
Block Ciphers and Modes of Operation

• Readings

– Sections 3.3, 4.1, 4.2, 4.4

1

Block Cipher

• A block cipher E() is a (parametrized) deterministic

function mapping n-bit plaintext blocks to n-bit ciphertext

blocks. The value n is called the blocklength.

– It is essentially a simple substitution cipher

with character set = {0, 1}n.

– Example for a 64 bit block:

Mi Ci

01011100 … 10101…….

(64 bits) (64 bits)

Are there any restrictions on this function for it to be a cipher?

2

Counting the Number of Functions

Consider a mapping f: N  N, N a finite set

Let |N| be the size of the set N.

Then there are |N||N| such functions

If one considers only 1-1 functions, (injective), then
there are |N|! such functions

If |N| is 264 then there are 264! one-one (injective)
functions.

Note: Since N is a finite set, an injective function over N
to itself is also bijective

• Injective and bijective functions on wikipedia

3

Specifying the Functions

• Specifying an arbitrary function on 64-bit blocks (or even
just an arbitrary bijective function) takes too many bits.
– For an arbitrary function of k bits, it takes k2k bits to specify it

directly.

– For 64 bit blocks, this is 64·264 or 270.

– Even specifying a 1-1 function of k bits takes about the same
number of bits.

• Note that we can use Stirling’s approximation to estimate
n! if needed:

n

e

n
nn 








 2!

4

The Key to the Cipher

• The parameter key is a k-bit binary string.

– It may be that the set of all keys, the keyspace K, is a

proper subset of all k-bit binary strings. In that case, we say

that the effective key size, or security parameter, provided

by the cipher is log2|K|

• The keyed block cipher E() is a bijection, and has a

unique inverse: the decryption function D().

– Alternative notation: K{} and K-1{}

5

Using simple transformations on block

subcomponents: substitution

• Substitution: changing each input subblock to some

output subblock.

• Example 8 bit block:

“xor with 11101011 = y”

Let an input block be m = 01100100

Then, the output of the “substitution” is

m  y = 10001111 = c

Note: is this mapping 1-1 onto?

6

Using simple transformations on block

subcomponents: permutation

• A permutation in this context is simply a shuffling of

the bits of the subblock.

• Example 8-bit block

“define where each bit of the shuffled block comes from”

7

Bit 1  to position 5

Bit 2  to position 6

Bit 3  to position 2

…

Bit 8  to position 1

8 3 5 4 1 2 6 7

01100100  01000110

Feistel Structures

• Technique for scrambling data

• Scrambles a block at a time

• Based on the reversible properties of the XOR function

8

Feistel
Structure

9

4 bit Rn+1

8 bit output

4 bit Ln+1

8 bit input

4 bit Ln 4 bit Rn

Mangler Function

+

x * 7 mod 16

0010

0010 1001

1101
1001

1111

1001 1101

1001

10010010

Feistel
Structure

10

4 bit Rn+1

8 bit output

4 bit Ln+1

8 bit input

4 bit Ln 4 bit Rn

Mangler Function

+

constant 1010

0010

0010 1001

1000
1001

1010

1001 1000

1001

10010010

DES

• DES uses a 56 bit key to guide the encryption, which

works roughly as follows:

– An initial permutation is done on the 64-bit input

– A 56-bit key is used to generate 16 subkeys used in 16

rounds (subkey generation is complex in itself)

– Rounds can be viewed as doing substitutions and

permutations in each round, based on the subkey (these are

the real “scrambling the data” rounds)

– A final permutation is done that is the inverse of the initial

permutation

– Developed by NSA with industry input

11

12

The Initial and Final Permutations

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 42 9 49 17 57 25

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Initial Permutation Final Permutation

Original order

DES Sequence

13

64-bit input

64 bit output

Round 2

Round 1

Round 16

56 bit key

Generate 16

per-round keys

Generate Sixteen 48 Bit Keys

• Permute initial DES key (64 bits with parity):
– Extracts 56 of 64 key bits (omits parity bits) using a given

permutation called permuted choice 1 resulting in two 28 bit sub-

keys called C0 and D0 . Next do:

• 16 rounds of the following cascading process
1. Shift the 28 bits of each half (Ci-1 and Di-1)

– In rounds 1, 2, 9, and 16 single shift left

– Other rounds, two-bit rotate left

– The output feeds back into step 1 of the next round and step 2

below

2. Permute each half defined by permuted choice 2 which does not

use 8 of the bits (positions 9, 18, 22, 25 and 35, 38, 43, 54)

3. Concatenate the two halves into a 48 bit key ki

Note: The actual permuted choice 1 and 2 are shown in

text
14

15

DES Sequence
64-bit input

64 bit output

Round 2

Round 1

Round 16

56 bit key

Generate 16

per-round keys

16

One Scramble Round

32 bit Rn+1

64 bit output

32 bit Ln+1

64 bit input

32 bit Ln
32 bit Rn

Mangler Function

+

Kn

Mangler Function

Combine 32 bit input and 48 bit key into 32 bit output

1. Expand 32 bit input to 48 bits by adding a bit to the front and end of

each 4 bit segment. (These bits are taken from adjacent bits of the 4-

bit segment) to get R1 to R8.

2. XOR each 6 bit Ri of input with 6 bits of key Ki to get Vi.

3. Feed each 6 bit Vi result into an Si box process.

4. The output of each Si box process is a 4-bit result.

5. Combine the Si box processes into a 32 bit result and do a defined

permutation (see text).

17

18

Encrypt round n Decrypt round n

32 bit Rn+1

64 bit input

32 bit Ln+1

64 bit output

32 bit Ln 32 bit Rn

Mangler

Function

+

Kn

32 bit Rn+1

64 bit output

32 bit Ln+1

64 bit input

32 bit Ln 32 bit Rn

Mangler

Function

+

Kn

Using a Block Cipher

• Assuming one can encrypt a 64-bit block with a

cipher such as DES or 3DES (triple DES), how do

you use this capability?

– Messages are longer than 64 bits

– They may not be a multiple of 64 bits

– What are the security implications of the encryption /

decryption methods on these messages

19

Modes of Operation

• Clearly, the block cipher can be used exactly as a

substitution cipher, i.e., by encrypting each block of

plaintext independently using the same key. This is

called the Electronic Codebook Mode, or ECB:

20

M1 M2 M3
… Ml

C1 C2 C3
… Cl

K{ } K{ } K{ } K{ }

ECB (continued)

• Decryption also works block by block (inverse

substitution):

21

Dkey

Mi

Ci

key

Mi

E

ECB Limitations

• If a message has two identical blocks, the ciphertext
will be two identical blocks

• Blocks can be rearranged by an adversary to his
advantage

• Message information is not sufficiently diffused

• Thus ECB use is limited, such as for transmitting an
IV vector

22

Pictures from

http://en.wikipedia.org/wiki/Cipher_Block_Chaining

23

Original Encrypted using ECB

mode

Encrypted

using other

modes

http://en.wikipedia.org/wiki/Image:Tux.jpg
http://en.wikipedia.org/wiki/Image:Tux_ecb.jpg
http://en.wikipedia.org/wiki/Image:Tux_secure.jpg
http://en.wikipedia.org/wiki/Image:Tux.jpg
http://en.wikipedia.org/wiki/Image:Tux_ecb.jpg
http://en.wikipedia.org/wiki/Image:Tux_secure.jpg

Cipher Block Chaining (CBC)

• An initial vector (IV) is xored into the first

block before encryption:

– C1 = Ek(IV  M1)

• Subsequent blocks are first xored with the

previous cipherblock before encrypting:

– C i+1 = Ek(Ci  M i+1)

• The encrypted message is transmitted as

– IV, C1, …, Cl

24

Encryption using CBC

25

m1 m2 m3 m4

c1 c2 c3 c4

IV    

EEEE Encrypt with

secret key

Decryption using CBC

26

m1 m2 m3 m4

c1 c2 c3 c4

IV    

DDDD Decrypt with

secret key

CBC (continued)

• Decryption of Ci uses knowledge of Ci-1 (where C0 =

IV):

– Mi = Dk(Ci)  Ci-1

27

E

D

Ci-1

Mi 

k

Ci-1Ci

Mi

Ci-1

Ci

k

(C0=IV)

CBC issues

• Not parallelizable (for encryption)

• A single-bit transmission error in ciphertext block Ci

results in whole plaintext block Pi and the same bit in

plaintext block Pi+1 being corrupted.

• The IV should be integrity-protected

• The IV can be sent in the cleartext.

28

CBC Error Propagation

29

http://en.wikipedia.org/wiki/Cipher_Block_Chaining

http://en.wikipedia.org/wiki/Image:Cbc_modification.png

Block Ciphers as Stream Ciphers

• Two modes of operation of a block cipher implement
a stream cipher:
– Output Feedback Mode (OFB), a Key-auto-key stream

cipher (KAK)

– Cipher Feedback Mode (CFB), a Ciphertext-auto-key
stream cipher (CTAK)

– In both cases encryption is obtained by xoring a keystream
with the plaintext.

• OFB: Keystream depends on previous keystream

• CFB: Keystream depends on previous ciphertext

30

OFB

• The keystream (output of encryption) is xored into
plaintext to obtain ciphertext. The keystream is also
the input for next chained encryption.
– Ci = Mi  Oi; Oi = E(Oi-1) (encryption)

– Mi = Ci  Oi; Oi = E(Oi-1) (decryption)

31

(O0=IV) Oi-1Oi

Mi 
Ci

E

Oi-1

k

Oi-1Oi

E

Oi-1

k

 Mi

OFB Encryption

32

OFB Decryption

33

K-bit OFB mode

34

Example is OFB-8 (8 bits). The keystream input is encrypted. First

8 bits are used to encode 8 bits of plaintext. The keystream input at

the next phase is the current input, left shifted by 8 bits, plus the first

8 bits of the encrypted previous phase input.

Block cipher Encrypt

Ci

Mi Mi+1

Ci+1

Block cipher Encrypt

OFB issues

• IV repetition completely compromises security

• More parallelizable than CBC---the key stream is

independent of the ciphertext, and can be pre-

computed to enable random-access to plaintext.

• The operation of encryption and decryption must be

synchronous---if a ciphertext “block” (8 bit, 16 bit, 64

bit) is missed, the two operations will not fall back in

synch.

35

CFB

• The keystream (output of encryption) is xored into
plaintext to obtain ciphertext. The ciphertext is the
input for next chained encryption.
– Ci = Mi  E(Ci-1) (encryption)

– Mi = Ci  E(Ci-1) (decryption)

36

E
E

Ci-1

Mi 

k

Ci-1Ci

Mi

Ci

Ci-1

k

(C0=IV)

CFB Encryption

37

CFB Decryption

38

k-bit CFB mode

39

Ci

Block cipher Encrypt

Mi Mi+1

Ci+1

Block cipher Encrypt

Example is CFB-8 (8 bits). The keystream input is encrypted. First

8 bits are used to encode 8 bits of plaintext. The keystream input at

the next phase is the current keystream input, left shifted by 8 bits,

plus the 8 bit previous cipher text.

CFB Issues

• The IV must be generated in a strongly pseudo-
random fashion

• Not parallelizable (similar to CBC)

• Similar analysis of error propagation as CBC.

• Self-synchronizing
– Under CFB-64, if a ciphertext block is missing, that block is

lost and the following will decrypt incorrectly.

– Analysis for CFB-8 and CFB-16 is similar.

40

Counter Mode

41

IV IV + 1 IV+j IV+j+1

c0 c1 cj cj+1

m0 m1 mj mj+1

EK E E EK K K

  

…

m
j+1

k bits k bits

Reading Assignments

• Section 3.6

• Stream cipher A5/1

– http://en.wikipedia.org/wiki/A5/1

• Wired Equivalent Privacy

– http://en.wikipedia.org/wiki/Wired_Equivalent_Privacy

42

http://en.wikipedia.org/wiki/A5/1
http://en.wikipedia.org/wiki/Wired_Equivalent_Privacy

