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Abstract—Enhanced-precision global sums are key to repro-
ducibility in exascale applications. We examine two classic
summation algorithms and show that vectorized versions are
fast, good and reproducible at exascale. Both 256-bit and 512-
bit implementations speed up the operation by almost a factor
of four over the standard serial version. They thus demonstrate
improved performance on global summations while retaining the
numerical reproducibility of these methods.

Index Terms—reproducibility, vectorization, self-compensated
summation, enhanced precision, reproducible sums

I. INTRODUCTION

Architectures for exascale have re-introduced many forms
of parallelism, from vector units to threads to multicores. All
of these change the order of operations and may influence
reproducibility. Additionally, larger problems induce errors of
larger magnitude in the global sums. On the other hand, the
performance improvement mandates the use of these parallel
techniques.

Our implementations of vectorized and enhanced summa-
tions provides another layer of parallelism that improves
reproducibility with nearly the same performance as standard
serial summations composed of a simple, in-order addition.

A. Summations
Accumulation of rounding errors is a fundamental issue with

reproducibility in large parallel codes. To address this, there
are several summation techniques that can be used. The stan-
dard method of serial summation has reproducibility issues.
However, it achieves a solution with the minimum number
of floating point operations. Enhanced-precision techniques,
like the Kahan algorithm [1] and Knuth algorithm [2], collect
the rounding errors in a separate running sum that nearly
eliminates reproducibility concerns at the cost of additional
floating-point operations.
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B. Vectorization

Vectorization is a critical component to maximizing per-
formance, particularly on single-instruction, multiple-data
(SIMD) operations. Enhanced-precision summation algorithms
are poster children for vectorization because the FLOPS in-
crease, but the loads remain the same. However, an enhanced-
precision sum has a loop-carried dependency that can never
be automatically vectorized by a compiler. In order to obtain
vectorization in such a case, we must use vector intrinsics. We
thus vectorize two commonly used summation algorithms [3]
[4] in a manner suitable for real applications.

C. Reproducibility

As we head towards exascale computing, increased par-
allelization will also increase reproducibility issues. Global
summations run in parallel may be non-deterministic; larger
problems are likely to lead to lower reproducibility due to
additional threads and processors. Unfortunately, there are
no community standards for acceptable reproducibility on
exascale systems [5]. Our implementation offers an option
to improve reproducibility with a minimal impact to perfor-
mance, allowing designers to better control the acceptable
amount of reproducibility to performance ratios.

II. VECTORIZATION IMPLEMENTATIONS

The vector intrinsics used in the implementations of the
enhanced precision sums are not standard parts of any com-
puter language. This means that they cannot be relied on for
portability to any platform and compiler. To help with the
portability challenge, we show the implementations in three
different vector intrinsic sets that combined should provide
portability for most needs. These three vector instrinsics are:

1) the Intel x86 vector intrinsics, a commonly used set of
intrinsics that can run on both Intel and AMD processors
that support AVX vector instructions.



2) the GCC vector extensions, available when using the
GCC compiler on a variety of hardware architectures. [6]

3) the Agner Fog vector class library, for implementations
written in C++.

A. Vector Implementations of Reproducible Sums
1) Include file with definitions of vector intrinsics
2) Define a regular aligned array of four double precision variables
3) Fill a four-wide double precision vector variable with zeros
4) Pragmas to instruct the compiler to operate on aligned vector

variables
5) Load four values from a standard array into a vector variable
6) The standard Kahan or Knuth operation is done on all four-wide

vector variables
7) Store the four vector lanes into a regular, aligned array of four

values
8) Add the sums from the four vector lanes using scalar variables

Algorithm 1: Key steps for vectorizing the Kahan algorithm

III. PERFORMANCE AND REPRODUCIBILITY

The speedup from vectorization is approximately a factor of
two as compared to the non-vectorized version of the standard
serial sum. There is also a small reduction in the summation
error of about a factor of two to four due to accumulation
into separate vector lanes. The results for the Sandy Bridge
architecture, which supports AVX2, are shown in Table I and
Figure 1. The results for Skylake architecture, with AVX512,
are shown in Table II and Figure 2.

A. Vectorization on Kahan

Summation Method Relative Difference Runtime (secs)
Standard Serial 8.423e-09 1.242
Standard OpenMP SIMD -3.356e-09 0.706
Kahan 0 3.590
256 bit vector Kahan 0 1.052
512 bit vector Kahan (GCC) -1.388e-16 3.643

TABLE I: Results of different summation methods on a 256-
bit vector unit (Sandy Bridge) with GCC version 8.2

Summation Method Relative Difference Runtime (secs)
Standard Serial 8.423e-09 1.260
Standard OpenMP SIMD -1.986e-09 0.654
Kahan 0.0 3.625
256 bit vector Kahan 0.0 1.053
512 bit vector Kahan -1.388e-16 0.688

TABLE II: Results of different summation methods on a 512-
bit vector unit (Skylake-Gold 6152) with GCC version 8.2

IV. CONCLUSIONS

Our implementations show that we can use vector instrinsics
such as Intel x86, GCC, and Agner Fog to offset additional
floating point operations of the Kahan and Knuth algorithms
while retaining the rounding error resilience inherent to these
algorithms. Additional parallelism using vector instrinsics
gives designers another tool to use when balancing repro-
ducibility and performance.
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Fig. 1: For the Sandy Bridge CPU, the vectorized Kahan and
Knuth summations speedup the enhanced precision methods
by over 3x to almost the runtimes of the standard serial sums.
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Fig. 2: On the Skylake CPU, the 512-bit vectorized Kahan
implementations are as fast as the standard serial summation!
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