staDFA: AN EFFICIENT SUBEXPRESSSION MATCHING METHOD

By

MOHAMMAD IMRAN CHOWDHURY

A Thesis submitted to the
Department of Computer Science
in partial fulfillment of the
requirements for the degree of
Master of Science

2018
Mohammad Imran Chowdhury defended this thesis on July 20, 2018.
The members of the supervisory committee were:

Robert A. van Engelen
Professor Directing Thesis

David Whalley
Committee Member

An-I Andy Wang
Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies that the thesis has been approved in accordance with university requirements.
To my beloved parents, who always believed in me even when I didn’t
ACKNOWLEDGMENTS

First of all, I would like to give my gratitude to my creator almighty ALLAH for whom what I am today. Next to my parents, for their endless support and encouragement, which makes me hopeful and confident. My thanks also go to my professor and thesis advisor, Prof. Dr. Robert van Engelen. With every stage of my thesis work, he helped me a lot and provided valuable resources. Without his help I would not be here today. I would also like to give thanks to all of my committee members, Prof. Dr. David Whalley, and Prof. Dr. An-I Andy Wang.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>ix</td>
</tr>
<tr>
<td>Abstract</td>
<td>x</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 A Motivating Example</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Thesis Statement</td>
<td>2</td>
</tr>
<tr>
<td>2 Preliminaries</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Regular Expressions</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Non-Deterministic Finite Automata</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Deterministic Finite Automata</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Extended Regular Expressions Forms</td>
<td>7</td>
</tr>
<tr>
<td>3 Related Work</td>
<td>10</td>
</tr>
<tr>
<td>4 Store-Transfer-Accept DFA</td>
<td>15</td>
</tr>
<tr>
<td>4.1 staDFA Definition</td>
<td>15</td>
</tr>
<tr>
<td>4.1.1 Basic Definitions</td>
<td>15</td>
</tr>
<tr>
<td>4.1.2 The Marker Positions Store</td>
<td>16</td>
</tr>
<tr>
<td>4.2 Converting a Regular Expression to an staDFA</td>
<td>17</td>
</tr>
<tr>
<td>4.2.1 Identifying Subexpression Positions</td>
<td>20</td>
</tr>
<tr>
<td>4.2.2 staDFA Match</td>
<td>21</td>
</tr>
<tr>
<td>4.2.3 Subexpression Matching with an staDFA</td>
<td>21</td>
</tr>
<tr>
<td>4.3 Ambiguity and staDFA Conflicts</td>
<td>22</td>
</tr>
<tr>
<td>4.4 Tagged Regular Expressions and staDFA</td>
<td>29</td>
</tr>
<tr>
<td>4.5 Minimizing an staDFA</td>
<td>30</td>
</tr>
<tr>
<td>4.6 Applications</td>
<td>31</td>
</tr>
<tr>
<td>4.6.1 Trailing Contexts</td>
<td>31</td>
</tr>
<tr>
<td>4.6.2 Lookaheads</td>
<td>32</td>
</tr>
<tr>
<td>4.6.3 Capturing Groups</td>
<td>33</td>
</tr>
<tr>
<td>4.6.4 Back-References</td>
<td>33</td>
</tr>
<tr>
<td>5 Performance Evaluation</td>
<td>36</td>
</tr>
<tr>
<td>5.1 Experimental Setup</td>
<td>36</td>
</tr>
<tr>
<td>5.2 Performance Evaluation of staDFA</td>
<td>36</td>
</tr>
<tr>
<td>5.3 Discussion</td>
<td>39</td>
</tr>
<tr>
<td>6 Conclusions</td>
<td>40</td>
</tr>
</tbody>
</table>
Appendix

A Theorems and Proofs 41

References ... 42
Biographical Sketch ... 46
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Steps of sub-expression $R_1 = (a_1 \mid a_2 b_3)^* \mathbin{\mathcal{R}}$ matching and its extent to position b_4 marked using marker $t = 1$ with the staDFA matcher shown in Fig. 4.1 on input strings “aba” and “abba” for $RE R = (a_1 \mid a_2 b_3)^* \mathbin{\mathcal{R}} b_4 a_5$</td>
<td>23</td>
</tr>
<tr>
<td>4.2</td>
<td>Steps of sub-expression $R_1 = \frac{1}{2} (a_1 \mid a_2 b_3)^* \mathbin{\mathcal{R}}^2$ matching by using markers t_1 and t_2 and its extent to position b_4 with the staDFA matcher shown in Fig. 4.2 on input strings “ababab” for $RE R = \frac{1}{2} (a_1 \mid a_2 b_3)^* \mathbin{\mathcal{R}}^2 b_4$</td>
<td>25</td>
</tr>
<tr>
<td>4.3</td>
<td>Steps of the last occurrence of sub-expression $R_1 = \frac{1}{2} (a_1 \mid a_2 b_3)^* \mathbin{\mathcal{R}}^2$ matching by using markers t_1 and t_2 and its extent to position b_4 with the staDFA matcher shown in Fig. 4.3 on input strings “ababab” for $RE R = \frac{1}{2} (a_1 \mid a_2 b_3)^* \mathbin{\mathcal{R}}^2 b_4$</td>
<td>28</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

2.1 A position NFA of regular expression \((a_1 | b_2)^* a_3\). .. 6
2.2 A DFA for regular expression \(R = (a_1 | b_2)^* a_3\) constructed from the position NFA of \(R\) by subset construction. ... 7
4.1 An staDFA for \(RE (a_1 | a_2 b_3)^* 1/ b_4 a_5\) .. 23
4.2 The leftmost-first staDFA for \(RE R = 1/ (a_1 | a_2 b_3)^* R b_4\) 26
4.3 The leftmost-last staDFA for \(RE R = 1/ (a_1 | a_2 b_3)^* R b_4\) 29
4.4 An staDFA state diagram of \(R = (a_1 | b_2) c_3 \ 1\) and commands \(C\) for states \(s\) 34
5.1 Performance of staDFA matching, compared to Flex, RE/flex, PCRE2, RE2 and Boost.Regex for tokenizing strings containing 1,000 copies of \(abbb, abbbbbbb\) and \(abbbbbbb\) tokenized into 2,000 tokens using two patterns \(b\) and \(a b^* (?=b a^*)\) with a lookahead (Flex trailing context \(a b^* / b a^*\)). Elapsed execution time is shown in micro seconds. ... 37
5.2 Performance of staDFA matching, compared to RE2, PCRE2 and Boost.Regex for regular expression \((a b)^* c\) with group capture \((ab)\). Elapsed execution time per string match is shown in micro seconds for a range of input strings \((ab)^n c\) where, \(n = 10, 100, \ldots, 100000\). ... 38
5.3 MPS operations overhead of staDFA matching, compared to, tags overhead of TDFA matching for regex \(R_1 = (b^*) (b^*) b\) with average-case and regex \(R_2 = (b | bb | bbb | bbbbb)^*\) with worst-case. Elapsed update frequency per string match is shown in numerical counts for a range of input strings \((b)^n\) where, \(n = 1, 2, \ldots, 4\) 39
LIST OF SYMBOLS

The following short list of symbols are used throughout the document.

\begin{itemize}
 \item \textbf{RE} Regular Expression
 \item \textbf{NFA} Nondeterministic Finite Automata
 \item \textbf{DFA} Deterministic Finite Automata
 \item \textbf{TNFA} Tagged Nondeterministic Finite Automata
 \item \textbf{T DFA} Tagged Deterministic Finite Automata
 \item \textbf{staDFA} store-transfer-accept DFA
 \item \textbf{MPS} Memory Positions Store
 \item $\|R\|$ Alphabetic width (length) of an RE R
 \item w Word or string
 \item $|w|$ Length of word w
 \item t Marker or tag
 \item \textbf{MPS} Memory Positions Store
 \item $M[t]$ MPS memory with position for marker t
 \item m_i^t MPS memory cell at position (or address) i for marker t
 \item $\hat{\slash}$ Mark-first for marker t
 \item $\hat{\\backslash}$ Mark-last for marker t
 \item $\hat{\slash}_R$ Leftmost-first marker of R for marker t
 \item $\hat{\\backslash}_R$ Leftmost-last marker of R for marker t
 \item S_i^t The store command using marker t at address location i
 \item $T_{i,j}^t$ The transfer command using marker t from address location j to i
 \item A_i^t The accept command using marker t at address location i
\end{itemize}
ABSTRACT

The main task of a Lexical Analyzer such as Lex [20], Flex [26] and RE/Flex [34], is to perform tokenization of a given input file within reasonable time and with limited storage requirements. Hence, most lexical analyzers use Deterministic Finite Automata (DFA) to tokenize input to ensure that the running time of the lexical analyzer is linear (or close to linear) in the size of the input.

However, DFA constructed from Regular Expressions (RE) are inadequate to indicate the positions and/or extents in a matching string of a given subexpression of the regular expression. This means that all implementations of trailing contexts in DFA-based lexical analyzers, including Lex, Flex and RE/Flex, produce incorrect results. For any matching string in the input (also called the lexeme) that matches a token is regular expression pattern, it is not always possible to tell the position of a part of the lexeme that matches a subexpression of the regular expression. For example, the string abba matches the pattern a b*/b a, but the position of the trailing context b a of the pattern in the string abba cannot be determined by a DFA-based matcher in the aforementioned lexical analyzers. There are algorithms based on Nondeterministic Finite Automata (NFA) that match subexpressions accurately. However, these algorithms are costly to execute and use back-tracking or breadth-first search algorithms that run in non-linear time, with polynomial or even exponential worst-case time complexity. A tagged DFA-based approach (T DFA) was pioneered by Ville Laurikari [15] to efficiently match subexpressions. However, T DFA are not perfectly suitable for lexical analyzers since the tagged DFA edges require sets of memory updates, which hampers the performance of DFA edge traversals when matching input. I will introduce a new DFA-based algorithm for efficient subexpression matching that performs memory updates in DFA states.

I propose the Store-Transfer-Accept Deterministic Finite Automata (staDFA). In my proposed method, the subexpression matching positions and/or extents are stored in a Marker Position Store (MPS). The MPS is updated while the input is tokenized to provide the positions/ extents of the sub-match.

Compression techniques for DFA, such as Hopcroft’s method [14], default transitions [18, 19], and other methods, can be applied to staDFA. For an instance, this thesis provide a modified Hopcroft’s method for the minimization of staDFA.
CHAPTER 1

INTRODUCTION

Regular Expressions (RE) are typically used to define patterns to match (parts of) the text of a given input. There are many regex-engines such as Perl [24], PCRE2 [13], RE2 [9], Flex [26], Lex [20] and RE/Flex [34] that use RE to match or tokenize some given input. All regex-engines represent RE either in an NFA-like or in a DFA form or a combination, because of performance considerations [7]. Algorithms to translate RE to DFA are well known [1, 2, 4]. But these algorithms are not adequate to tell the position and extent of a subexpression within a given RE, when we have a matching string.

Ville Laurikari [15] proposed a tagged-DFA (TDFA) to solve this problem. In [15] Ville Laurikari introduced the concept of tag subexpressions by inserting tags t_x in regular expressions. For example $a^* t_1 b$ has a tag t_1 that marks the transition from a^* to b. The tagged regular expression is converted to a tagged-DFA (TDFA) via an intermediate transformation to a tagged-NFA (TNFA). The TDFA is used to update a tag map by a string matcher. In this case, matching with a TDFA returns position 2 for tag t_1 in the accepted string aab. Tagging of, and matching with, TDFA is transition-oriented since edges are marked.

The TDFA approach has two challenges to incorporate them in lexical analyzers. First, because TDFA are transition-oriented they are not perfectly suitable for lexical analyzers since the tagged edges require sets of memory updates, hampering the performance of edge traversals while matching input. Second, TDFA relies on a conversion algorithm to obtain a TDFA from a tagged-NFA (TNFA), where the TNFA was constructed from an RE. Third, a TDFA cannot be minimized by a DFA minimization algorithm such as Hopcroft’s method [14], because of the presence of tagged edges.

By contrast staDFA removes these limitations. Loosely speaking, staDFA can be considered Moore machines with operations in states versus the TNFA and TDFA automata that can be considered Mealy machines with operations on transitions.
1.1 A Motivating Example

Suppose we have a regular expression $R = (a \mid ab) / b a$ and the following accepted input strings aba and $abba$, where $/$ indicates a trailing context $b a$ for the sub-expression $R_1 = (a \mid ab)$. For this example, Lex [20] fails to match sub-strings a and ab against R_1, respectively, according to Appel [4]. Flex [26] uses an ad-hoc approach to fix some of these limitations. However, Flex fails in the general case. Take for example the regular expression such as $R = a b^* / b a^*$ on input strings aba and $abba$ Flex fails to identify substrings a or ab due to the overlapping patterns b^* at the end of the sub-expression and b at the start of the trailing context.

The subexpression matching problem can be explained as follows. Let’s assume a regular expression R consists of several sub-expressions R_i such that $R = \ldots (R_1) \ldots (R_2) \ldots (R_3) \ldots$. The task at hand is to construct an automaton that can efficiently tell the positions n_i of these subexpressions for the accepted input strings w of length (say, l) in preferably $O(|w|)$ time:

$$w[0] \ldots w[n_4] \ldots w[n_9] \ldots w[n_{11}] \ldots w[n_{15}] \ldots w[n_{17}] \ldots w[n_{20}] \ldots w[l]$$

matches R

matches R_1 matches R_2 matches R_3

An automaton alone is not sufficient enough to track positions n_i in submatch problem definition. Thus, a memory-based mechanism is essentially needed to track the string positions n_i.

1.2 Thesis Statement

This thesis presents an staDFA constructed directly from RE. The biggest advantage compared to $NFA-based$ methods and $TDFA$ is that we can efficiently find sub-matches and trailing-contexts, lookaheads, capturing groups, back-references, while providing both the leftmost, rightmost, first, and last match policies. TDFA as described in [15] is not POSIX compliant, i.e. does not offer a guaranteed leftmost longest matching policy.

The concept of staDFA is introduced in this thesis with Store, Transfer and Accept commands associated with DFA states and an algorithm to convert a regular expression with marked subexpressions directly into staDFA.
The staDFA concept offers the following properties:

- An algorithm for staDFA construction from a RE such that subexpressions are identified by their position and extent in accepted strings, Section 4.2.1
- An efficient staDFA matching algorithm, such that the staDFA matching algorithm returns well-formed marker positions in accepted strings, Section 4
- staDFA permits strategies to disambiguate marked subexpressions by resolving conflicts between commands in the staDFA, Section 2
- staDFA permits optimization with Hopcroft’s DFA minimization, Section 4.5

The remainder of this thesis work is organized as follows. Chapter 2 introduces the preliminaries about regular expression, NFAs/DFAs, etc. With respect to my proposed approach, the related-work are summarized on Chapter 3. In Chapter 4, my proposed approach is presented thoroughly. The performance evaluation of my approach is demonstrated in Chapter 5. The conclusion and future work is compiled on Chapter 6.
CHAPTER 2

PRELIMINARIES

In this chapter I present regular expressions and some of their applications. Also, I demonstrate how these regular expressions are used by NFAs and DFAs for text matching. Section 2.1 shows regular expressions and their real-world applications. Section 2.2 describes basic terminology about NFAs and their use of regular expression. The basic principles of DFAs and their application to pattern-matching based on regular expression are presented on Section 2.3.

2.1 Regular Expressions

Loosely speaking, regular expressions (RE) represent a language \(L \) containing a set of words (or strings) \(w \in \Sigma^* \) for some alphabet \(\Sigma \).

Syntax of Regular Expressions. Regular expressions have three meta operations. These are alternation, concatenation and repetition. Optionally, it has other parts such as Anchors, and Character Sets.

Anchors. Usually there are two anchor characters \(\wedge \) and \($ \). Here, \(\wedge \) represents the starting anchor that identifies the start position of the matched-pattern and \($ \) represents the ending anchor that identifies the end position of the matched-pattern. Therefore, \(^A^* \) matches the input of text at the starting position and matching \(A \) zero or more times. Similarly, if we have regular expression like \(A^*$ \$ which means match the input lines of text that has the ending position and matching \(A \) zero or more times.

Character Sets and Classes. The common character sets are: [] known as positive character group, [^] known as negative character group, \(. \) (dot) any character. Similarly, the most common character classes are: \(\wedge w \) known as word character, \(\wedge W \) known as non-word character, \(\wedge s \) white-space character, \(\wedge S \) non-white-space character, and character class subtraction such as \([a-zA-Z-][aeiou] \).
2.2 Non-Deterministic Finite Automata

Firstpos is the set of positions that match the first symbols of accepted strings w by an regular expression R:

$$
\text{firstpos}(R) = \begin{cases}
\text{firstpos}(R_1) \cup \text{firstpos}(R_2) & \text{if } R = R_1 | R_2 \\
\text{firstpos}(R_1) \cup \text{firstpos}(R_2) & \text{if } R = R_1 R_2 \text{ and } \text{nullable}(R_1) = \text{true} \\
\text{firstpos}(R_1) & \text{if } R = R_1 R_2 \text{ and } \text{nullable}(R_1) = \text{false} \\
\{a_i\} & \text{if } R = a_i \text{ and } a \in \Sigma \\
\emptyset & \text{if } R = \varepsilon
\end{cases}
$$

where $\text{nullable}(R)$ is defined as:

$$
\text{nullable}(R) = \begin{cases}
\text{nullable}(R_1) \lor \text{nullable}(R_2) & \text{if } R = R_1 | R_2 \\
\text{nullable}(R_1) \land \text{nullable}(R_2) & \text{if } R = R_1 R_2 \\
\text{true} & \text{if } R = R_1^* \\
\text{false} & \text{if } R = a_i \text{ and } a \in \Sigma \\
\text{true} & \text{if } R = \varepsilon
\end{cases}
$$

Lastpos is the set of positions that match the last symbols of accepted strings w by an regular expression R:

$$
\text{lastpos}(R) = \begin{cases}
\text{lastpos}(R_1) \cup \text{lastpos}(R_2) & \text{if } R = R_1 | R_2 \\
\text{lastpos}(R_1) \cup \text{lastpos}(R_2) & \text{if } R = R_1 R_2 \text{ and } \text{nullable}(R_2) = \text{true} \\
\text{lastpos}(R_1) & \text{if } R = R_1 R_2 \text{ and } \text{nullable}(R_2) = \text{false} \\
\{a_i\} & \text{if } R = a_i \text{ and } a \in \Sigma \\
\emptyset & \text{if } R = \varepsilon
\end{cases}
$$

Followpos is the set of edges between positions of matching symbols and is defined as follows:

$$
\text{followpos}(R) = \text{edges}(R) \cup \{a_i \in \text{lastpos}(R) : (a_i, A)\}
$$

where the set $\text{edges}(R)$ of a regular expression R contains directed edges (a_i, b_j) from position a_i to position b_j such that b_j may match symbol $w[k + 1]$ of a string $w \in \Sigma^*$ after successfully matching a_i with symbol $a = w[k]$ at position k in w:

$$
\text{edges}(R) = \begin{cases}
\text{edges}(R_1) \cup \text{edges}(R_2) & \text{if } R = R_1 | R_2 \\
\text{edges}(R_1) \cup \text{edges}(R_2) \cup \{a_i \in \text{lastpos}(R_1), b_j \in \text{firstpos}(R_2) : (a_i, b_j)\} & \text{if } R = R_1 R_2 \\
\text{edges}(R_1) \cup \{a_i \in \text{lastpos}(R_1), b_j \in \text{firstpos}(R_1) : (a_i, b_j)\} & \text{if } R = R_1^* \\
\emptyset & \text{otherwise}
\end{cases}
$$
Based on the above definitions of \(\text{firstpos}(R) \), \(\text{lastpos}(R) \), and \(\text{followpos}(R) \) a position NFA is formed, where from each state on a particular input string symbol, a position NFA can move to a combination of states at a time.

Definition 1. Given a regular expression \(R \) over the alphabet \(\Sigma \), the position NFA of \(R \) is a 5-tuple \(\langle Q, \Sigma, \delta, q_0, A \rangle \), where

- \(Q \) is the finite set of states formed by \(\{(a_i, b_j) \in \text{followpos}(R) : a_i \} \cup \{A\} \),
- \(\Sigma \) is an alphabet defined over a finite set of symbols,
- \(\delta: Q \times \Sigma \rightarrow 2^Q \) is the transition function where, \(\delta(a_i, a) = \{(a_i, b_j) \in \text{followpos}(R) : b_j \} \),
- \(q_0 \) is the set of initial states where, \(q_0 \in \text{firstpos}(R) \),
- \(A \) is the accepting state.

For example, we have the regular expression \(R = (a_1 \mid b_2)^* a_3 \) which accepts strings \(w \in \Sigma^* \) with \(\Sigma = \{a, b\} \). The position NFA of \(R \) is \(\text{NFA}(R) = \langle \{a_1, b_2, a_3, A\}, \{a, b\}, \delta, \{a_1\}, A \rangle \), where \(\delta \) is the transition function depicted by the labeled edges in Fig. 2.1, which shows the positions NFA constructed for \(R = (a_1 \mid b_2)^* a_3 \).

2.3 Deterministic Finite Automata

A DFA from each state on a particular input string symbol, can move to only one state at a time.
Definition 2. Given a regular expression R over the alphabet Σ, the DFA of R constructed from the position NFA (R) by subset construction is a 5-tuple $\langle S, \Sigma, \delta, s_0, F \rangle$, where

- $s \in S$ is the finite set of states formed by $S \subseteq 2^Q$, where Q is the states of NFA(R),
- Σ is an alphabet defined over a finite set of symbols,
- $\delta: S \times \Sigma \rightarrow S$ is the transition function, where $\delta(s, a) = \bigcup_{a_i \in s} \{(a_i, b_j) \in \text{followpos}(R): b_j\}$,
- s_0 is the initial state, where $s_0 = \begin{cases} \text{firstpos}(R) \cup \{A\} & \text{if nullable}(R) = \text{true} \\ \text{firstpos}(R) & \text{otherwise} \end{cases}$
- $F = \{s \in S : A \in s\}$ is the set of accepting states, where A is the accepting state of NFA(R).

Let’s consider the same regular expression $R = (a_1 \mid b_2)^* a_3$, which accepts strings $w \in \Sigma^*$ with $\Sigma = \{a, b\}$. The construction of DFA that supports the above same regular expression is $DFA(R) = \langle\{a_1, b_2, a_3, A\}, \{a, b\}, \delta, \{a_1\}, A\rangle$, where δ is the transition function depicted as labeled edges. The complete DFA for the above regular expression is shown in Fig. 2.2.

2.4 Extended Regular Expressions Forms

In real-world applications of pattern matching, extended forms of regular expressions are often used. Following are the commonly used few types of extended regular expressions defined by R. Cox [9]:

Submatch extraction. Efficient submatch extraction of the parsed input strings is for example a regular expression $R = ([0-9]^+/[0-9]^+/[0-9]^+)([0-9]^+: [0-9]^+)$ which may be used to match the strings (say, date and time). Therefore, to efficiently find out which part of accepted
strings w were matched by the sub-expression (i.e. R_1, R_2) of this full regular expression R is crucial.

Escape sequences. Regular expression containing escape sequences are common in real world applications program. Since, these escape sequences can appear either as a meta-characters (i.e. \&, (), \{, \}, $ etc.) or as control sequences such as combination of \n stands for newline, and combination of \w stands for a word character.

Counted repetition. Used as range quantifiers for example, regular expression containing $a\{n, m\}$ means to match n to m times the letter a. There are several variations of counted repetition in use.

Unanchored matches. Another interesting form of extended regular expression, used to do partial-matches on input strings. For example, unanchored “ab” will find matches on both input strings “abc”, and “1ab” whereas anchored $^\w ab$ will match only “ab”. Note that by default patterns are considered as unanchored.

Non-greedy operators. In traditional or POSIX-mode the commonly used operators *, +, ?, {...} are greedy operators. However, Perl introduced a new version of above operators known as non-greedy operators. These are represented as *?, +?, ??.

Assertions. There are several forms of assertions for extended-regular expression in Perl-compatible mode. The most common form are \b,(?=re),(?!re),(? \leq re) and (? <! re). The assertion \b is called word boundary, the forms (?=re), (?!re) are known as lookahead assertions and the forms (? \leq re) and (? <! re) are called lookbehind assertions.

Backreferences. An important feature of extended-regular expressions is backreferences. Normally, backreferences require backtracking operations to match the same pattern again which was already matched by a capturing group. Thus, this leads to NFA implementations as common choice. Backreferences represented as \m, where m refers to the matched-pattern captured by m^{th} capturing-group. For example, a simple regular expression $R = (a | b) c \1$, where, $\1$ refers to match the same pattern again which is already captured by first capturing group (a | b).

In the next chapter, I will present some related-work along with its limitations on efficient subexpressions matching. Also, I will present why my proposed staDFA algorithm improves over
existing work as well. I will also show how my proposed approach can resolve the limitations of existing approaches on efficient subexpressions matching.
CHAPTER 3

RELATED WORK

Algorithms for translating Regular Expressions (RE) to Deterministic Finite Automata (DFA) are well known [1, 2]. But, these algorithms are not adequate to tell the position and extent of a subexpression within a given RE, when we have a matching string. Ville Laurikari [15] proposed a tagged-DFA (TDFA) to solve this problem efficiently. However, TDFA has some practical challenges when using the method for lexical analysis. There is no direct conversion algorithm to obtain the TDFA from a regular expression. A tagged-NFA (TNFA) is constructed first and then a TDFA is constructed, which requires two graph constructions whereas methods based on the positions NFA require only one construction step. Second, TDFA are transition-oriented which is not perfectly suitable for lexical analyzers since the tagged edges require sets of memory updates when a transition is made on an input symbol, which requires edge-annotated tabular representations of the DFA (i.e. encoding the δ transition function in tables) thereby hampering the performance. Third, a TDFA cannot be minimized by a DFA minimization algorithm such as Hopcroft’s method [14], because of the presence of tagged edges. In contrast, my proposed staDFA does not have these limitations, which is demonstrated in details on Chapter 4.

Ulya [16] proposed TDFA(1) instead of using original TDFA proposed by [15]. The author improved Laurikari’s algorithm by using one-symbol lookahead concept on original TDFA (i.e. called TDFA(0)). Results show that significant reduction of tag variables is obtained, thus reducing potential tag conflicts while performing the subexpressions matching. As a consequence, TDFA(1) is faster than the original TDFA(0). Also, this lookahead-aware TDFA(1) is smaller in size than the baseline TDFA. These TDFA(0) and TDFA(1) loosely resemble LR(0) and LR(1) parsers. Now, the interesting part is, we know in LR(1) an item $[A \rightarrow \alpha \cdot \beta, a]$ contains a lookahead terminal a, meaning α is already on top of the stack, expecting to see βa. Hence, for an item of the form $[A \rightarrow \alpha, a]$ the lookahead a is used to reduce $A \rightarrow \alpha$ if and only if the next input is a. Anyways, if $\beta \neq \epsilon$, then for the above form $[A \rightarrow \alpha \cdot \beta, a]$ lookahead has no effect.
Similarly, on $TDFA(1)$ when the next processing input symbol matches the one-symbol look-ahead, then the $TDFA(1)$ removed the transitions containing the tag variables and operations, which is supposed to have conflicts with the next tag variable and its operation in order to make the baseline $TDFA$ perform better and reduce its size. For an example, let’s assume we have a regular expression, $R = (b | bb | bbb | bbbb)^*$ and input string “bbbb”. Using $TDFA$ concept if we rewrite the regular expression, $R = (tag1 b | tag2 bb | tag3 bbb | tag4 bbbb)^*$ and then if we try to match it for the input string “bbbb” then, $tag4$ will give the extent of it and at the same time will give the result such that “bbb” of “bbbb” matched the extent of $tag3$, “bb” of “bbbb” matched the extent of $tag2$, and finally“b” of “bbbb” matched the extent of $tag1$. I believe that this crucial aspect is completely overlooked by the $TDFA(1)$ approach proposed in [16]. Thus, this may make the original concept of efficient subexpressions matching worse. Even though initially it appears that $TDFA(1)$ reduces the tag overheads introduced by the original $TDFA$ concept, but it is not in a real sense.

In this way one can make the original $TDFA$ faster and smaller in size, but losing the original principal of efficient subexpression matching. However, using the $staDFA$ matcher we can even resolve this tags overhead without losing its original principle, which is efficient subexpression matching. Since $staDFA$ matcher is state-based, unlike $TDFA(0)$ or $TDFA(1)$ which is transition-based, we can easily resolve the above tags conflict by resolving the store-transfer-accept conflicts within the states in $staDFA$ as explained in Section 4.3. Thus, the $staDFA$ Matcher ensures better performance than other existing approaches, such as $TDFA(0)$, $TDFA(1)$. Also, another big advantage of the $staDFA$ matcher is that same marker $t = 1 \in M[1 : ||R||]$ can be placed into several positions in RE.

In [41] Schwarz et al. proposed an algorithm to efficiently extract the full parse tree of an RE containing capture groups. In the traditional algorithm used in POSIX-compatible matching, it initially produces partial parse trees instead of full parse trees for the pattern specified by RE matching the input strings. This leads to a higher time and space complexity. Therefore, Schwarz et al. [41] proposed an algorithm that can efficiently generate the full parse trees for input strings matched by pattern specified by RE. This approach, provides better time and space complexity. Their solution is based on parsing the input strings matching the regular expression with capture groups into an abstract syntax tree (AST). Second, they transform the AST to a $TNFA$ proposed
in Laurikari [15] and complete all the steps specified in [15]. However, the proposed algorithm in Schwarz et al. [41] is only valid for RE with capture groups while having all the same limitations as Ville Laurikari [15].

Parsing input strings and generating parse trees by which we can tell which substrings matched with which sub-expression, is another approach. However, this parsing technique has one major problem which is ambiguity, as presented in [37, 38]. It is common to get two distinct parse trees for the same input strings pattern matching the sub-expression. Therefore, if we have an ambiguous RE which provides more than one parse trees matching the same input string pattern, then there are two common approaches that exist to perform disambiguation and which is presented by Angelo Borsotti et al. [37] in detail. One is generating parse tree based on POSIX [11] and another one is greedy [13]. However, most implementations of these approaches are buggy specifically all POSIX implementations. Therefore Martin Sulzmann et al. in [38] mainly worked on POSIX-based disambiguation on the Brzozowski’s regular expression derivatives in [6].

Disambiguation plays a crucial part to determine which substrings matched with which sub-expression. Hence, staDFA also does disambiguation, but not in the same manner presented in [11, 13, 37, 38]. Conflicts are resolved by giving the priorities over the combination of store-transfer-accept operations on marked sub-regular expression position matching the sub-strings in the accepted strings, which I describe in detail on Chapter 4. Thus, having this unique disambiguation technique, we can even match the longest leftmost/rightmost with fast/last matching criteria regardless of classical disambiguation techniques in [11, 13, 37, 38].

Michela and Patrick [5] proposed an extended finite automaton to efficiently support Perl-compatible regular expressions. They worked to support counting constraints and handling back-references in RE. To support the back-references in RE they used ad-hoc techniques to augment the corresponding NFA. Also, matching sub-strings in actual input strings do not reflect the captured parentheses perfectly within the main RE, which I explained with the help of an example in detail in next section. Another drawback of their approach is that they tried to support counting constraints and back-references by augmenting the NFA, whereas I did it based on staDFA which is also an augmented DFA while having fewer limitations.

In [22] Nakata et al. proposed an algorithm to the submatch problem by adding semantic rules to the RE and then converting them to equivalent DFA. However, this approach has several limitations.
One major problem is when the RE is ambiguous, their algorithm does not work properly for the efficient submatch problem. Another problem is that it can not handle the situations where more than one application of the same semantic rule should be stopped at a certain point. In addition, for a simple RE it may need to add several productions to represent the equivalent language, which is undesirable. In contrast, my proposed staDFA approach does not have such limitations while handling ambiguous markers.

S. Kumar et al. [17] presented limitations of traditional DFA based Network intrusion detection system (NIDS), where RE matching is the core of NIDS. However, the traditional DFA used in NIDS are suffering from inefficient partial matching signatures, and is thus incapable of efficiently keep the track of matching counts, which causes a potential security vulnerability. Therefore, to ensure security and efficient signatures matching one could use the staDFA as an application for the common known security threats and viruses.

I. Nakata [25] used string matching and repeated pattern matching even thought better forms of extended regular expression exists. The most difficult situations arise when we need to define the lexical syntax of the C programming language comments. However, they introduced a new special symbol called any-symbol • in normal regular expression to generalize the problems of pattern matching. Also, in TDFA the same any-symbol, • was used in [15] in Section 5.2 to search for matching substrings corresponding to a regular expression R. However, the interesting thing is that their complete work can be replaced by staDFA matcher without introducing any special symbol like any-symbol in RE. In staDFA matcher we do have the freedom to give the different prioritization technique over store-transfer-accept which is described in detail in Section 4.3. Thus, this leads to the different longest matching behaviors (e.g. either leftmost or rightmost), and in case of subexpressions repetitions can have the matching criteria such as the first or last substring matching. The staDFA matcher can easily be used to further extend the searching algorithm used in both [25, 27] to address the substrings pattern matching problems. Thus, staDFA ensures a better working solution approach than [25, 27].

To achieve efficient subexpressions matching for any RE, one can use the algorithms proposed in [28, 29], but preprocessing of the search-text [15] have to be performed, which is not possible in the context of lexical analyzers. Alternatively, preprocessing of regular grammars in [30, 31] have to be done before performing the actual subexpressions matching for any RE, in order to get an
expected linear time complexity [15]. Another, interesting aspect of using staDFA matcher is that it does not require any preprocessing of such techniques for the text to be searched while providing an expected (but not necessarily the worst-case) linear time complexity $O(|w| \cdot (n + k))$, where $|w|$ is the length of the input strings, n is $\|R\|$ the alphabetic length of R, and k is the fixed number of repetition operators in regular expression R.

Pedro Garca et al. in [35] proposed a modified algorithm which actually reduced the number of states in NFA representation of the equivalent regular expression by using both the concept of partial derivatives automaton proposed in [3] and follow automaton proposed in [33]. Unfortunately, it still has quadratic time complexity instead of preferably linear time as staDFA. Also, in [32], the authors introduced derivatives and partial derivatives of RE for submatching. All of these approaches in [3, 32, 35] use partial derivatives, thus avoiding the ϵ-transitions from the NFA. As a result, they must consider the $O(n^2)$ transitions unlike $O(n)$ transitions in Thompson’s NFA. Therefore, none of them can do better than $O(|w| \cdot n^2)$ which is quadratic time complexity instead of preferable linear time complexity. Also, [3, 32, 33, 35] are based on NFAs, whereas staDFA is completely DFA-based, thus providing the advantages of speed and determinism.

The most common DFA minimization technique is Hopcroft’s minimization algorithm in [14]. I propose a modified Hopcroft’s minimization algorithm by adjusting it to staDFA. The minimization technique has two steps. First, we remove all unnecessary store, transfer, and accept operations generated by the compilation function. Next we, apply Hopcroft’s minimization algorithm on the resultant staDFA. These two steps are described in detail in Chapter 4. Therefore, we can say that, this staDFA approach can provide a faster DFA based solution while having no storage complication.

In Chapter 4, I will present my proposed staDFA in detail. That includes, the construction of staDFA from the RE which can be ambiguous, the disambiguation technique, and a modified Hopcroft’s minimization algorithm compatible with my proposed algorithm on efficient sub-expression matching.
CHAPTER 4

STORE-TRANSFER-ACCEPT DFA

In this Chapter, I present the concept of *staDFA* in detail, including the construction of an *staDFA* from an *RE*. I will discuss ambiguity and *staDFA* conflict resolution for efficient subexpression matching, comparing and contrasting *tagged-RE* with *staDFA*. I will present a minimization technique for *staDFA*, and finally present some examples of real-world applications using *staDFA*.

4.1 *staDFA* Definition

This section defines *staDFA* and the marker positions store (*MPS*) used to match input.

4.1.1 Basic Definitions

Given a regular expression *R* accepting input string *w*, a *Store-Transfer-Accept DFA* (*staDFA*) is a *DFA* with commands *C* associated with states *s* ∈ *S* as defined as follows:

Definition 3. An *staDFA* is a 6-tuple *(S, Σ, δ, s₀, F, C)*, where

- *S* is a finite set of states,
- *Σ* is an alphabet defined over a finite set of symbols.
- δ: *S* × Σ → *S* is the transition function,
- *s₀* is the initial state,
- *F* is the set of accepting states,
- *C* is a set of commands *S_i* (store), *T_{i,j}* (transfer), and *A_t* (accept) for markers *t* = 1,...,*n* with bounded subscripts 0 ≤ *i* ≤ ||*R||, 0 ≤ *j* ≤ ||*R||.

Note that, the commands *C* of an *staDFA* are executed on the (*MPS*) by the *staDFA* matcher.
4.1.2 The Marker Positions Store

The MPS operations are kept separate from the actual staDFA states. The MPS operations are executed by the commands \(C \) associated with a state of a staDFA. More generally, the MPS consists of two arrays: an array of \(M[1 : n] \) size containing \(t = 1, \ldots, n \) finite set of markers that are used to define the sub-expression positions and/or their extent and an array \(m_i^t \) indexed by marker \(t \) and position \(i \). In practice this array \(m_i^t \) is quite sparse, meaning a tabular 2D array has many unused entries thus a compact data structure should be used similar to TNFA and TDFA tag maps. Note that \(t \leq n \leq ||R|| \) where \(||R|| \) is the alphabetic length of \(R \). Here, we assumed the linearized version \([3, 40]\) of regular expressions to determine positions. A marker \(t = 1, \ldots, n \) is a position that marks the sub-expression matching the sub-strings of the accepted input strings pattern. For example, substring \(\textsf{abb} \) on the accepted string \(w = \textsf{abbbcc} \) starting from 0, matches the sub-expression \(R_1 = \textsf{a}_1 \textsf{b}_2^* \) on \(RE \) \(R = \textsf{a}_1 \textsf{b}_2^* \textsf{b}_3 \textsf{c}_4^* \). Now, place marker \(t = 1 \) at address \(\textsf{b}_3 \) to identify the position. Hence, the marked RE is \(R = \textsf{a}_1 \textsf{b}_2^* \textsf{b}_3 / \textsf{c}_4^* \). At the end of the actual staDFA match algorithm, array \(M \) is returned. Therefore, we will see that \(M[1] = 3 \) is returned for the used marker \(t = 1 \) at address \(\textsf{b}_3 \) on \(RE \) \(R \), which accurately identified the positions and extent of subexpression \(R_1 \).

The MPS holds positions \(M \) indexed by marker \(t \). To mark positions in RE, the following meta operators are used:

- \(/R_1 \) refers to mark-first which are positions in \(\text{firstpos}(R_1) \) with marker \(t \).
- \(R_1 \)\(/ \) refers to mark-last which are positions in \(\text{lastpos}(R_1) \) with marker \(t \).
- \(/R_1 \) refers to leftmost-first marker of \(R_1 \) with marker \(t \). More precisely, it is used to match the “first occurrence” of the left-most captured sub-expression \(R_1 \).
- \(R_1 \)\(/ \) refers to leftmost-last marker of \(R_1 \) with marker \(t \). Similarly, it is used to match the “last occurrence” of the rightmost captured sub-expression \(R_1 \).

Note that if we parse the accepted input strings based on POSIX-mode, then meta operator markers associated with MPS operations will be prefixed as longest. Otherwise if we do parsing based on Perl-compatible mode, then will be left off as it is.

When states \(s \in S \) in staDFA switch from one state to another state during string matching, we need to update the MPS associated with each marker \(t \). To update the MPS, each time a command \(C \) is executed to execute a store \(S \), transfer \(T \), or accept \(A \) commands defined as follows:
Definition 4. The basic Marker Positions Store (MPS) update operation consists of three operations such as store command S^t_i, transfer command $T^t_{i,j}$ and accept command A^t_i, where

- the store command S^t_i executes $m^t_i \leftarrow k$, which implies that each marker t stores the current input string position k into the MPS memory cell m^t_i at address location i,
- the transfer command $T^t_{i,j}$ executes $m^t_i \leftarrow m^t_j$, which implies that each marker t transfers the content of MPS memory cell m^t_j from the address location j to MPS memory cell m^t_i at address location i,
- the accept command A^t_i executes $M[t] \leftarrow m^t_i$, which implies that each marker t assigns the content of MPS memory cell m^t_i from address location i to Marker Positions Store (MPS) $M[t]$.

Definition 3 and the working principle of MPS provides the basic staDFA concept. In the next section I will demonstrate how a staDFA can be automatically constructed from a regular expression.

4.2 Converting a Regular Expression to an staDFA

An staDFA is constructed using the well-known subset construction method [1, 2, 21]. The staDFA construction introduces commands in states which are generated by a transition compilation function denoted by C and initial state compilation function denoted by C_0.

Definition 5. Given a regular expression R over alphabet Σ and the set of marked positions $M^t(R)$ in R with markers $t = 1, \ldots, n$, the staDFA $(R) = \langle S, \Sigma, \delta, s_0, F, C \rangle$ of the regular expression R is the staDFA defined by:

- The set of states $S = \{ s_0 \to^* s : s \}$ is generated by the reflexive transitive closure \to^* of the transition relations $s_i \to_a s_j$ from source state s_i to target state s_j on symbols $a \in \Sigma$ defined by $\delta(s_i, a) = s_j$ of the staDFA (R).
- The transition function of the staDFA (R) is defined by:

$$\delta(s, a) = \bigcup_{a_i \in s_i, (a_i, b_j) \in \text{followpos}(R)} C(a_i, b_j),$$

where the transition compilation function $C(a_i, b_j)$ is defined by:

$$C(a_i, b_j) = \begin{cases} T(b_j) \cup \{ b^t_j, T^t_{i,h} \} & \text{if } a_i = a^t_i \text{ for some } t \text{ and } h \\ T(b_j) & \text{if } T(b_j) \neq \emptyset \\ \{ b_j \} & \text{otherwise}; \end{cases}$$
where the target position b_j is compiled with

$$T(b_j) = \bigcup_{t' \in T, b_j \in M'(R)} \{b_{j,t' \in T,b_j \in M(t')}, S_{t' i,j}^t\}$$

with $T = \{1, \ldots, n\}$ the set of markers used in the regular expression. Note that $a_i \in s, (a_i, b_j) \in \text{followpos}(R)$ in the definition of δ means that we take positions a_i (including marked positions $a_{i,t}$) that match symbol a only, thus ignoring all commands in s. Further note that $a_i = a_{i,t}$ in the definition of \mathcal{C} means that the source position a_i is marked as $a_{i,t}$.

When the target position b_j is the special accepting position A, $\mathcal{C}(a_i, A)$ translates A with $T(A)$ to an accept operation A^t_0 for each marker $t \in T$, if $A \in M'(R)$ or if a_i is marked as $a_{i,t}$.

- The initial state of the $\text{staDFA}(R)$ is defined by:

$$s_0 = \bigcup_{a_i \in \text{firstpos}(R)} \mathcal{C}_0(a_i),$$

where the initial state compilation function $\mathcal{C}_0(a_i)$ is defined by:

$$\mathcal{C}_0(a_i) = \begin{cases} I(a_i) & \text{if } I(a_i) \neq \emptyset \\ \{a_i\} & \text{otherwise} \end{cases}$$

where the initial position a_i is compiled with

$$I(a_i) = \bigcup_{t' \in T, a_i \in M'(R)} \{a_{i,t' \in T,a_i \in M(t')}, T_{t,i,j}^t, A_{t,i,j}^t\}$$

When a position a_i is the special accepting position A, $\mathcal{C}_0(A)$ translates A to an accept operation A^t_0 for each marker $t \in T$ with $T = \{1, \ldots, n\}$, if $A \in M'(R)$.

- $F = \{s \in S : A \in s \lor A^t_0 \in s\}$ is the set of accepting states, which are states that contain A or a marked A^t_0 for any marker t and subscript i.

- $\mathcal{C}(s) = \{S_{t,i}^t \in s\} \cup \{T_{i,j}^t \in s\} \cup \{A_{t,i}^t \in s\}$ is the set of commands of a given state s.

We now prove that $\text{staDFA}(R)$ construction terminates.

Theorem 1. Given a regular expression R and a finite number n of markers $t = 1, \ldots, n$, $\text{staDFA}(R)$ terminates with a finite set of states.

Proof. By Definition 5, every state $s \in S$ of the $\text{staDFA}(R)$ is a set of marked or unmarked positions and commands. States are uniquely identified by the content of their sets. Every subscript index i and j in marked positions a_i and commands $S_{t,i}^t, T_{i,j}^t$ and $A_{t,i}^t$ are bounded from below by 0 (or 1 in the case of $T_{i,0}^t$) and bounded from above by $||R||$. This gives a finite number of possibilities for the content of the state’s sets, and therefore $\text{staDFA}(R)$ terminates with a finite set of states S.

18
As a consequence of Theorem 1, the MPS memory used in Algorithm 1 staDFA-Match has a finite number of memory cells for markers. In the worst case, the MPS has a full $n \times ||R||$ matrix of memory cells in use for n markers. In practice however, there will be far fewer matrix cells in use when staDFA-Match executes, suggesting that a sparse representation such as a hash map should be used that is more space friendly.

The number of states of an staDFA(R) may be greater than the number of states of a DFA(R), given $n > 0$ markers. For $n = 0$ markers, the number of states is the same as expected.

Now that we can construct an staDFA(R) in a finite amount of time and space, the question is whether or not it accepts strings matching the regular expression R.

Theorem 2. The staDFA(R) of a regular expression R accepts strings matching R.

Proof. Given that DFA(R) defined in Definition 2 accepts strings matching R, we prove that staDFA(R) accepts strings matching R by showing that the states generated by the transition functions of the two DFAs are semantically equivalent.

Two states s and s' are semantically equivalent $s \equiv s'$, but not necessarily structurally identical, if states s and s' contain the same positions a_i that are either marked (as in a_i,t_j) or unmarked. Any S^t_i and $T^t_{i,j}$ commands in states s or s' are irrelevant with respect to their semantic equivalence.

Starting by proving the base case s_0, we then prove that δ of the staDFA(R) generates semantically equivalent states to the δ' of the DFA(R):

- Let $s_0 = \bigcup_{a_i \in \text{firstpos}(R)} C_0(a_i)$ be the initial state of staDFA(R) by Definition 4 and let $s'_0 = \text{firstpos}(R)$ be the initial state of DFA(R) by Definition 2. Then $s_0 \equiv s'_0$, since the initial state compilation function $C_0(a_i)$ returns $\{a_i\}$ for all $a_i \in \text{firstpos}(R)$, together with (semantically irrelevant) commands $T^t_{i,0}$.

- Given the transition function δ of the staDFA(R) and the transition function δ' of the DFA(R), for any state s we have that $\delta(s, a) \equiv \delta'(s, a)$, since $\delta'(s, a) = \bigcup_{a_i \in s} \{ (a_i, b_j) \in \text{followpos}(R) : b_j \}$ and the transition compilation function $C(a_i, b_j)$ in $\delta(s, a) = \bigcup_{a_i \in s, (a_i, b_j) \in \text{followpos}(R)} C(a_i, b_j)$ returns $\{b_j\}$ or a set of marked $b^t_{j,i}$ for all $a_i \in s$ and $(a_i, b_j) \in \text{followpos}(R)$, together with (semantically irrelevant) commands S^t_i and $T^t_{i,0}$.

Observe that the accepting states of staDFA(R) are semantically equivalent to the accepting states of DFA(R), since both accepting states contain the accepting position A or a marked accepting position A^t_i. Since the initial states and states generated by δ of the staDFA(R) are semantically
By Theorems 1 and 2, an staDFA(R) can be constructed for a given regular expression R with n markers in a finite amount of time and space that accepts strings matching R. See for example the staDFA(R) constructed for $(a_1 \mid a_2 b_3)^* b_4 a_5$ with b_4 marked $t = 1$, as depicted in Fig. 4.1.

4.2.1 Identifying Subexpression Positions

To identify the particular sub-expression R_1 within the RE R, we have to mark the sub-expression R_1 using the marker meta operators defined in Section 4.1.2. However, for a simple marker t on RE the semantic meaning of these marker meta operators can be defined by a marked positions set $M^t(R)$ as follows:

$$M^t(R) = \begin{cases} M^t(R_1) \cup \text{firstpos}(R_1) & \text{if } R = t R_1 \\ M^t(R_1) \cup \text{lastpos}(R_1) & \text{if } R = R_1 \setminus t \\ M^t(R_1) & \text{if } R = (R_1)^* \\ M^t(R_1) \cup M^t(R_2) & \text{if } R = R_1 R_2 \\ M^t(R_1) \cup M^t(R_2) & \text{if } R = R_1 \mid R_2 \\ \emptyset & \text{otherwise} \end{cases}$$

Consider for example $RE = 1/(a_1 b_2 c_3)^* a_4$. Here, this RE contains a sub-expression $R_1 = 1/(a_1 b_2 c_3)^* a_4$ known as capturing group, too. Now, using marked positions set, we get $M^1(R_1) = \text{firstpos}(a_1 b_2 c_3) = \{a_1\}$ and $M^2(R_1) = \text{lastpos}(a_1 b_2 c_3) = \{c_3\}$. However, in some cases sub-expression R_1 can be ambiguous. For example, if we slightly change the above sub-expression $R_1 = 1/(a_1 \mid a_2 c_3)^* a_4$, then it becomes ambiguous and at this point we can have staDFA(R_1) conflicts. So, extra care has to be taken, which we will describe in detail in Section 4.3. Actually, for this special case we introduced two additional meta operators called as “leftmost-first marker” $1/ R_1$ and “leftmost-last marker” $R_1 \setminus 1$ for disambiguating markers with conflict resolution policies described in detail in Section 4.3. Therefore, by disambiguating markers with conflict resolution policies, the non-ambiguous representation of the above ambiguous sub-expression R_1 will be $R_1 =$
That is as follows:

\[
M^t(R_1) = \begin{cases}
 \text{firstpos}(a_1) = a_1 & \text{for marker } t = 1 \text{ is leftmost-first} \\
 \text{firstpos}(a_2 c_3) = a_2 & \text{for marker } t = 1 \text{ is leftmost-first} \\
 \text{lastpos}(a_1) = a_1 & \text{for marker } t = 2 \text{ is leftmost-last} \\
 \text{lastpos}(a_2 c_3) = c_3 & \text{for marker } t = 2 \text{ is leftmost-last}
\end{cases}
\]

However, we have already learned how to identify sub-expression positions effectively using marker \(t \). So, in the next section we are going to present the complete staDFA matcher algorithm to do the efficient sub-expression matching.

4.2.2 staDFA Match

Algorithm 1 staDFA-Match is a matching algorithm. In addition to the subset construction algorithm, we added a command function \(C \) which adds commands \(S_i^t \) (store), \(T_{i,j}^t \) (transfer), and \(A_i^t \) (accept) to states, for markers \(t = 1, \ldots, n \) with bounded subscripts \(0 \leq i \leq ||R||, 0 \leq j \leq ||R|| \), where \(||R|| \) refers to the alphabetic length of \(R \). In Algorithm 1, line 4 to 16 traverse the complete staDFA generated by the subset construction algorithm which includes \(\text{followpos}, \text{firstpost}, \text{etc} \).

The staDFA Matcher efficiently and effectively matches strings \(w_i \in w[0 : \ell - 1] \), where \(w_i \) directly refers to the number of matched sub-expression \(R_i \) within the RE \(R \) for the complete accepted input string \(w \).

The expected (but not worst case) upper bound running time complexity of Algorithm 1 (i.e. staDFA Match) is \(O(|w| \cdot (n + k)) \), where \(|w| \) is the length of input strings, \(n \) is the constant \(||R|| \) refers to the alphabetic length of \(R \), and \(k \) refers to the number of repetition operators in RE \(R \).

4.2.3 Subexpression Matching with an staDFA

Now, at this point we know how to identify subexpression positions, and can describe staDFA matcher algorithm. Let’s look at a real example and see how our proposed staDFA matcher efficiently and effectively matches the sub-expression positions and tells its extent on the accepted input string \(w \). Consider, \(R = (a_1 | a_2 b_3)^* \frac{1}{b_4} a_5 \) where, sub-expression \(R_1 = (a_1 | a_2 b_3)^* \) and its extent is at \(b_4 a_5 \) in the RE \(R \). Now, for the simple accepted input strings such as “aba”, and “abba” we will demonstrate, how an staDFA matcher matches the sub-expression \(R_1 \) and tells its extent to \(b_4 a_5 \) in the RE \(R \). Fig. 4.1 shows the staDFA representation of the above RE \(R \).

Table 4.1 shows the step by step processing of input strings symbol. At the same time, showing the MPS operations associated with states of staDFA matcher. For example, on accepted input
Algorithm 1: staDFA Match

input : staDFA $\langle S, \Sigma, \delta, s_0, F, C \rangle$, $||R||$ markers, and string $w \in \Sigma^*$

output: $\ell \neq -1$ when sub-string $w_i \in w[0 : \ell - 1]$ matches sub-expression with marker positions $M[1 : ||R||]$, Otherwise $\ell = -1$ means w_i does not match the sub-expression

1. $\ell \leftarrow -1$
2. $k \leftarrow 0$
3. $s \leftarrow s_0$
4. while $s \neq \emptyset$ do
 5. forall $S_i^t \in C$ do $m_i^t \leftarrow k$
 6. forall $T_{i,j}^t \in C$ do $m_i^t \leftarrow m_j^t$
 7. if $s \in F$ then
 8. $\ell \leftarrow k$
 9. $M[1 : ||R||] \leftarrow -1$
 10. forall $A_i^t \in C$ do $M[t] \leftarrow m_i^t$
 11. if $k \geq |w|$ then
 12. $s \leftarrow \emptyset$
 13. else
 14. $a \leftarrow w[k]$
 15. $s \leftarrow \delta(s, a)$
 16. $k \leftarrow k + 1$

strings “abba”, the staDFA matcher returns the value for marker $t_1 = 2$. This implies that it correctly identified the sub-expression R_1 positions and it’s extent to $b_4 a_5$ on accepted input strings “abba” starting from 0.

4.3 Ambiguity and staDFA Conflicts

For example, the regular expression $R = (a_1 | a_2 b_3)^* b_4$ is ambiguous. Because, it contains the ambiguous sub-expression $R_1 = (a_1 | a_2 b_3)^*$, which also contains the repetition quantifier. For example, if we have an accepted input string like “ababab” then for identifying this capturing group sub-expression R_1 positions in repetitions using only one marker $t = 1$ will produce incorrect result. This is because the presence of ambiguity in RE and in repetitions this capturing group sub-expression R_1 positions may match with the first or last substrings, which results in staDFA conflicts on the overall accepted input string “ababab”. Hence, the presence of this kind of ambiguities in
Table 4.1: Steps of sub-expression $R_1 = (a_1 | a_2 b_3)^*$ matching and its extent to position b_4 marked using marker $t = 1$ with the staDFA matcher shown in Fig. 4.1 on input strings “aba” and “abba” for $RE = (a_1 | a_2 b_3)^*/b_4 a_5$.

<table>
<thead>
<tr>
<th>k</th>
<th>$w[k]$</th>
<th>State s</th>
<th>Commands C</th>
<th>MPS Updates</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>s_0</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>s_1</td>
<td>${S_1^1}$</td>
<td>$m_1^1 \leftarrow k$ ($= 1$)</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>s_3</td>
<td>${S_3^1, T_{4,1}^1}$</td>
<td>$m_3^1 \leftarrow k$ ($= 2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$m_4^1 \leftarrow m_1^1$ ($= 1$)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>s_5</td>
<td>${S_1^1, T_{5,4}^1, A_5^1}$</td>
<td>$m_5^1 \leftarrow w[k] = \emptyset$ ($= -1$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$m_5^1 \leftarrow m_4^1$ ($= 1$)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>accept $M[1] \leftarrow m_5^1$ ($= 1$)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1: Steps of sub-expression $R_1 = (a_1 | a_2 b_3)^*$ matching and its extent to position b_4 marked using marker $t = 1$ with the staDFA matcher shown in Fig. 4.1 on input strings “aba” and “abba” for $RE = (a_1 | a_2 b_3)^*/b_4 a_5$.

$RE = (a_1 | a_2 b_3)^*/b_4 a_5$, could be leading us to have the following staDFA conflicts on the state $s \in S$ of an staDFA matcher:

Definition 6. Ambiguities in staDFA

- state $s \in S$ has a store-transfer conflict, when both $S_i^1 \in C$ and $T_{j,k}^1 \in C$ for the same address.
location \(i \) tries to save values at the same time on the same MPS memory cell represented by the marker \(t \).

- **state** \(s \in S \) **has a transfer-transfer conflict**, when both \(T_{i,j}^t \in \mathbb{C} \) and \(T_{i,h}^t \in \mathbb{C} \) such that \(j \neq h \), tries to transfer values in the same MPS memory cell represented by the marker \(t \) for the same address location \(i \).

- **state** \(s \in F \), **has an accept-accept conflict**, when both \(A_i^t \in \mathbb{C} \) and \(A_j^t \in \mathbb{C} \) such that \(i \neq j \), tries to set the final value on the MPS memory cell for the same marker \(t \).

To avoid **staDFA** conflicts in each state \(s \in S \), we must have at most one \(S_i^t \) (store), one \(T_{i,j}^t \) (transfer) and one \(A_i^t \) (accept) commands associated with the same marker \(t \) and index \(i \). Hence, by imposing following **staDFA** conflict resolution policy, we standardized our proposed **staDFA** Methods:

Definition 7. Removing Disambiguations in **staDFA**

- **resolving store-transfer conflicts**, among \(S_i^t \) and \(T_{i,j}^t \) for marker \(t \) with identical subscripts \(i \) by keeping the transfer \(T_{i,j}^t \) while removing the store \(S_i^t \),

- **resolving transfer-transfer conflicts**, among \(T_{i,j}^t \) and \(T_{i,h}^t \) for markers \(t \) with identical subscripts \(i \) by keeping the transfer \(T_{i,j}^t \) while removing all other transfers \(T_{i,h}^t \) such that \(h > j \), and

- **resolving accept-accept conflicts**, among \(A_i^t \) and \(A_h^t \) for marker \(t \) by keeping the accept \(A_i^t \) while removing all other accepts \(A_h^t \) such that \(h > i \).

Now, after adopting above conflicts resolution policy we will have the conflict-free **staDFA** Match which can effectively and efficiently match the *sub-expression* positions and its extent. More specifically, the *sub-expression*, which is not only limited to ambiguousness, but can also have repetition quantifiers, backreferences, capturing groups, and etc. Note that the above conflict resolution will result the longest left-most first match. If we look for longest right-most match then we just simply need to flip the above choices. For example \(R = \frac{1}{2} (a_1 | a_2 b_3)^* b_4 \), where sub-expression \(R_1 = \frac{1}{2} (a_1 | a_2 b_3)^* b_4 \) is marked by using markers \(t_1 \) and \(t_2 \), respectively.

Fig. 4.2 shows the **staDFA** representation of the above **RE** \(R \) and Table 4.2 shows the step by step processing of input strings symbol. At the same time, Table 4.2 shows the MPS operations associated with states of the **staDFA** matcher. For example, on the accepted input string “ababab”,

24
Table 4.2: Steps of sub-expression $R_1 = \frac{1}{f} (a_1 \mid a_2 b_3)^* R_2$ matching by using markers t_1 and t_2 and its extent to position b_4 with the staDFA matcher shown in Fig. 4.2 on input strings “ababab” for $RE R = \frac{1}{f} (a_1 \mid a_2 b_3)^* R_2 b_4$

<table>
<thead>
<tr>
<th>k</th>
<th>$w[k]$</th>
<th>State s</th>
<th>Commands C</th>
<th>MPS Updates</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>s_0</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>s_1</td>
<td>${S_2^1, T_{1,0}^1, T_{2,0}^1, T_{1,0}^2}$</td>
<td>$m_2^k \leftarrow k$ (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_1^0 \leftarrow m_0^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2^0 \leftarrow m_0^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2^1 \leftarrow m_0^0$ (0)</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>s_4</td>
<td>${T_{3,2}^1, T_{4,1}^1, T_{3,2}^2, T_{4,1}^2, A_{1,1}^1, A_{1,1}^2}$</td>
<td>$m_1^0 \leftarrow m_2^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_1^1 \leftarrow m_2^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2^0 \leftarrow m_2^0$ (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2^1 \leftarrow m_2^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>accept $M[1] \leftarrow m_2^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>accept $M[2] \leftarrow m_2^0$ (1)</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>s_5</td>
<td>${T_{1,3}^1, T_{2,3}^2, T_{1,3}^2, T_{2,3}^2}$</td>
<td>$m_1^0 \leftarrow m_2^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_1^1 \leftarrow m_2^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2^0 \leftarrow m_2^0$ (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2^1 \leftarrow m_2^0$ (1)</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>s_4</td>
<td>${T_{3,2}^1, T_{4,1}^1, T_{3,2}^2, T_{4,1}^2, A_{1,1}^1, A_{1,1}^2}$</td>
<td>$m_1^0 \leftarrow m_2^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_1^1 \leftarrow m_2^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2^0 \leftarrow m_2^0$ (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2^1 \leftarrow m_2^0$ (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>accept $M[1] \leftarrow m_2^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>accept $M[1] \leftarrow m_2^0$ (1)</td>
</tr>
<tr>
<td>5</td>
<td>b</td>
<td>s_5</td>
<td>${T_{1,3}^1, T_{2,3}^2, T_{1,3}^2, T_{2,3}^2}$</td>
<td>$m_1^0 \leftarrow m_2^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_1^1 \leftarrow m_2^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2^0 \leftarrow m_2^0$ (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2^1 \leftarrow m_2^0$ (1)</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>s_4</td>
<td>${T_{3,2}^1, T_{4,1}^1, T_{3,2}^2, T_{4,1}^2, A_{1,1}^1, A_{1,1}^2}$</td>
<td>$m_1^0 \leftarrow m_2^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_1^1 \leftarrow m_2^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2^0 \leftarrow m_2^0$ (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2^1 \leftarrow m_2^0$ (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>accept $M[1] \leftarrow m_2^0$ (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>accept $M[1] \leftarrow m_2^0$ (1)</td>
</tr>
</tbody>
</table>

25
the staDFA matcher returns the value for marker \(t_1 = 0 \) and marker \(t_2 = 1 \) which on MPS represented as \(M[1 : 0, 2 : 1] \). This implies that it correctly identified the sub-expression \(R_1 \) positions and it’s extent to \(b_4 \) on accepted input strings “ababab” starting from 0.

However, one more important thing is that in case of repetitions of sub-expression, it can match the first or last sub-strings \(w_i \in w[0 : \ell - 1] \). For example, if we examine Table 4.2, we see that sub-expression \(R_1 = \frac{1}{\ell} (a_1 | a_2 b_3)^* R_2 \) in repetitions (i.e. capturing groups) matches the first sub-strings \(w_i \in w[0 : \ell - 1] \) instead of last. Therefore, if we are interested in finding the last matches of sub-expression positions in repetitions then, we have to make a minor change to our proposed staDFA matcher Algorithm 1. The change is simple which is changing the lines 5 and 6 of Algorithm 1 to:

5. \(\text{forall } S_i^l \in \mathcal{C} \text{ do } m_i^l \leftarrow k - 1; \)
6. \(\text{forall } S_i^l \in \mathcal{C} \text{ do } m_i^l \leftarrow k; \)
7. \(\text{forall } T_i^{l,j} \in \mathcal{C} \text{ do } m_i^l \leftarrow m_i^l; \)

Actually, to get the last match we added a new compilation command function represented by \(\hat{\mathcal{C}} \) which executes a \(\tilde{S}_i^l \) command called a delayed store defined by:

- \(\tilde{S}_i^l \) executes \(m_i^l \leftarrow k - 1 \), storing the previous position \(k - 1 \) of the input string into the MPS memory cell \(m_i^l \) of marker \(t \) at address location \(i \).
To facilitate this delayed store, the transition compilation function C is changed and renamed to \bar{C} as follows:

$$\bar{C}(a_i, b_j) = \begin{cases}
\bar{S}(a_i) \cup \bar{T}(b_j) \cup \{b_{j^t_i}, T_{i,h}^t\} & \text{if } a_i = a_{j^t_i} \text{ for some } t \text{ and } h \\
\bar{T}(b_j) & \text{if } \bar{T}(b_j) \neq \emptyset \\
\{b_j\} & \text{otherwise,}
\end{cases}$$

where the source position a_i is compiled with

$$\bar{S}(a_i) = \{t' \in T, a_i \in M^t_R : \bar{S}^t_i\},$$

and where the target position b_j is compiled with

$$\bar{T}(b_j) = \{t' \in T, b_j \in M^t_R : b_{j^t}\},$$

where $T = \{1, \ldots, n\}$ is the set of n markers.

Note that it also implies that a delayed store \bar{S}^t_i command must be executed before the transfer $T_{i,j}^t$ command in Algorithm 1 staDFA as stores are delayed, which can be easily done by resolving store-transfer conflicts defined in Definition 6. That is, in case of store-transfer conflicts we need to prioritize a store command over a transfer command. Now, by having these simple change on staDFA Match, we can get the last occurrence of RE positions matching the sub-strings on the accepted input strings. Again, let’s consider the previous ambiguous RE $R = \frac{1}{f}(a_1 | a_2 b_3)^* \frac{2}{R} b_4$, where sub-expression $R_1 = \frac{1}{f}(a_1 | a_2 b_3)^* \frac{2}{R}$ is marked by using markers t_1 and t_2, respectively.

Fig. 4.3 shows the staDFA representation of the above RE R which matches the last occurrence of sub-expression R_1 positions matching the sub-strings $w_i \in w[0 : \ell - 1]$ on the accepted input strings. Also, Table 4.3 shows the step by step processing of input strings symbol. At the same time, Table 4.3 shows the MPS operations associated with states of staDFA matcher. For example, on the accepted input string “ababab”, the staDFA matcher returns the value for marker $t_1 = 4$ and marker $t_2 = 4$ which on MPS is represented as $M[1 : 4, 2 : 4]$. This implies that it correctly identified the last occurrence of sub-expression R_1 positions and it’s extent to b_4 on accepted input strings “ababab” starting from 0. Therefore, we can say that by having these user-defined/flexible compilation command functions such as C and \bar{C} along with these STA conflicts resolution policy on our proposed staDFA Matcher algorithm, we can achieve any type of matching policy (i.e. first, last, etc.).
Table 4.3: Steps of the last occurrence of sub-expression $R_1 = \frac{1}{f} (a_1 | a_2 b_3)^{*} \frac{1}{l} b_4$ matching by using markers t_1 and t_2 and its extent to position b_4 with the staDFA matcher shown in Fig. 4.3 on input strings “ababab” for $RE R = \frac{1}{f} (a_1 | a_2 b_3)^{*} \frac{1}{l} b_4$

<table>
<thead>
<tr>
<th>k</th>
<th>$w[k]$</th>
<th>State s</th>
<th>Commands C</th>
<th>MPS Updates</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>s_0</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>s_1</td>
<td>${S_1^1, S_2^1, S_1^2}$</td>
<td>$m_1 \leftarrow k - 1$ ($= 0$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2 \leftarrow k - 1$ ($= 0$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_3 \leftarrow k - 1$ ($= 0$)</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>s_4</td>
<td>${S_3^1, T_{3,1}, T_{4,1}, T_{4,2}, A_4^1, A_4^2}$</td>
<td>$m_2 \leftarrow k - 1$ ($= 1$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_1 \leftarrow m_2$ ($= 0$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_1 \leftarrow m_1$ ($= 0$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_1 \leftarrow m_1$ ($= 0$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2 \leftarrow m_2$ ($= 0$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>accept $M[1] \leftarrow m_4$ ($= 0$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>accept $M[2] \leftarrow m_5$ ($= 0$)</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>s_5</td>
<td>${S_1^1, S_2^1, S_1^2, T_{2,3}^2}$</td>
<td>$m_1 \leftarrow k - 1$ ($= 2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2 \leftarrow k - 1$ ($= 2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2 \leftarrow k - 1$ ($= 2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_3 \leftarrow m_3$ ($= 1$)</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>s_4</td>
<td>${S_3^1, T_{3,2}, T_{4,1}, T_{4,2}, A_4^1, A_4^2}$</td>
<td>$m_2 \leftarrow k - 1$ ($= 3$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_1 \leftarrow m_2$ ($= 2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_1 \leftarrow m_1$ ($= 2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_1 \leftarrow m_1$ ($= 2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>accept $M[1] \leftarrow m_4$ ($= 2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>accept $M[2] \leftarrow m_5$ ($= 2$)</td>
</tr>
<tr>
<td>5</td>
<td>b</td>
<td>s_5</td>
<td>${S_1^1, S_2^1, S_1^2, T_{2,3}^2}$</td>
<td>$m_1 \leftarrow k - 1$ ($= 4$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2 \leftarrow k - 1$ ($= 4$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_2 \leftarrow k - 1$ ($= 4$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_3 \leftarrow m_3$ ($= 3$)</td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>s_4</td>
<td>${S_3^1, T_{3,2}, T_{4,1}, T_{4,2}, A_4^1, A_4^2}$</td>
<td>$m_2 \leftarrow k - 1$ ($= 5$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_1 \leftarrow m_2$ ($= 4$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_1 \leftarrow m_1$ ($= 4$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m_1 \leftarrow m_1$ ($= 4$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>accept $M[1] \leftarrow m_4$ ($= 4$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>accept $M[2] \leftarrow m_5$ ($= 4$)</td>
</tr>
</tbody>
</table>
4.4 Tagged Regular Expressions and staDFA

In this section, I will show how a tagged RE (i.e. TNFA-TDFA) [15] is integrated in staDFA. Since tags t_x used in [15] refers to matches of ε, hence it can easily be incorporated in our proposed staDFAs. Because, the staDFA Matcher accepts $RE R$ which can contain ε as defined in Section 2.1. Thus, allowing these tags t_x in the followpos, firstpos, and lastpos set of $RE R$. For example, tagged edge transitions (a_i, b_j) in the followpos set refers to mark positions b_j in staDFA states. Therefore, integrating the tagged RE (i.e. TNFA-TDFA) proposed in [15] on staDFAs is straightforward.

To compile the staDFA states, the modified transition compilation function \hat{C} uses a modified function $\hat{T}(a_i, b_j)$ to recognize tags as follows:

$$\hat{C}(a_i, b_j) = \begin{cases} \hat{T}(a_i, b_j) \cup \{ b_{i^x, t_{i,h}} \} & \text{if } a_i = a_{i^x} \text{ for some tag } t_x \text{ and some } h \\ \hat{T}(a_i, b_j) & \text{if } \hat{T}(a_i, b_j) \neq \emptyset \\ \{ b_j \} & \text{otherwise} \end{cases}$$

where edge (a_i, b_j) is compiled with

$$\hat{T}(a_i, b_j) = \bigcup_{(a_i, t_x) \in \text{followpos}(R), (t_x, b_j) \in \text{followpos}(R)} \{ b_{i^x, t_x} \}$$

The modified initial state compilation function \hat{C}_0 uses a modified function $\hat{I}(a_i)$ as follows:

$$\hat{C}_0(a_i) = \begin{cases} \hat{I}(a_i) & \text{if } \hat{I}(a_i) \neq \emptyset \\ \{ a_i \} & \text{otherwise} \end{cases}$$

Figure 4.3: The leftmost-last staDFA for $RE R = \frac{1}{3} (a_1 \mid a_2 b_3)^* \frac{2}{3} b_4$
where
\[\hat{I}(a_i) = \{ t_x \in \text{firstpos}(R), (t_x, a_i) \in \text{followpos}(R) : a_i \neq \} \]

In other words, tagged edges \((a_i, b_j)\) in the \text{followpos}(R) set are used to mark positions \(b_j\) in \text{staDFA} states. Otherwise, tags are simply ignored. Conflicts in \text{staDFA} states are subsequently resolved for leftmost-first matching as described in Section 4.3. However, leftmost-last matching poses a problem with tags, because the delayed store commands required cannot be associated with states based on the tagging of transitions alone.

After conflict resolution we obtain an \text{staDFA} without tagged transitions but with marked states. Because, \text{staDFA} construction is easily adaptable to tagged regular expressions, \text{staDFAs} subsume \text{TDFAs}. However, one thing we have to keep in mind, that is in the case of leftmost-last matching using the tagging of transitions alone is not sufficient. In other words, extra care has to be taken on delayed store \(S_t\) command.

While \text{staDFA} matcher has several advantages over \text{T DFA}, \text{T DFA} has one advantage over \text{staDFA} Matcher. This particular case is, tags \(t_x\) can be placed on \(RE\) which itself even contains a \(\varepsilon\). For example, \(RE \ R = (t_1 \ | \ a_1) \ b_2\) where sub-expression \(R_1 = (t_1 \ | \ a_1)\) itself contains a \(\varepsilon\) position marked by marker \(t_1\). In this case, for an accepted input string such as \(b\) Marker Positions Store (\(MPS\)) returns \(M[1] = 0\) means matches \(t_1\) but if we have the accepted input string like \(ab\), then \(MPS\) returns \(M[1] = -1\) means that did not match the \(t_1\).

4.5 Minimizing an \text{staDFA}

The deterministic finite automata (\(DFA\)) minimization is an important aspect, as it ensures the minimal storage requirements while keeping the overall pattern matching the same. Minimization of an \text{staDFA} is performed in two steps:

In the first step, we remove the unnecessary commands operations in the compilation functions \(C\) and \(\bar{C}\) associated with each state \(s \in S\) of an \text{staDFA}. More specifically, during the construction of an \text{staDFA} process at each state \(s \in S\), we can have commands like idempotent transfers \(T_t^{i,i}\), useless accept marked positions \(A_t^i\), and etc. Thus, by removing these worthless commands generated by the compilation functions such as \(C\) and \(\bar{C}\) associated with each state \(s \in S\) of an \text{staDFA}, we could have used less memory which refers to having less space complexity, too. However, we have to be very careful about removing these useless commands. Because removing of essential commands
could lead us to have significant changes on staDFA conflict resolution policies, which in turn could result in mixed leftmost/rightmost behaviors.

In the second step, I have chosen a well-known DFA minimization algorithm known as Hopcroft’s minimization proposed in [14]. This minimization algorithm is perfect for the staDFA Matcher whereas is imperfect/inapplicable to the TNFA-TDFA in [15]. Because, command operations are associated with states \(s \in S \) of an staDFA Match which means used markers \(t_i \) are state-based. Whereas the used tags \(t_x \) on TNFA-TDFA in [15] are edge-based. Therefore, applying of Hopcroft’s minimization algorithm in staDFA Matcher is easy and simple while keeping the overall pattern matching strategy same. Nevertheless, we have to be very careful about applying Hopcroft’s minimization algorithm in staDFA Matcher. Because, two states in staDFA will be considered as equivalent if and only if they are both non-accepting states and have the same set of commands. So, we should not merge states that have the different set of commands. For this, we need to make a minor modification to the Hopcroft’s minimization algorithm.

Thus, the modified version of the Hopcroft’s minimization algorithm has two parts. In the first part, we are removing all the unreachable states \(\emptyset \) from the staDFA. Secondly, we applied the Hopcroft’s minimization algorithm while keeping the fact intact which is states are equivalent if and only if they are both non-accepting states and have the same set of commands. For example, the staDFA representation shown in Fig. 4.1 for \(RE = (a_1 | a_2 b_3)^* / b_4 a_5 \) is the minimal staDFA and it has seven states. Note that, it is not the minimal DFA. If we apply the unmodified Hopcroft’s minimization algorithm, then we could have six states instead of seven states for the above \(RE \).

But, the principle objective of staDFA Matcher defined in Algorithm 1 will fail, which is matching the sub-expression positions and telling its extent on the accepted input strings.

4.6 Applications

In this section, I will show some real world applications of sub-expression matching using staDFA. This mainly includes trailing contexts, lookaheads, capturing groups, and back-reference. The detailed explanation of each category is given below:

4.6.1 Trailing Contexts

Trailing Contexts refers to matching a sub-expression iff it is followed by other particular sub-expression which refers to end of the overall \(RE \). For an example, \(R = R_1/R_2 \) known as trailing
context because, here \(R_1 \) is followed by \(R_2 \) which refers to end of the overall \(RE R \). More specifically, let’s we have a \(RE R = (a_1 \mid a_2 b_3)^* b_4 a_5 \) where \(R_1 = (a_1 \mid a_2 b_3)^* \) and \(R_2 = b_4 a_5 \). Now, according to the concept of trailing context sub-expression \(R_1 \) will be matched as long as it’s followed by \(R_2 \). However, Lex/Flex fail to implement the trailing contexts correctly [4, 15].

However, using staDFA it is simple to implement the trailing contexts correctly. For an example, if we mark the above \(RE R \) using a right marker \(R \), then it will be as follows: \(R = (a_1 \mid a_2 b_3)^* b_4 a_5 \) where, matching the sub-expression \(R_1 = (a_1 \mid a_2 b_3)^* \) positions followed by sub-expression \(R_2 = b_4 a_5 \) on the accepted input strings is pretty simple and straightforward. Fig. 4.1 shows the staDFA representation of the above \(RE R \). Also, Table 4.1 shows the steps of sub-expression \(R_1 \) matching positions and it’s extent to sub-expression \(R_2 \) on the accepted input strings. So, it clearly shows that, we don’t have any limitation to implement the trailing contexts correctly with an staDFA.

4.6.2 Lookaheads

Lookaheads are interesting. Because, the concept is more generic than trailing contexts. Lookaheads can be used anywhere in regular expressions, whereas trailing context can only be used to refer to end of the overall regular expression. For an example, the lookaheads in \(RE R = \ldots, (?=R_1) R_2, \ldots \) does not refer to end of the overall regular expression \(R \). However, this lookaheads can also be implemented accurately using staDFA. Because, in staDFA Matcher we can place marker \(t_i \) at any positions in the \(RE R \) which directly resembles having the lookaheads at any positions in \(RE \).

Let’s consider a simple \(RE (?=R_1) R_2 \) with lookaheads. Using staDFA it’s very simple to implement this lookahead. First, we need to mark the lookaheads in the \(RE \) as follows: \((?=R_1) R_2 \). Second, applying the staDFA Matcher algorithm in the \(RE \). At this point, we have to keep in mind that, when matching sub-expression \(R_1 \) ends and we have a transition to \(a_i \) to the state with \(a_i \in \text{firstpos}(R_2) \), we must execute the backup command say \(B_i^t \) which does this \(k \leftarrow m_i^t \). That is setting up the cursor \(k \) back to the start positions of sub-expression \(R_1 \) before continuing the matching of sub-expression \(R_2 \).

Therefore, we can say that, as staDFA allows flexibility of executing user defined compilation functions such as \(C \), \(\bar{C} \) which contains \(S_i^l(\text{store}) \), \(\bar{S}_i^l(\text{delayedstore}) \), \(T_{i,j}^l(\text{transfer}) \), \(B_i^l(\text{backup}) \), \(A_i^l(\text{accept}) \), and etc. Thus, we can have any kind of desired sub-expression positions matching and
its extent in the RE. Hence, lookaheads is just one kind of example which can be even implemented so easily and accurately.

4.6.3 Capturing Groups

Regular expression captured by parentheses is known as capturing groups. These are very often used in pattern matching. In capturing groups, the captured RE can have all kinds of quantifier such as greedy, non-greedy operators. In addition to that, this captured RE can be ambiguous. Also, in repetition a captured RE can match the first or last sub-strings \(w_i \in w[0 : \ell - 1] \).

Therefore, special care has to be taken on capturing groups in \(RE \) using the staDFA Matcher. Suppose, we have a \(RE = (a_1 | a_2 b_3)^* b_4 \) where, it has a capturing group \(R_1 = (a_1 | a_2 b_3)^* \). Note, this \(R_1 \) is ambiguous, and in repetition it can match the first or last sub-strings \(w_i \in w[0 : \ell - 1] \). That’s why to unambiguously match the capturing groups, we already defined the meta operators in Section 4.1.2. Hence, the exact representation of the above \(RE \) will be as follows: \(R = \frac{1}{f} (a_1 | a_2 b_3)^* \frac{t_1}{t_2} b_4 \), where sub-expression \(R_1 = \frac{1}{f} (a_1 | a_2 b_3)^* \frac{t_1}{t_2} \) is marked by using markers \(t_1 \) and \(t_2 \), respectively.

Fig. 4.2 shows the staDFA representation of the above \(RE \). Also, Table 4.3 shows the step by step processing of input strings symbol, and at the same time, shows the MPS operations associated with states of the staDFA match. Finally, we see that our proposed staDFA unambiguously finds the starting position \(M[t_1] \) and ending position \(M[t_2] \) of sub-expression \(R_1 \) in an accepted input strings.

4.6.4 Back-References

Nowadays, back-references is an interesting and promising research topic for the computer science theorists. In the past, to support back-references we had to depend on backtracking which in turns lead us to choose NFA representation. Thus, we may have exponential time complexity in the worst-case scenario and an \(NP-complete \) problem [9]. However, we have made an important contribution to this research topic. More simply, our proposed staDFA Matching Algorithm support most forms of Back-References.

Back-References means that a repetition of the already captured groups in the later positions of the same \(RE \). These captured groups are formed by parentheses. Therefore, a back-reference \(\backslash n \) in a \(RE \) means that, reappearing of the \(n \)-th numbered capturing group in the later positions
of the same $RE R$. For example, if we have a $RE R = (a_1 | b_2) c_3 \backslash 1$, then this $\backslash 1$ refers to the 1^{st} capturing group sub-expression $R_1 = (a_1 | b_2) R$ of $RE R$.

However, in order to support back-references in $staDFA$, we have to formulate the $RE R$ which contains the back-reference. Let's consider the above $RE R = (a_1 | b_2) c_3 \backslash 1$. Now, in the first step, we need to mark the sub-expression of capture group n as follows: $2^{n-1}/$ and $\backslash 2^n$. That is, in case of above $RE R$, it will be like $1/(a_1 | b_2)^2$. However, to support the above $RE R$ using the $staDFA$ Match the complete modified version will be as follows: $1/(a_1 | b_2)^2 c_3 (\backslash a_4 \backslash b_5)$ with the replacement of $\backslash 1$ underlined. The resulting $staDFA$ for the above $RE R$ is shown in Fig. 4.4.

Now, to match the input strings say “aca” based on the above $RE R$ containing back reference $\backslash 1$, the $staDFA$ Match will continue normal execution until it reaches to the states either s_3 or s_4. At this point, we already matched the $n = 1^{st}$ capturing group marked by $2^{n-1}/$ and $\backslash 2^n$ as follows: $1/(a_1 | b_2)^2$. That is, $w[m_1^1 : m_2^2]$ (i.e. in this case $w[0 : 0]$) contains the matched portion of the captured group $1/(a_1 | b_2)^2$. Now, to handle the back-reference $\backslash 1$ from either states s_3 or s_4, we need to add a constraint on the $staDFA$ Match Algorithm. That’s match the $w[0 : 0]$ against next part of the input strings which is $w[2 : 2]$, if it matches, then continue normal execution as usual specified in Algorithm 1. Otherwise, set the state $s = \emptyset$ to a dead state to exit the loop from $staDFA$ Matcher in Algorithm 1.
Therefore, we see that to support back-reference \(n \) on staDFA Match, it adds a simple constraint which can be easily verified. Also, another advantage of staDFA Matcher is that, for a RE \(R \) if \(n \) does not participate on matching input strings \(w \), but current state \(s \in S \) contains other non-\(n \)-marked positions, then staDFA Matcher will still continue normal execution until it reaches to the accepting states. For an example, \(RE \ R = (a_1 \mid b_2) c_3 (\backslash 1 \mid d_4) \) matches the input strings say “acd” without matching the back-reference \(\backslash 1 \).
CHAPTER 5

PERFORMANCE EVALUATION

My advisor Prof. Van Engelen implemented a staDFA prototype in SWI-Prolog available for download from www.cs.fsu.edu/~engelen/stadfa.zip. This implementation was used to verify the algorithms and to generate the figures in this thesis. In this chapter, I will present the performance evaluation of staDFA using RE/flex [34] and compare the performance to some other mostly used RE matcher such as RE2 [9], PCRE2 [13], Lex [20], Boost.Regex [23] and Flex [26].

5.1 Experimental Setup

I compared the performance of a C++ prototype implementation of staDFA in RE/flex [34] to the DFA-based scanners Flex [26], RE/flex [34] and NFA-based C/C++ regex libraries PCRE2 [13], RE2 [9], and Boost.Regex [23]. We optimized PCRE2 and RE2 by pre-compiling the RE patterns before matching, such that the performance measurements do not include the construction and deletion times of patterns. I picked the best performance of > 10 runs with each run executing 500 iterations to average the running time. The test programs were compiled with clang 8.0.0 with -O2 and run on a 2.9 GHz Intel Core i7, 16 GB 2133 MHz LPDDR3 machine.

5.2 Performance Evaluation of staDFA

Fig. 5.1 shows the performance of staDFA used as a scanner (a.k.a. lexical analyzer) implemented as a prototype in RE/flex using patterns b and ab*(?=ba*), where the latter pattern uses a lookahead (Flex trailing context ab*/ba*) to tokenize input strings, compared to the performance of Flex, RE/flex, PCRE2, RE2 and Boost.Regex. RE2 does not support lookaheads. To include RE2, I used (ab*)ba* | b and advanced the string location using the end of the captured group by invoking RE::Match(). To emulate the correct lookahead in Flex and RE/flex, I used yyless(n) to limit the size of the resulting match using the specific value of n for each input string. The results in Fig. 5.1 show that staDFA matching with a lookahead is about as fast as Flex and RE/flex. Note that the MPS adds negligible overhead, by comparing the performance of staDFA in RE/flex.
Figure 5.1: Performance of staDFA matching, compared to Flex, RE/flex, PCRE2, RE2 and Boost.Regex for tokenizing strings containing 1,000 copies of \texttt{abbb}, \texttt{abbbbbbb} and \texttt{abbbbbbbbbbbbbbb} tokenized into 2,000 tokens using two patterns \texttt{b} and \texttt{a\ b}^*(?=\texttt{b\ a}^*) with a lookahead (Flex trailing context \texttt{a\ b}^*/\texttt{b\ a}^*). Elapsed execution time is shown in micro seconds.

Fig. 5.2 shows the performance of staDFA compared to RE2, PCRE2, and Boost.Regex for a regular expression \((\texttt{a\ b})^*\texttt{c}\) with group capture \((\texttt{ab})\) on input strings \((\texttt{ab})^n\texttt{c}\) where, \(n = 10, 100, \ldots, 1000000\). Boost.Regex fails with a stack error for \(n > 10000\). RE2 is designed to perform very well with a regex such as \((\texttt{a\ b})^*\texttt{c}\), but performs poorly (10 times slower or worse) for regex forms with alternations, such as \((\texttt{a\ b})^*\texttt{c} | \texttt{a}\), when the other libraries and staDFA perform about the same for this regex. Comparing the best performance of RE2 and PCRE2 with staDFA, the results of Fig. 5.2 show that staDFA has the best performance.

Fig. 5.3 shows the \textit{MPS} operations overhead of staDFA matching, compared to, tags overhead of \textit{TDFA} matching for regex \(R_1 = (\texttt{b}_1^*) (\texttt{b}_2^*) \texttt{b}_3\) with average-case, and regex \(R_2 = (\texttt{b}_1 | \texttt{b}_2 \texttt{b}_3 | \texttt{b}_4 \texttt{b}_5 \texttt{b}_6 | \texttt{b}_7 \texttt{b}_8 \texttt{b}_9 \texttt{b}_{10})^*\) with worst-case. More particularly, the overhead calculation for average-case, the regex \(R_1 = (\texttt{b}_1^*) (\texttt{b}_2^*) \texttt{b}_3\) has been evaluated for sub regex matching \(R_1' = (\texttt{b}_1^*)\) for the input string “\texttt{bbbbb}” using staDFA with marker \(t_1 = 1\) and using \textit{TDFA} with tag \(t_1\). Results
Figure 5.2: Performance of staDFA matching, compared to RE2, PCRE2 and Boost.Regex for regular expression (ab)* c with group capture (ab). Elapsed execution time per string match is shown in micro seconds for a range of input strings (ab)*c where, \(n = 10, 100, \ldots, 1000000 \).

show that, the overall marker updates require 12 times for staDFA matching whereas tag upadates require 20 times. In worst-case scenario, for the same given input string “bbbb” the regex \(R_2 \) for TDFA needed to be rewritten as \(R_2 = (\text{tag}1 b_1 | \text{tag}2 b_2 b_3 | \text{tag}3 b_4 b_5 b_6 | \text{tag}4 b_7 b_8 b_9 b_{10})^* \). Since, we are interested to see the overaheads during sub-matching for the input string “bbbb”, hence, \text{tag}4 must give the extent of it also at the same time must give the result such that “bbb” of “bbbb” matched the extent of \text{tag}3, same as “bb” of “bbbb” matched the extent of \text{tag}2 and, finally “b” of “bbbb” matched the extent of \text{tag}1. However, if we simply depend on only using one tag \(t_1 \) for the TDFA then, it will completely fail and would not give us the accurate results. Thus, we must use four tags whereas using staDFA, we only need just one marker \(t_1 = [1, 2, 4, 7] \) since a single marker in staDFA can be used in several positions within a RE. On the other hand, a single tag in TDFA can not be used in multiple positions in a RE. For the worst-case scenario overall overhead introduced by TDFA is 28 times okay using four tags whereas staDFA requires marker updates of 19 times with using only one marker.
Figure 5.3: MPS operations overhead of staDFA matching, compared to, tags overhead of TDFA matching for regex $R_1 = (b^*) (b^*) b$ with average-case and regex $R_2 = (b | bb | bbb | bbbb)^*$ with worst-case. Elapsed update frequency per string match is shown in numerical counts for a range of input strings $(b)^n$ where, $n = 1, 2, \ldots, 4$.

5.3 Discussion

Future investigation will address how the MPS can be effectively optimized by reusing memory cells to reduce memory resource requirements. One could use graph coloring for register allocation [8] to reduce the number of memory cells required by reusing memory cells. One could alternatively construct the static single assignment (SSA) form of program code [10] by treating an staDFA as a control-flow graph with basic blocks as states s with C commands and use SSA algorithms for register allocation [12] to reuse memory cells.
Throughout this thesis, I explained how $staDFA$ is constructed and can be used for sub-expression matching. I described how each category of regular expressions as defined in POSIX.2 can be represented by the proposed $staDFA$. I compared $staDFA$ matching to other existing regular expression matchers such as RE2 [9], PCRE2 [13], Lex [20], Boost.Regex [23], Flex [26] and RE/flex [34]. In addition, a modified Hopcroft algorithm can be used to minimize $staDFA$.
APPENDIX A
THEOREMS AND PROOFS

Theorem 1. Given a regular expression R and a finite number n of markers $t = 1, \ldots, ||R||$, staDFA(R) terminates with a finite set of states.

Proof. Each state $s \in S$ of the staDFA(R) is a set of marked or unmarked positions and commands. A state is uniquely identified by the content of its set. Every subscript index i and j in marked positions a_i and commands S_{ti}, T_{t_ij} and A_{ti} are bounded from below by 0 and bounded from above by $||R||$, where $||R||$ is the alphabetic width (length) of regular expression R. This gives a finite number of possibilities for the content of the state’s sets, and therefore staDFA(R) terminates with a finite set of states S.

Theorem 2. Strings $w \in \Sigma^*$ are position-wise unambiguously accepted by an staDFA(R) if all states $s \in S$ are conflict-free.

Proof. String w is position-wise unambiguously accepted by an staDFA(R) if for all $t = 1, \ldots, n$ marker position $M[t]$ identifies a unique position in the string w or is -1. By the absence of store-transfer and transfer-transfer conflicts, every m_t^i is assigned a well-defined unique value by the S_t^i and T_t^i commands in C. Finally, by the absence of accept-accept conflicts, $M[t]$ is assigned a well-defined unique value m_t^i or -1 for all markers $t = 1, \ldots, n$.

Theorem 3. The mark-first operator is right distributive over alternation $\frac{t}{\langle R_1 \mid R_2 \rangle} = \frac{t}{\langle R_1 \rangle} \cup \frac{t}{\langle R_2 \rangle}$ and Kleene closure $\frac{t}{\langle R_1^* \rangle} = \langle \frac{t}{\langle R_1 \rangle} \rangle^*$, for any marker t. The mark-last operator is left distributive over alternation $(R_1 \mid R_2)_{\frac{t}{\langle \cdot \rangle}} = R_1_{\frac{t}{\langle \cdot \rangle}} \cup R_2_{\frac{t}{\langle \cdot \rangle}}$ and Kleene closure $\langle R_1^* \rangle_{\frac{t}{\langle \cdot \rangle}} = \langle \frac{t}{\langle R_1 \rangle} \rangle_{\frac{t}{\langle \cdot \rangle}}$ for any marker t.

Proof. We have that $M^t(\langle (R_1 \mid R_2) \rangle) = M^t(R_1 \mid R_2) \cup \text{firstpos}(R_1 \mid R_2) = M^t(R_1) \cup M^t(R_2) \cup \text{firstpos}(R_1) \cup \text{firstpos}(R_2)$ and $M^t(\langle \langle R_1 \mid R_2 \rangle \rangle) = M^t(\langle R_1 \rangle) \cup M^t(\langle R_2 \rangle) = M^t(R_1) \cup M^t(R_2) \cup \text{firstpos}(R_1) \cup \text{firstpos}(R_2)$. Hence, $M^t(\langle (R_1 \mid R_2) \rangle) = M^t(\langle \langle R_1 \mid R_2 \rangle \rangle)$. Likewise, $M^t(\langle \langle R_1^* \rangle \rangle) = M^t(R_1^*) \cup \text{firstpos}(R_1^*) = M^t(R_1) \cup \text{firstpos}(R_1)$ and $M^t(\langle \langle R_1^* \rangle \rangle) = M^t(\langle R_1^* \rangle) = M^t(R_1) \cup \text{firstpos}(R_1)$. Hence, $\langle (R_1^* \rangle) = \langle \langle R_1 \rangle \rangle^*$. The proofs are similar for the mark-last operator.
REFERENCES

BIOGRAPHICAL SKETCH

Mohammad Imran Chowdhury was born in Lakshmipur, Bangladesh. He graduated with a B.Sc. in Computer Science & Engineering (CSE) from Chittagong University of Engineering and Technology (CUET). Immediately after his graduation, he joined as a Lecturer in the Department of Computer Science at Premier University, Chittagong, Bangladesh. There, he worked for almost 3 years, after that he came to U.S.A. to pursue a Ph.D. degree in the Department of Computer Science at Florida State University (FSU). His research interests mainly focuses on compilers, distributed computing, program analysis & synthesis method, and Bayesian probabilistic networks. Conquest-2, Performance of optimistic peer replication, AOT: Ahead-of-Time Compilation, Real-time storage domain, Compilation Tools, Embedded Systems, Computer Networks, Internet protocols over satellite networks, Wireless networks and optical communications, Network security, BGP routing, ad-hoc networks, and power-laws of Internet topology. Artificial Intelligence, Machine Learning.