
Block Ciphers and Modes of Operation

• Readings

– Sections 3.3, 4.1, 4.2, 4.4
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Block Cipher     

• A block cipher E() is a (parametrized) deterministic 

function mapping n-bit plaintext blocks to n-bit ciphertext 

blocks.  The value n is called the blocklength. 

– It is essentially a simple substitution cipher 

with character set = {0, 1}n. 

– Example for a 64 bit block:

Mi Ci

01011100 …              10101…….

(64 bits)                     (64 bits)

Are there any restrictions on this function for it to be a cipher?
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Counting the Number of Functions

Consider a mapping  f:  N  N, N a finite set

Let |N| be the size of the set N.

Then there are |N||N| such functions

If one considers only 1-1 functions, (injective), then 
there are |N|! such functions

If |N| is 264 then there are 264! one-one (injective) 
functions.  

Note: Since N is a finite set, an injective function over N 
to itself is also bijective

• Injective and bijective functions on wikipedia
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Specifying the Functions

• Specifying an arbitrary function on 64-bit blocks (or even  
just an arbitrary bijective function) takes too many bits.
– For an arbitrary function of k bits, it takes k2k bits to specify it 

directly.  

– For 64 bit blocks, this is 64·264 or 270.

– Even specifying a 1-1 function of k bits takes about the same 
number of bits. 

• Note that we can use Stirling’s approximation to estimate 
n! if needed:
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The Key to the Cipher

• The parameter key is a k-bit binary string.  

– It may be that the set of all keys, the keyspace K, is a 

proper subset of all k-bit binary strings.  In that case, we say 

that the effective key size, or security parameter, provided 

by the cipher is log2|K|

• The keyed block cipher E() is a bijection, and has a 

unique inverse: the decryption function D().  

– Alternative notation:  K{} and K-1{}
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Using simple transformations on block 

subcomponents: substitution

• Substitution: changing each input subblock to some 

output subblock.

• Example 8 bit block:

“xor with 11101011 = y”

Let an input block be m = 01100100 

Then, the output of the “substitution” is

m  y = 10001111 = c

Note: is this mapping 1-1 onto?
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Using simple transformations on block 

subcomponents: permutation

• A permutation in this context is simply a shuffling of 

the bits of the subblock.

• Example 8-bit block

“define where each bit of the shuffled block comes from”
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Bit 1  to position 5

Bit 2  to position 6

Bit 3  to position 2

…

Bit 8  to position 1

8 3 5 4 1 2 6 7

01100100  01000110



Feistel Structures

• Technique for scrambling data

• Scrambles a block at a time

• Based on the reversible properties of the XOR function
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Feistel
Structure

9

4 bit Rn+1

8 bit output

4 bit Ln+1

8 bit input

4 bit Ln 4 bit Rn

Mangler Function

+

x * 7 mod 16

0010

0010 1001

1101
1001

1111

1001 1101

1001

10010010



Feistel
Structure
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4 bit Rn+1

8 bit output

4 bit Ln+1

8 bit input

4 bit Ln 4 bit Rn

Mangler Function

+

constant 1010

0010

0010 1001

1000
1001

1010

1001 1000

1001

10010010



DES

• DES uses a 56 bit key to guide the encryption, which 

works roughly as follows:

– An initial permutation is done on the 64-bit input

– A 56-bit key is used to generate 16 subkeys used in 16 

rounds (subkey generation is complex in itself)

– Rounds can be viewed as doing substitutions and 

permutations in each round, based on the subkey (these are 

the real “scrambling the data” rounds)

– A final permutation is done that is the inverse of the initial 

permutation

– Developed by NSA with industry input
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The Initial and Final Permutations

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 42 9 49 17 57 25

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Initial Permutation Final Permutation

Original order



DES Sequence
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64-bit input

64 bit output

Round 2

Round 1

Round 16

56 bit key

Generate 16 

per-round keys



Generate Sixteen 48 Bit Keys

• Permute initial DES key (64 bits with parity):
– Extracts 56 of 64 key bits (omits parity bits) using a given 

permutation called permuted choice 1 resulting in two 28 bit sub-

keys called C0 and D0 . Next do:

• 16 rounds of the following cascading process
1. Shift the 28 bits of each half (Ci-1 and Di-1)

– In rounds 1, 2, 9, and 16 single shift left

– Other rounds, two-bit rotate left

– The output feeds back into step 1 of the next round and step 2 

below 

2. Permute each half defined by permuted choice 2 which does not 

use 8 of the bits (positions 9, 18, 22, 25 and 35, 38, 43, 54)

3. Concatenate the two halves into a 48 bit key ki

Note: The actual permuted choice 1 and 2 are shown in 

text
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DES Sequence
64-bit input

64 bit output

Round 2

Round 1

Round 16

56 bit key

Generate 16 

per-round keys
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One Scramble Round

32 bit Rn+1

64 bit output

32 bit Ln+1

64 bit input

32 bit Ln
32 bit Rn

Mangler Function

+

Kn



Mangler Function

Combine 32 bit input and 48 bit key into 32 bit output

1. Expand 32 bit input to 48 bits by adding a bit to the front and end of 

each 4 bit segment. (These bits are taken from adjacent bits of the 4-

bit segment) to get R1 to R8. 

2. XOR each 6 bit Ri of input with 6 bits of key Ki to get Vi.

3. Feed each 6 bit Vi result  into an Si box process.

4. The output of each Si box process is a 4-bit result.

5. Combine  the Si box processes into a 32 bit result and do a defined 

permutation (see text).
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Encrypt round n Decrypt round n

32 bit Rn+1

64 bit input

32 bit Ln+1

64 bit output

32 bit Ln 32 bit Rn

Mangler 

Function

+

Kn

32 bit Rn+1

64 bit output

32 bit Ln+1

64 bit input

32 bit Ln 32 bit Rn

Mangler 

Function

+

Kn



Using a Block Cipher

• Assuming one can encrypt a 64-bit block with a 

cipher such as DES or 3DES (triple DES), how do 

you use this capability?

– Messages are longer than 64 bits

– They may not be a multiple of 64 bits

– What are the security implications of the encryption / 

decryption methods on these messages
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Modes of Operation

• Clearly, the block cipher can be used exactly as a 

substitution cipher, i.e., by encrypting each block of 

plaintext independently using the same key.  This is 

called the Electronic Codebook Mode, or ECB:
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M1 M2 M3
… Ml

C1 C2 C3
… Cl

K{  } K{  } K{  } K{  }



ECB (continued)

• Decryption also works block by block (inverse 

substitution):
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Dkey

Mi

Ci

key

Mi

E



ECB Limitations

• If a message has two identical blocks, the ciphertext 
will be two identical blocks

• Blocks can be rearranged by an adversary to his 
advantage

• Message information is not sufficiently diffused

• Thus ECB use is limited, such as for transmitting an 
IV vector 
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Pictures from 

http://en.wikipedia.org/wiki/Cipher_Block_Chaining
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Original Encrypted using ECB 

mode

Encrypted 

using other 

modes

http://en.wikipedia.org/wiki/Image:Tux.jpg
http://en.wikipedia.org/wiki/Image:Tux_ecb.jpg
http://en.wikipedia.org/wiki/Image:Tux_secure.jpg
http://en.wikipedia.org/wiki/Image:Tux.jpg
http://en.wikipedia.org/wiki/Image:Tux_ecb.jpg
http://en.wikipedia.org/wiki/Image:Tux_secure.jpg


Cipher Block Chaining (CBC)

• An initial vector (IV) is xored into the first 

block before encryption:

– C1 = Ek(IV  M1)

• Subsequent blocks are first xored with the 

previous cipherblock before encrypting:

– C i+1 = Ek(Ci  M i+1)

• The encrypted message is transmitted as

– IV, C1, …, Cl
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Encryption using CBC
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m1 m2 m3 m4

c1 c2 c3 c4

IV    

EEEE Encrypt with 

secret key



Decryption using CBC
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m1 m2 m3 m4

c1 c2 c3 c4

IV    

DDDD Decrypt with 

secret key



CBC (continued)

• Decryption of Ci uses knowledge of Ci-1 (where C0 = 

IV):

– Mi = Dk(Ci)  Ci-1
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E

D

Ci-1

Mi 

k

Ci-1Ci

Mi

Ci-1

Ci

k

(C0=IV)



CBC issues

• Not parallelizable (for encryption)

• A single-bit transmission error in ciphertext block Ci

results in whole plaintext block Pi and the same bit in 

plaintext block Pi+1 being corrupted. 

• The IV should be integrity-protected

• The IV can be sent in the cleartext.
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CBC Error Propagation
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http://en.wikipedia.org/wiki/Cipher_Block_Chaining

http://en.wikipedia.org/wiki/Image:Cbc_modification.png


Block Ciphers as Stream Ciphers

• Two modes of operation of a block cipher implement 
a stream cipher: 
– Output Feedback Mode (OFB), a Key-auto-key stream 

cipher (KAK)

– Cipher Feedback Mode (CFB), a Ciphertext-auto-key
stream cipher (CTAK)

– In both cases encryption is obtained by xoring a keystream 
with the plaintext.

• OFB: Keystream depends on previous keystream

• CFB: Keystream depends on previous ciphertext 
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OFB

• The keystream (output of encryption) is xored into 
plaintext to obtain ciphertext.  The keystream is also 
the input for next chained encryption.   
– Ci = Mi  Oi;  Oi = E(Oi-1)   (encryption)

– Mi = Ci  Oi;  Oi = E(Oi-1)   (decryption)
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(O0=IV) Oi-1Oi

Mi 
Ci

E
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OFB Encryption
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OFB Decryption
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K-bit OFB mode
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Example is OFB-8 (8 bits).  The keystream input is encrypted.  First 

8 bits are used to encode 8 bits of plaintext.  The keystream input at 

the next phase is the current input, left shifted by 8 bits, plus the first 

8 bits of the encrypted previous phase input.

Block cipher Encrypt

Ci

Mi Mi+1

Ci+1

Block cipher Encrypt



OFB issues

• IV repetition completely compromises security

• More parallelizable than CBC---the key stream is 

independent of the ciphertext, and can be pre-

computed to enable random-access to plaintext.

• The operation of encryption and decryption must be 

synchronous---if a ciphertext “block” (8 bit, 16 bit, 64 

bit) is missed, the two operations will not fall back in 

synch.
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CFB

• The keystream (output of encryption) is xored into 
plaintext to obtain ciphertext.  The ciphertext is the 
input for next chained encryption.  
– Ci = Mi  E(Ci-1)       (encryption)

– Mi = Ci  E(Ci-1)       (decryption)
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E
E

Ci-1

Mi 

k

Ci-1Ci

Mi
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Ci-1

k

(C0=IV)



CFB Encryption
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CFB Decryption
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k-bit CFB mode
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Ci

Block cipher Encrypt

Mi Mi+1

Ci+1

Block cipher Encrypt

Example is CFB-8 (8 bits).  The keystream input is encrypted.  First 

8 bits are used to encode 8 bits of plaintext.  The keystream input at 

the next phase is the current keystream input, left shifted by 8 bits, 

plus the 8 bit previous cipher text.



CFB Issues

• The IV must be generated in a strongly pseudo-
random fashion

• Not parallelizable (similar to CBC)

• Similar analysis of error propagation as CBC.

• Self-synchronizing
– Under CFB-64, if a ciphertext block is missing, that block is 

lost and the following will decrypt incorrectly.

– Analysis for CFB-8 and CFB-16 is similar.
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Counter Mode
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IV IV + 1 IV+j IV+j+1

c0 c1 cj cj+1

m0 m1 mj mj+1

EK E E EK K K

  

…

m
j+1

k bits k bits



Reading Assignments

• Section 3.6

• Stream cipher A5/1

– http://en.wikipedia.org/wiki/A5/1

• Wired Equivalent Privacy

– http://en.wikipedia.org/wiki/Wired_Equivalent_Privacy
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http://en.wikipedia.org/wiki/A5/1
http://en.wikipedia.org/wiki/Wired_Equivalent_Privacy

