
Block Ciphers and Modes of Operation

• Readings

– Sections 3.3, 4.1, 4.2, 4.4

1

Block Cipher

• A block cipher E() is a (parametrized) deterministic

function mapping n-bit plaintext blocks to n-bit ciphertext

blocks. The value n is called the blocklength.

– It is essentially a simple substitution cipher

with character set = {0, 1}n.

– Example for a 64 bit block:

Mi Ci

01011100 … 10101…….

(64 bits) (64 bits)

Are there any restrictions on this function for it to be a cipher?

2

Counting the Number of Functions

Consider a mapping f: N N, N a finite set

Let |N| be the size of the set N.

Then there are |N||N| such functions

If one considers only 1-1 functions, (injective), then
there are |N|! such functions

If |N| is 264 then there are 264! one-one (injective)
functions.

Note: Since N is a finite set, an injective function over N
to itself is also bijective

• Injective and bijective functions on wikipedia

3

Specifying the Functions

• Specifying an arbitrary function on 64-bit blocks (or even
just an arbitrary bijective function) takes too many bits.
– For an arbitrary function of k bits, it takes k2k bits to specify it

directly.

– For 64 bit blocks, this is 64·264 or 270.

– Even specifying a 1-1 function of k bits takes about the same
number of bits.

• Note that we can use Stirling’s approximation to estimate
n! if needed:

n

e

n
nn

 2!

4

The Key to the Cipher

• The parameter key is a k-bit binary string.

– It may be that the set of all keys, the keyspace K, is a

proper subset of all k-bit binary strings. In that case, we say

that the effective key size, or security parameter, provided

by the cipher is log2|K|

• The keyed block cipher E() is a bijection, and has a

unique inverse: the decryption function D().

– Alternative notation: K{} and K-1{}

5

Using simple transformations on block

subcomponents: substitution

• Substitution: changing each input subblock to some

output subblock.

• Example 8 bit block:

“xor with 11101011 = y”

Let an input block be m = 01100100

Then, the output of the “substitution” is

m y = 10001111 = c

Note: is this mapping 1-1 onto?

6

Using simple transformations on block

subcomponents: permutation

• A permutation in this context is simply a shuffling of

the bits of the subblock.

• Example 8-bit block

“define where each bit of the shuffled block comes from”

7

Bit 1 to position 5

Bit 2 to position 6

Bit 3 to position 2

…

Bit 8 to position 1

8 3 5 4 1 2 6 7

01100100 01000110

Feistel Structures

• Technique for scrambling data

• Scrambles a block at a time

• Based on the reversible properties of the XOR function

8

Feistel
Structure

9

4 bit Rn+1

8 bit output

4 bit Ln+1

8 bit input

4 bit Ln 4 bit Rn

Mangler Function

+

x * 7 mod 16

0010

0010 1001

1101
1001

1111

1001 1101

1001

10010010

Feistel
Structure

10

4 bit Rn+1

8 bit output

4 bit Ln+1

8 bit input

4 bit Ln 4 bit Rn

Mangler Function

+

constant 1010

0010

0010 1001

1000
1001

1010

1001 1000

1001

10010010

DES

• DES uses a 56 bit key to guide the encryption, which

works roughly as follows:

– An initial permutation is done on the 64-bit input

– A 56-bit key is used to generate 16 subkeys used in 16

rounds (subkey generation is complex in itself)

– Rounds can be viewed as doing substitutions and

permutations in each round, based on the subkey (these are

the real “scrambling the data” rounds)

– A final permutation is done that is the inverse of the initial

permutation

– Developed by NSA with industry input

11

12

The Initial and Final Permutations

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 42 9 49 17 57 25

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Initial Permutation Final Permutation

Original order

DES Sequence

13

64-bit input

64 bit output

Round 2

Round 1

Round 16

56 bit key

Generate 16

per-round keys

Generate Sixteen 48 Bit Keys

• Permute initial DES key (64 bits with parity):
– Extracts 56 of 64 key bits (omits parity bits) using a given

permutation called permuted choice 1 resulting in two 28 bit sub-

keys called C0 and D0 . Next do:

• 16 rounds of the following cascading process
1. Shift the 28 bits of each half (Ci-1 and Di-1)

– In rounds 1, 2, 9, and 16 single shift left

– Other rounds, two-bit rotate left

– The output feeds back into step 1 of the next round and step 2

below

2. Permute each half defined by permuted choice 2 which does not

use 8 of the bits (positions 9, 18, 22, 25 and 35, 38, 43, 54)

3. Concatenate the two halves into a 48 bit key ki

Note: The actual permuted choice 1 and 2 are shown in

text
14

15

DES Sequence
64-bit input

64 bit output

Round 2

Round 1

Round 16

56 bit key

Generate 16

per-round keys

16

One Scramble Round

32 bit Rn+1

64 bit output

32 bit Ln+1

64 bit input

32 bit Ln
32 bit Rn

Mangler Function

+

Kn

Mangler Function

Combine 32 bit input and 48 bit key into 32 bit output

1. Expand 32 bit input to 48 bits by adding a bit to the front and end of

each 4 bit segment. (These bits are taken from adjacent bits of the 4-

bit segment) to get R1 to R8.

2. XOR each 6 bit Ri of input with 6 bits of key Ki to get Vi.

3. Feed each 6 bit Vi result into an Si box process.

4. The output of each Si box process is a 4-bit result.

5. Combine the Si box processes into a 32 bit result and do a defined

permutation (see text).

17

18

Encrypt round n Decrypt round n

32 bit Rn+1

64 bit input

32 bit Ln+1

64 bit output

32 bit Ln 32 bit Rn

Mangler

Function

+

Kn

32 bit Rn+1

64 bit output

32 bit Ln+1

64 bit input

32 bit Ln 32 bit Rn

Mangler

Function

+

Kn

Using a Block Cipher

• Assuming one can encrypt a 64-bit block with a

cipher such as DES or 3DES (triple DES), how do

you use this capability?

– Messages are longer than 64 bits

– They may not be a multiple of 64 bits

– What are the security implications of the encryption /

decryption methods on these messages

19

Modes of Operation

• Clearly, the block cipher can be used exactly as a

substitution cipher, i.e., by encrypting each block of

plaintext independently using the same key. This is

called the Electronic Codebook Mode, or ECB:

20

M1 M2 M3
… Ml

C1 C2 C3
… Cl

K{ } K{ } K{ } K{ }

ECB (continued)

• Decryption also works block by block (inverse

substitution):

21

Dkey

Mi

Ci

key

Mi

E

ECB Limitations

• If a message has two identical blocks, the ciphertext
will be two identical blocks

• Blocks can be rearranged by an adversary to his
advantage

• Message information is not sufficiently diffused

• Thus ECB use is limited, such as for transmitting an
IV vector

22

Pictures from

http://en.wikipedia.org/wiki/Cipher_Block_Chaining

23

Original Encrypted using ECB

mode

Encrypted

using other

modes

http://en.wikipedia.org/wiki/Image:Tux.jpg
http://en.wikipedia.org/wiki/Image:Tux_ecb.jpg
http://en.wikipedia.org/wiki/Image:Tux_secure.jpg
http://en.wikipedia.org/wiki/Image:Tux.jpg
http://en.wikipedia.org/wiki/Image:Tux_ecb.jpg
http://en.wikipedia.org/wiki/Image:Tux_secure.jpg

Cipher Block Chaining (CBC)

• An initial vector (IV) is xored into the first

block before encryption:

– C1 = Ek(IV M1)

• Subsequent blocks are first xored with the

previous cipherblock before encrypting:

– C i+1 = Ek(Ci M i+1)

• The encrypted message is transmitted as

– IV, C1, …, Cl

24

Encryption using CBC

25

m1 m2 m3 m4

c1 c2 c3 c4

IV

EEEE Encrypt with

secret key

Decryption using CBC

26

m1 m2 m3 m4

c1 c2 c3 c4

IV

DDDD Decrypt with

secret key

CBC (continued)

• Decryption of Ci uses knowledge of Ci-1 (where C0 =

IV):

– Mi = Dk(Ci) Ci-1

27

E

D

Ci-1

Mi

k

Ci-1Ci

Mi

Ci-1

Ci

k

(C0=IV)

CBC issues

• Not parallelizable (for encryption)

• A single-bit transmission error in ciphertext block Ci

results in whole plaintext block Pi and the same bit in

plaintext block Pi+1 being corrupted.

• The IV should be integrity-protected

• The IV can be sent in the cleartext.

28

CBC Error Propagation

29

http://en.wikipedia.org/wiki/Cipher_Block_Chaining

http://en.wikipedia.org/wiki/Image:Cbc_modification.png

Block Ciphers as Stream Ciphers

• Two modes of operation of a block cipher implement
a stream cipher:
– Output Feedback Mode (OFB), a Key-auto-key stream

cipher (KAK)

– Cipher Feedback Mode (CFB), a Ciphertext-auto-key
stream cipher (CTAK)

– In both cases encryption is obtained by xoring a keystream
with the plaintext.

• OFB: Keystream depends on previous keystream

• CFB: Keystream depends on previous ciphertext

30

OFB

• The keystream (output of encryption) is xored into
plaintext to obtain ciphertext. The keystream is also
the input for next chained encryption.
– Ci = Mi Oi; Oi = E(Oi-1) (encryption)

– Mi = Ci Oi; Oi = E(Oi-1) (decryption)

31

(O0=IV) Oi-1Oi

Mi
Ci

E

Oi-1

k

Oi-1Oi

E

Oi-1

k

 Mi

OFB Encryption

32

OFB Decryption

33

K-bit OFB mode

34

Example is OFB-8 (8 bits). The keystream input is encrypted. First

8 bits are used to encode 8 bits of plaintext. The keystream input at

the next phase is the current input, left shifted by 8 bits, plus the first

8 bits of the encrypted previous phase input.

Block cipher Encrypt

Ci

Mi Mi+1

Ci+1

Block cipher Encrypt

OFB issues

• IV repetition completely compromises security

• More parallelizable than CBC---the key stream is

independent of the ciphertext, and can be pre-

computed to enable random-access to plaintext.

• The operation of encryption and decryption must be

synchronous---if a ciphertext “block” (8 bit, 16 bit, 64

bit) is missed, the two operations will not fall back in

synch.

35

CFB

• The keystream (output of encryption) is xored into
plaintext to obtain ciphertext. The ciphertext is the
input for next chained encryption.
– Ci = Mi E(Ci-1) (encryption)

– Mi = Ci E(Ci-1) (decryption)

36

E
E

Ci-1

Mi

k

Ci-1Ci

Mi

Ci

Ci-1

k

(C0=IV)

CFB Encryption

37

CFB Decryption

38

k-bit CFB mode

39

Ci

Block cipher Encrypt

Mi Mi+1

Ci+1

Block cipher Encrypt

Example is CFB-8 (8 bits). The keystream input is encrypted. First

8 bits are used to encode 8 bits of plaintext. The keystream input at

the next phase is the current keystream input, left shifted by 8 bits,

plus the 8 bit previous cipher text.

CFB Issues

• The IV must be generated in a strongly pseudo-
random fashion

• Not parallelizable (similar to CBC)

• Similar analysis of error propagation as CBC.

• Self-synchronizing
– Under CFB-64, if a ciphertext block is missing, that block is

lost and the following will decrypt incorrectly.

– Analysis for CFB-8 and CFB-16 is similar.

40

Counter Mode

41

IV IV + 1 IV+j IV+j+1

c0 c1 cj cj+1

m0 m1 mj mj+1

EK E E EK K K

…

m
j+1

k bits k bits

Reading Assignments

• Section 3.6

• Stream cipher A5/1

– http://en.wikipedia.org/wiki/A5/1

• Wired Equivalent Privacy

– http://en.wikipedia.org/wiki/Wired_Equivalent_Privacy

42

http://en.wikipedia.org/wiki/A5/1
http://en.wikipedia.org/wiki/Wired_Equivalent_Privacy

