment. This bound
is valid provided that Bachmann’s CR construction algorithm [4] is used for the
fast construction of polynomial CRs.

Note that the CR rules in Fig. 2 are applicable to both integer and floating-
point typed expressions. Rule 11 handles floating point expressions only. It is
guaranteed that integer-valued induction variables have CRs with integer-valued
coefficients. However, some integer-valued expressions in a loop that contain
induction variables may be converted into CRs with rational CR coefficients
and a compiler implementation of the rules must handle rationals appropriately.

SSA*(S,A)
- input: loop body statement list S
- output: SSA-modified S and partially ordered set A, or FAIL
A:=0
FOR each statement S; € S from the last (¢ = |S|) to the first statement (¢ = 1) DO
CASE S;
OF assignment statement of expression X to V:
IF V is a numeric scalar variable and (V, L) ¢ A THEN
FOR each statement S; € S, j =i+ 1,...,|S| DO
Substitute in S; every occurrence of variable V' by a pointer to X
FOR each (U,Y) € A DO
Substitute in Y every occurrence of variable V' by a pointer to X
IF (V,.) ¢ A THEN /* note: _ is a wildcard */
A:=AU {(V,X)}
Remove S; from S
ELSE /* assignment to non-numeric or non-scalar variable */
Continue with next statement S;
OF if-then-else statement with condition C, then-clause S(T"), and else-clause S(E):
CALL SSA*(S(T), A1)
CALL SSA*(S(E), A2)
CALL MERGE(C, A1, Az, A12)
FOR each (V,X) € A1 2 DO
FOR each statement S;, j =i+ 1,...,[S| DO
Substitute in S; every occurrence of variable V' by a pointer to X
FOR each (U,Y) € A DO
Substitute in Y every occurrence of V' by a pointer to X
IF (V,.) ¢ A THEN /* note: _ is a wildcard */
A:=AU {(V,X)}
OF do-loop OR while-loop:
IF the loop body contains an assignment to a scalar numeric variable V. THEN
A:=AU (V, 1)
Topologically sort A with respect to <, FAIL if sort not possible (i.e. < is not a partial order on A)

MERGE(C, A1, Az, A12)
- input: Boolean expression C, variable-expression sets A; and A
- output: merged set A; >
Aq 2:=0
FOR each (V, X) € A; DO
IF (V,Y) € Az for some expression Y THEN
Al,gt:ALQ U {(V, C?X: Y)}
ELSE
A12:=A1 2 U{(V,C?X:V)}
FOR each (V, X) € A, DO
IF (V,.) € A1,2 THEN
A1’212A172 U {(V, c?V: X)}

Fig. 5. Algorithm SSA*

Single Static Assignment Form The SSA* algorithm shown in Fig. 5 uses
the precedence relation on variable-expression pairs defined by

UY)=< (V,X) ifU#V and V occurs in Y

to obtain an ordered set of variable-expression pairs A extracted from a loop
body. The algorithm constructs a directed acyclic graph for the expressions in
A and the expressions in the loop body such that common-subexpressions share
the same node in the graph to save space and time. Thus, when a subexpression
is transformed by rules CR or CR™' the result is immediately visible to the
expressions that refer to this subexpression. This works best when the rules CR
and CR™! are applied to an expression from the innermost to the outermost
redexes (i.e. normal-order reduction).

DO i=1,n DO i=1,n
IF cond(i) THEN IF cond(i) THEN
DO j=1,i DO j=0,i-1
k=k+j ali,{1,+,1};1=b{k+1,+,2,+,1};]
ali,jl=b[k] = ENDDO
ENDDO k=k+(i+i%*2) /2
ELSE ELSE
k=k+(ix(i+1))/2 k=k+(i*x(i+1))/2
ENDIF ENDIF
ENDDO ENDDO
(1) (2)
DO i=1,n
IF cond({1, +,1};) THEN DO i=0,n-1
DO j=0,{0,+,1}; IF cond(i+1) THEN
al{1,+,1};,{1,+,1};] DO j=0,i
= =b{k+1,+,2,4,1},] = ali+1, j+1]
ENDDO =b [k+ (L#*3+2%1+3% ((i+j) #*%2-2%i*j)+9%j) /6+1]
ENDIF ENDDO
k=(cond (i) ?{k, +,1,+,2,+,1}; ENDIF
Ak, +,1,+,2,+, 11D ENDDO
ENDDO
3) (4)

Fig. 6. Example Analysis of Conditional Induction Variables

Each variable has only one expression in A. Set A contains the potential in-
duction variables of the loop. Values of conditional induction variables are repre-
sented by conditional expressions of the form C?X:Y | where C' is the condition
and X and Y are expressions. The conditional expression C?X: X is rewritten*
into X. An example conditional induction variable analysis is shown in Fig. 6.
For sake of simplicity, we assume that the values of conditions do not change
when the conditions are replicated to different parts of the loop body. The algo-
rithm can be easily modified to produce code in which a temporary variable is
used to hold the value of a condition when conditions cannot be replicated.

Algorithm SSA* fails when < is not a partial order on A. The source of this
problem is the presence of cyclic recurrences in a loop, see e.g. [10] (p. 29). Cyclic
dependencies are not a problem.

Induction Variable Recognition and Substitution Algorithm C'R shown
in Fig. 7 converts the expressions in A into normalized CR-expressions to detect
induction variables.

Fig. 8 illustrates the analysis of wrap-around variables by algorithm C'R. The
code example is from [10] (p. 52). A wrap-around variable has at least one use
of the variable before its (first) assignment statement in the loop body, as is the
case for variables j and k in Fig. 8(1). For wrap-around variable analysis, each
use of the variable V' before its definition is replaced by the CR-expression

{V = V(B(®:)), *,0}i + B(®:)

4 Recall that CRs are normal forms, and when X is a CR this rewrite rule is trivial
to implement.

CR(I,a,s,S,A)
- input: loop induction variable I with initial value a and stride s,
statement list S, and topologically ordered set S of variable-expression pairs
- output: expressions in A are converted to CR-expressions
FOR each (V, X) € A in topological order (<) DO
Substitute in X every occurrence of I by {a,+,s}s
Apply CR rules to X
IF X is of the form V + C, where C is a loop invariant expression or a CR THEN
Replace (V, X) in A with (V,{V,+,C}r)
FOR each (U,Y) € A, (V,X) < (U,Y) DO
Substitute every occurrence of V in Y by {V, +,C}r
ELSE IF X is of the form V % C, where C is a loop invariant expression or a CR THEN
Replace (V, X) in A with (V,{V,*,C}r)
FOR each (U,Y) € A, (V,X) < (U,Y) DO
Substitute every occurrence of V in Y by {V,*,C}r
ELSE IF V does not occur in X THEN /* wrap-around variable */
Replace (V, X) in A with (V,{V — V(B(X)),*,0}r + B(X))
FOR each (U,Y) € A, (V,X) < (U,Y) DO
Substitute every occurrence of V in Y by {V — V(B(X)), *,0}; + B(X)
ELSE /* other type of assignment */
Continue with next (V, X) pair in A
FOR each (V, X) € A in topological order (<) DO
FOR each statement S; € S (and statements at deeper nesting levels) DO
Substitute every occurrence of V' in S; by X
Apply CR rules to every expression in S;

Fig. 7. Algorithm CR

j=m

j=m DO i=m,n g;mi=0 nm
DO [%TTQIEk] é}l_[j]‘=b[k] o al{{j — m,*,0}; DO i=0,n-m
LIl — =l — e O = T 1) = alimi=b[0ekix(kem) +ivm)
j=i) {m,+,1}; =b[{k — m, *,0}; ENDDO
k=] k={k — m, x,0}; +{m, +, 1}
ENDDO +{m, +,1}, mono
ENDDO
(1) (2) (3) (4)

Fig. 8. Example Analysis of Wraparound Variables

where @; is the CR-expression of the variable V. The symbolic functions V and
B are described in [15] with their proof of correctness. The closed-form of the
CR {¢o, *,0}; is ¢ * 0°, which evaluates in Fortran to ¢g if i = 0 and 0 if i # 0.

Algorithm HOIST shown in Fig. 9 applies the final stage by hoisting induc-
tion variable update assignments out of the loop. It is assumed that a < b —1
for lower bound a and upper bound b of each loop counter variable with positive
stride s > 0, and a > b — 1 for s < 0. When this constraint is not met for a
particular loop, the same approach as in [10] (p. 82) is used in which the loop
counter variable i is replaced with max(|(b—a+ s)/s],0) in the closed-form of
an induction variable to set the final value of the variable at the end of the loop.

Induction Variables and Loop Strength Reduction Polynomial, factorial,
GIV, and exponential CR-expressions can always be converted to a closed-form.
However, some types of CRs do not have equivalent closed-forms. To extend
our approach beyond traditional GIV recognition, we use algorithm CRGEN

10

HOIST(I,a,b,s,S,A)
- input: loop induction variable I with initial value a, bound b, stride s,
loop statement list S, and A the set of variable-expression pairs
- output: loop S with induction variable assignments hoisted out of S
T:=0
FOR each (V, X) € A in reversed topological order (<) DO
Apply CR™! to X resulting in Y
IF V' does not occur in Y THEN
IF V is live at the end of the loop THEN
Substitute every occurrence of I in Y by |
Append V :=Y at the end of T
ELSE
Append V := X at the end of S
Replace the statement list S with a loop with body S and followed by statements T
S := (D0 I=0, | %=%| S ENDDO T)

s

b7a+sJ

s

Fig. 9. Algorithm HOIST

CRGEN(%;,b,d,9)

- input: CR @; = {¢0, ®1,..., Ok, fr}i, bound expression b > 0, and identifier id
- output: statement list S to numerically evaluate ®#; storing the values in id[0..}]
S is the statement list created from the template below, where cr;, j =1,...,k,
are temporary scalar variables of type integer if all ¢; are integer, float otherwise:
id[0] = ¢o
cry = ¢1
cre = fr

DOi=0,b—1
id[i + 1] = id[i] ®1 cry

cr; = cry Og crg

Ccrg—1 = crg—1 Ok Crg
ENDDO

Fig. 10. Algorithm CRGEN

adopted from algorithm CREval [4] (see [4] for the proof of correctness of the
algorithm). Algorithm CRGEN shown in Fig. 10 stores CR values in an array.
CRGEN can be used to evaluate CRs that have or do not have closed-forms.
Algorithm CRGEN can be used for generalized loop strength reduction as
well, to replace GIVs by recurrences that are formed by iterative updates to in-
duction variables. For example, the CR of the closed-form expression (i*i-i)/2
is {0,+,0,4, 1};, assuming that loop index variable i starts with zero and has
stride one. The program fragment S produced by CRGEN ({0, +,0,+,1};,n,k, 5)
calculates (i*i-i)/2 with a strength reduced loop (in a slightly different form):

k=$=o k=0
DO 520,001 DO i=0,n-1
kecri which is equivalent to /% k=(ixi-1)/2 */
k=k+i
cri=cri+l
ENDDO ENDDO

This approach has an important advantage compared to symbolic differencing
for generalized loop strength reduction. It automatically handles cases in which
a loop body contains non-differentiable operators with arguments that are in-
duction expressions. For example, suppose that MAX((i*i-i)/2,0) occurs in a
loop body and assume that i is some induction variable. Our method recog-

11

nizes (i*i-i)/2 automatically as an induction expression which, for example,
can be loop strength reduced by replacing (i*i-i)/2 with a new induction
variable. The symbolic differencing method is expensive to use for generalized
loop strength reduction to detect subexpressions that are optimizable, because
symbolic difference tables have to be constructed for each subexpression.

Interprocedural Analysis Due to limitations in space, the presentation of the
IV S algorithm in this paper does not include interprocedural analysis. Subrou-
tine inlining can be used but this may result in an explosion in code size. Instead,
interprocedural analysis can be performed with algorithm IV'S by treating the
subroutine call as a jump to the routine’s code and back, and by doing some work
at the subroutine boundaries to ensure a proper passing of induction variables.

4 Results

In this section we give the results of applying the IV'S algorithm to code seg-
ments of MDG and TRFD. We created a prototype implementation of IV.S in
CTADEL [17, 18] to translate MDG, TRFD, and the other code fragments shown
in this paper. The MDG code segment is part of a predictor-corrector method
in an N-body molecular dynamics application. The TRFD program has been
extensively analyzed in the literature, see e.g. [9, 10], because its main loop is
hard to parallelize due to the presence of a number of coupled non-linear induc-
tion variables. Performance results on the parallelization of MDG and TRFD
with IV'S are presented in [10]. We will not present an empirical performance
comparison in this paper. Instead, we demonstrate a step-by-step application of
the GIV recognition method and IV S algorithm on MDG and TRFD.

MDG Fig. 11(2) depicts the recognition of the ikl and ji GIV updates rep-
resented by CRs. Fig. 11(3) shows them hoisted out of the inner loop. This is
followed by an analysis of the middle loop which involves forward substitution of
the assignments ji=jiz and ikl=ik+m. Again, ikl is recognized as an induction
variable of the middle loop together with ik, while ji is loop invariant with
respect to k. Hoisting of these variable assignments results in Fig. 11(5). After
substitution of the ik and jiz induction variables in Fig. 11(5), the IVS trans-
lated code is shown in Fig. 11(6). Note that arrays ¢ and v in the inner loop in
Fig. 11(5) are indexed by nested CRs. This form is automatically obtained, in
which the CR coefficients of an outer CR may consist of CRs that are guaranteed
to be loop invariant with respect to the outer CR’s index variable.

TRFD The application of IV.S on TRFD is shown in Fig. 12. The inner loop is
analyzed first from which GIVs are eliminated resulting in Fig. 12(2). Working
further outwards, subsequent GIVs are eliminated resulting in Fig. 12(3) and (4).
The fully IVS transformed TRFD fragment is shown in Fig. 12(5). The complete
loop nest can be parallelized on e.g. a shared-memory multiprocessor machine.

12

o= ik=1 ik=1
1'1;;2 jiz=2 jiz=2
IJ)O i=1,n DO i=1,n DO i=1,n
DO k=1,m DO k=1,m DO k=1,m
..=..’ ji=jiz ji=jiz
Teloins ikl=ik+m iK1=ik+m
1=0 3 " s=0.0 s=0.0
;o 1=i,n DO 1=i,n DO 1=0,n-i
> . = s=s+c[{ji, +,1};] 5 s=s+c[{ji, +,1};]
s=s+c * k1 L t
ikl=i1£i]_il:!1 Vil *v[{ikl, +, m}] wv[{ikl, +,m}] ;
i=3i+1 ikl={ikl, 4+, m}, ENDDO
Efmpé ji={ji,+, 1} ikl=ikl+(n-i+1)*m
vlik]=v[ik]+s ENDDO ji=ji+n-i+1
ik=ik+1 vlikl=v[ik]+s vlik]=v[ik]+s
ENDDO ik=ik+1 ik=ik+1
jiz=jiz+n+l ENDDO ENDDO
ESIDDUJ Jjiz=jiz+n+l jiz=jiz+n+1
ENDDO ENDDO
(1) (2) (3)
ik=1
jiz=2 o
DO i=1,n ;Li‘z;
ng(;:(l)’m DO i=1,n
DO 1=0.n-i D0 k=0,m-1 DO i=0,n-1
s=s+c[{jz‘z7_|_7 1}l] s=0.0 DO k=0,m-1
DO 1=0,n-{1,+,1}; $=0.0

*v[{{ik +m, +, 1}k
,+,m}]
ENDDO
vi{ik, +,1}x]

s=s+c[{{jiz, +,n + 1}i, 4+, 1}1]
= *v{{{ik + m,+ m}s, +, 1}k

,+,mh]

DO 1=0,n-i-1
:> s=s+c[1+ix(n+1)+2]
v [k+m (i+1+1) +1]

ik 1]+ ENDDO ENDDO
1={ik AN k vI{{ik, +,m}s, +, 1}%] vk+i*m+1]=v [k+i*m+1]+s
R A =v[{{ik, +,m}:, +, 1}p]+s ENDDO
i 1), 4 1k ENDDO ENDDO
:.11=Jjjz+n—1+1 ik={ik, +, m};
soago e jiz={jiz, +n + 1}
jiz=jiz+n+1 ENDDO
ENDDO
(4) (5) (6)

Fig.11. Algorithm IV'S Applied to Code Segment of MDG

5 Conclusions

In this paper we presented a novel approach to generalized induction variable
recognition for optimizing compilers. We have shown that the method can be
used for generalized induction variable substitution, generalized loop strength re-
duction, and loop-invariant expression elimination. In contrast to the symbolic
differencing method, our method is safe and can be implemented with as little
effort as adding a compiler phase that includes rewrite rules for chains of recur-
rences (CRs). In our approach, CR-normalized representations are obtained for
a larger class of induction variables than GIVs (e.g. factorials and exponentials).

We are currently investigating the application of the CR method in the ar-
eas of program equivalence determination, program correctness proofs, and in
optimizing compiler validation techniques [16] to deal with loop semantics. The
induction variable recognition method described in this paper can also be used
for non-linear dependence testing, see [15]. The basic idea is that dependence

13

DO i=1,m
DO j=1,i
ij=ij+1
1jk1=1jk1+i-j+1
DO k=i+1,m
DO 1=1,k
1jk1=1jk1+1
x1jk1[1ijk1]=xk1[1]
ENDDO
ENDDO
ijk1=ijkl+ij+left
ENDDO
ENDDO

(1)

DO i=1,m
DO j=0,i-1
DO k=0,m-i-1

DO 1=0,{i, +, 1}x
xijk1[{{{¢ + ijkl + 1,+,i + ij
+left+ (ixmx (i + 1)
+(m+ 1)« (m —ix* (i +1)))/2};,
+i+ 1,4, 1}, 4+, 131
= =xk1[{1,+,1},] =

DO i=1,m

i1 4 DO i=1,m
ngi;;i DO j=1,i
) DO k=0,m-i-1
o i DO 1=0, {3, +, 1}x
DO 1=0,k-1 xijk1[{{ijkl +i—j+2,+,i+1

©GRLL(GR + 1, 4, 1)) =, by Lhe, o+, Thil=xkl {1, 4, 1}]

ENDDO
=xk1[{1, +,1}] ENDDO
Ewiggi'kl+k ijkl=ijkl+i-j+ij+left+2
oD +(irmk (i41) + (m+ 1) * (m-i% (i+1))) /2
Caa e ij=ij+1
ijkl=ijkl+ij+left ENDDO
ENDDO ENDDO
ENDDO
(2) (3)
DO i=0,m-1
D0 j=0,i

DO k=0,m-i-2
DO 1=0,i+k+1
%x1jk1 [1jk1+1+i% (et (mtmsk*2
+2x1left+6)/4)+j*(left
+(m+m**2) /2) +((1*m) **2
+2% (k**2+3*k+i**2% (left

ENDDO +1)) +m*i**2) /4+2]=xk1[1+1]
ENDDO ENDDO
ENDDO ENDDO
ijkl=ijkl+i*(ij+left+i*(m/2+1) ENDDO
B ‘.+Fm*i**2—(m+1)*(i+i**2—m))/2+1) ENDDO
ij=ij+i
ENDDO
(4) (5)

Fig. 12. Algorithm IV.S Applied to Code Segment of TRFD

distance vectors are obtained by subtracting two CR-normalized array index ex-
pressions, normalizing the result with the CR rules, and testing for the resulting
sign of the CR. No other existing non-linear dependence testing method is as
fast as this approach. Other existing compiler techniques for dependence testing
are based on value range analysis, first introduced in [6]. Fahringer [9] improved
these methods for non-linear dependence testing. The method is particularly
suitable for analysis of dependencies across multiple loop levels. These methods
are complementary and can be combined with our approach.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley Publishing Company, Reading MA, 1985.

[2] F. Allen, J. Cocke, and K. Kennedy. Reduction of operator strength. In S. Much-
nick and N. Jones, editors, Program Flow Analysis, pages 79-101, New-Jersey,
1981. Prentice-Hall.

[3] Z. Ammerguallat and W.L. Harrison III. Automatic recognition of induction
variables and recurrence relations by abstract interpretation. In proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), pages 283-295, White Plains, NY, 1990.

14

[4]

[5]

[7]

(8]

18]

[19]
[20]
21]

[22]

O. Bachmann. Chains of Recurrences. PhD thesis, Kent State University, College
of Arts and Sciences, 1996.

O. Bachmann, P.S. Wang, and E.V. Zima. Chains of recurrences - a method to
expedite the evaluation of closed-form functions. In proceedings of the Interna-
tional Symposium on Symbolic and Algebraic Computing (ISSAC), pages 242-249,
Oxford, 1994. ACM.

W. Blume and R. Eigenmann. Demand-driven, symbolic range propagation. In
proceedings of the 8 International workshop on Languages and Compilers for
Parallel Computing, pages 141-160, Columbus, Ohio, USA, August 1995.

R. Eigenmann, J. Hoeflinger, G. Jaxon, Z. Li, and D.A. Padua. Restructuring
Fortran programs for Cedar. In proceedings of ICPP’91, volume 1, pages 57—66,
St. Charles, Illinois, 1991.

R. Eigenmann, J. Hoeflinger, Z. Li, and D.A. Padua. Experience in the automatic
parallelization of four perfect-benchmark programs. In 4™ Annual Workshop on
Languages and Compilers for Parallel Computing, LNCS 589, pages 65-83, Santa
Clara, CA, 1991. Springer Verlag.

Thomas Fahringer. Efficient symbolic analysis for parallelizing compilers and
performance estimators. Supercomputing, 12(3):227-252, May 1998.

Mohammad R. Haghighat. Symbolic Analysis for Parallelizing Compilers. Kluwer
Academic Publishers, 1995.

M.R. Haghighat and C.D. Polychronopoulos. Symbolic program analysis and
optimization for parallelizing compilers. In 5% Annual Workshop on Languages
and Compilers for Parallel Computing, LNCS 757, pages 538-562, New Haven,
Connecticut, 1992. Springer Verlag.

P. Knupp and S. Steinberg. Fundamentals of Grid Generation. CRC Press, 1994.
S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
San Fransisco, CA, 1997.

J.P. Singh and J.L. Hennessy. An emperical investigation of the effectiviness and
limitations of automatic parallelization. In N. Suzuki, editor, Shared Memory
Multiprocessing, pages 203—207. MIT press, Cambridge MA, 1992.

R.A. van Engelen. Symbolic evaluation of chains of recurrences for loop opti-
mization. Technical report, TR-000102, Computer Science Dept., Florida State
University, 2000.

R.A. van Engelen, D. Whalley, and X. Yuan. Automatic validation of code-
improving transformations. In ACM SIGPLAN Workshop on Language, Compil-
ers, and Tools for Embedded Systems, 2000.

R.A. van Engelen, L. Wolters, and G. Cats. CTADEL: A generator of multi-
platform high performance codes for PDE-based scientific applications. In 10"
ACM International Conference on Supercomputing (ICS), pages 86-93, New York,
1996. ACM Press.

R.A. van Engelen, L. Wolters, and G. Cats. Tomorrow’s weather forecast: Auto-
matic code generation for atmospheric modeling. IEEE Computational Science &
Engineering, 4(3):22-31, July/September 1997.

M.J. Wolfe. Beyond induction variables. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI’92), pages 162-174, 1992.
M.J. Wolfe. High Performance Compilers for Parallel Computers. Addison-
Wesley, Redwood City, CA, 1996.

E.V. Zima. Recurrent relations and speed-up of computations using computer
algebra systems. In proceedings of DISCO’92, pages 152—-161. LNCS 721, 1992.
H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers.
ACM Press, New York, 1990.

15

