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1 Variable precision computing

For several decades, the IEEE-754 standard for floating-point arithmetic has ably served mathe-
maticians, computer scientists, physicists, engineers and others. Even today, the vast majority of
numerical computations in research and engineering employ either IEEE single (32-bit) or IEEE
double (64-bit). However, recent developments have demonstrated the need for a broader range of
precision levels, and also for a level of precision that varies dynamically within a single applica-
tion. There are certainly performance advantages to variable precision, including faster processing,
better cache utilization, lower run-time memory usage and lower offline data storage. But effective
usage of variable precision also requires appropriate software tools, a more sophisticated mathemat-
ical framework, as well as some fundamental rethinking what reproducibility means in a variable
precision context.

At the low end, many graphics, artificial intelligence and machine learning applications in recent
years successfully utilized some form of 16-bit floating-point — usually either the IEEE 16-bit “half”
precision standard (five exponent bits and ten mantissa bits) or else the emerging “bfloat16” format
(eight exponent bits and seven mantissa bits).

At the same time, many high-performance computing (HPC) researchers, in a drive to achieve
exascale computing, are also reconsidering their usage of numerical precision, since as mentioned
above there are clear performance advantages to employing reduced precision where possible. This
has led to new mixed-precision approaches for common linear algebra operations [1, 2] and renewed
interest in iterative refinement, where initial iterations are performed using half- or single-precision
[7]. Researchers are exploring the use of floating point compression, not only for I/O, but also for
storing solution state variables during run time [9, 5].

Exascale computing has also exposed the need for even greater precision than IEEE 64-bit double
in some cases, because greatly enlarged problem sizes of often result in greatly magnified numerical
sensitivities, so that one can no longer be certain that results are numerically reliable. One remedy
is to use IEEE 128-bit quad precision in selected portions of the computation. Unfortunately, as of
this date the major microprocessor and accelerator vendors have not yet implemented the 128-bit
IEEE in their hardware systems. It is, however, now available via software in some compilers,
notably the gfortran compiler (by declaring quad-precision variables with type real(16)). Even
though the software implementation is quite slow (up to 50X slower, depending on the operation
mix), the IEEE quad format is now being used in a growing number of research applications. As
a single example, researchers at Stanford have had remarkable success in using quad precision in
computational biology applications that involve heavy-duty multiscale linear programming [11].
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There has also been a rise in the usage of very high precision (hundreds or even thousands
of digits). For example, numerous new results have been discovered by computing mathematical
expressions to very high precision, and then using integer relation algorithms such as the “PSLQ”
algorithm to recognize these numerical values in terms of simple mathematical formulas. Among
the results that have been discovered in this fashion are new formulas connecting mathematical
constants [4] and the elucidation of polynomials connected to the Poisson potential function of
mathematical physics (the latter requiring up to 64,000-digit precision) [3].

One common thread of these computational applications is to employ a level of numeric precision
that varies dynamically over the course of the computation, performing as much as possible using
relatively low precision (16-bit or 32-bit), and only switching to higher precision (64-bit, 128-bit or
higher) when necessary.

Along this line, while many in the application community are experimenting with variable
precision using present-day system facilities, some are suggesting that we fundamentally rethink
the concept of floating-point computation, replacing the current set of fixed precision floating-point
formats with a more flexible system. One proposed system is Gustafson’s “Unum” system [6]. This
and some other alternatives to present-day floating-point formats are summarized in a recent article
by Lindstrom, Lloyd and Hittinger [10].

2 Reproducibility issues

It is clear that the emerging paradigm of variable precision computing raises some fundamental
questions for reproducibility:

1. What does reproducibility mean with, say, 16-bit floating-point arithmetic? What community-
standard metrics can be used, say, for machine learning applications, to certify that the final
resulting solution is numerically meaningful?

2. How can reproducibility be measured and verified in more general types of variable precision
applications?

3. Can techniques for bit-for-bit reproducibility be incorporated in a variable precision envi-
ronment? Is there a danger that a bit-for-bit reproducibility facility will lull applications
programmers into employing fundamentally unstable algorithms and applications?

4. What new opportunities are there for using iterative refinement with variable precision?

5. Almost all published research in numerical mathematics and numerical analysis has presumed
either 32-bit or 64-bit hardware. What new techniques should be considered in a variable
precision environment (algorithms, error bounds, error estimates, etc.) [8]?

6. What software tools are available to automatically or semi-automatically analyze an applica-
tion code, identify numerically sensitive spots and propose or implement remedies [12]? What
other tools are needed?

3 Summary

In summary, although the IEEE 754 floating-point standard has served the mathematical, scientific
and engineering world very well for over 30 years, we now are seeing rapidly growing demand for
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reduced precision (machine learning, neural nets, graphics, etc.), a growing need for mixed 32-64-bit
precision, and also a need for greater than 64-bit, all typically varying within a given application.

A workshop discussing these types of issues for variable precision computing has been scheduled
for May 6–8, 2020 at the Institute for Computational and Experimental Research in Mathematics
(ICERM) in Providence, Rhode Island, USA. For details, see https://icerm.brown.edu/events/

htw-20-vp/.
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